
PHYSICAL REVIEW A 101, 053607 (2020)

Dimensionality-enhanced quantum state transfer in long-range-interacting spin systems
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In this work we study the single-qubit quantum state transfer in uniform long-range spin XXZ systems in high-
dimensional geometries. We consider prototypical long-range spin exchanges that are relevant for experiments in
cold atomic platforms: Coulomb, dipolar, and van der Waals-like interactions. We find that in all these cases the
fidelity increases with the dimensionality of the lattice. We also find a pronounced enhancement of the fidelity
in one-dimensional lattices for increasing interaction range. This can be related to the emergence of a pair of
bilocalized states on the sender and receiver site due to the onset of an effective weak-coupling Hamiltonian.
Finally, we test our predictions in the presence of temperature-induced disorder introducing a model for the
thermal displacement of the lattice sites, considered as a set of local adiabatic oscillators.
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I. INTRODUCTION

Quantum information processing requires suitable transfer
protocols for transmitting a quantum state between different
parties. This task turns out to be nontrivial because of the
decoherence induced by the unavoidable interaction with an
environment. Quantum state transfer (QST) has been achieved
over large distances by spatial transmission of the particle
carrying the state (flying qubit) [1–4]. Photons are a natural
choice for flying qubits, and this strategy has been suc-
cessfully employed in cavity QED devices. Another option,
also suitable for long-distance transmission, is creating an
entangled state to be shared between the parties, sender and
receiver, in order to implement a teleportation protocol [5,6].

However, photons are not always the ideal choice to imple-
ment scalable quantum architectures where an efficient short-
distance transmission is requested, e.g., in solid-state-based
quantum computers. Here a more desirable option would be
exploiting the natural dynamics of some excitations carrying
the quantum information encoded in its quantum state. The
most widely investigated model to perform such a task is a
spin- 1

2 Hamiltonian, where the initial state is encoded into one
or more spins, accessible to a sender, and it is retrieved, after
a certain time, on an equivalent set of spins accessible to a
receiver [7–10].

Different strategies have been proposed to optimize the
QST fidelity: almost perfect state transfer can be obtained
in time-independent uniform chains [11–13], by modulated
interactions [8,14], in disordered chains [15,16], exploiting
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the ballistic regime of the excitations [8,17–21], in the regime
of weakly coupled sender and receiver[11,12,20,22–25], cre-
ating nearly resonant edge states introducing strong magnetic
fields [23,26,27] and by topological protection [28,29] (for
more detailed reviews see Refs. [30,31]).

Many steps forward have been done, both concerning the
QST of many-qubit systems [32–34] and in the implementa-
tion schemes ranging from optomechanical arrays [35] and
quantum dots [36–39] to ultracold atoms [24,40].

Much effort has been put into accomplishing quantum
computing hardware with atom traps [41–43], since these
schemes can be easily mapped into a many-body spin-1/2
model. In this context, different systems, such as polar
molecules, trapped ions, and Rydberg atoms, are character-
ized by long-range interactions, possibly mediated by long-
wavelength modes such as cavity photons, decreasing with
distance as a power law [44–51]. Here some of the results
obtained for next nearest-neighbors interactions do not apply;
in particular the estimation of the transmission time becomes
more demanding because of the breakdown of the Lieb-
Robinson bound [52]. QST has been studied for long-range-
interacting systems [16,53–56] with high fidelity and time
speedup.

In this paper we analyze different long-range spin models,
and we show that when the quantum channel is made of a
two- (three-) dimensional (2D or 3D, respectively) lattice with
uniform coupling, it is possible to achieve larger fidelity with
respect to the case of a one-dimensional (1D) channel with the
same Hamiltonian parameters.

In Sec. II we define the spin model and review the basic
features of QST in quantum spin chains with short- and
long-range couplings. In Sec. III we discuss our results on
QST with paradigmatic long-range spin exchange scaling as
1/rα (α > 0) as the Coulomb interaction (α = 1), dipolar
(α = 3), and van der Waals (α = 6), as well as the case of
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(α = 1/2) relevant for ion-trap experiments in 1D, 2D, and 3D
geometries. In Sec. III A we analyze the effect of vacancies
as a way to improve the QST in these models and interpret
the results by looking at the spectrum of effective two-spin
models. The relevance of symmetry in the removal of spins
in the chain is emphasized. In Sec. III B we discuss finite
temperature effects leading to a displacement of the spins with
respect to their equilibrium position. Finally, in Sec. IV we
present our conclusions and propose some extensions of our
work.

II. QUANTUM STATE TRANSFER IN THE XXZ MODEL

We consider a long-range XXZ spin model with Hamilto-
nian

Ĥ =
N∑

i, j = 1
i < j

C

2aα|ri − r j |α
(
Ŝ+

i Ŝ−
j + Ŝ−

i Ŝ+
j + 2�Ŝz

i Ŝz
j

)
, (1)

where S± and Sz are spin-1/2 operators. The couplings C and
� denote the intensity of the spin-exchange interaction and
the anisotropy parameter, whereas α is the power-law expo-
nent of the long-range coupling, and a is the lattice spacing
among nearest-neighbor spins in the lattice. For simplicity
we set C = 1 in units of energy × aα throughout our work,
while ri are dimensionless positions of the spins in units of
a. For � = 0 one obtains the isotropic long-range XY model,
for � = 1 one recovers the isotropic long-range Heisenberg
model, and for � = ∞ we obtain the long-range (classical)
Ising model. The nearest-neighbor (α = ∞) isotropic Heisen-
berg model was first considered in the seminal paper by Bose
[7]. See the Appendix for the generalization of these results
to higher dimensions. In this work we vary the long-range
exponent α > 0 and set the anisotropy parameter � = −2. We
notice that for � = −2 we can rewrite the spin couplings in
the form of a dipolar exchange potential

Ĥdip =
∑

i j

Ji j
(
Ŝi · Ŝ j − 3Ŝz

i Ŝz
j

)
, (2)

where Ji j = C/2aα|ri − r j |α .
The protocol describing the dynamics of our setup is

described in Fig. 1 for a 2D setup. The 1D and 3D setups will
be explicitly discussed below. In Fig. 1(a) the system of N
spin-1/2 is initialized in the ferromagnetic state ⊗i|↓〉i in the
z basis. At t = 0 one spin, the sender (in orange) is placed into
a state |ψs〉 = cos θ

2 |↓〉 + eiφ sin θ
2 |↑〉. Here θ ∈ [0, π ] and

φ ∈ [0, 2π ] are the usual angles defining a single qubit state
in the Bloch sphere. The system is then left to evolve under
unitary dynamics with the Hamiltonian Eq. (1). Additional
effects such as decoherence, excited state decay, or a generic
coupling to an external reservoir will be considered elsewhere,
while the effects of temperature-induced positional disorder
will be thoroughly discussed in Sec. III B.

We observe that for the model we are considering the total
magnetization is preserved, i.e., [Ĥ

∑N
i=1 Sz] = 0. Therefore

the Hilbert space where the dynamics takes place is confined
to the zero-excitation sector consisting of the fully ferromag-
netic state ⊗i|↓〉i and the one excitation sector consisting of
N states, where N − 1 spins are in the |↓〉 configuration and

FIG. 1. Dynamical evolution of a quantum spin system with
long-range interactions in a 2D array. Sender and receiver (orange)
and the channel (blue) interact via a long-range spin-exchange inter-
action 1/rα . At t = 0 the system is the state |ψs〉 = α|0〉 + β|1〉 with
one excitation localized at the sender i = 1. After a certain time t the
state |ψs〉 of the sender can be found with high fidelity at the receiver
i = N .

one is in the |↑〉 configuration. Under these conditions one can
redefine the many-body states in the computational basis as

⊗i|↓〉i ≡ |0〉, (3)

|↑〉 j ⊗i 	= j |↓〉i ≡ |j〉, (4)

that belong to a subspace H of dimension N + 1 of the full
Hilbert space. For our calculations we perform exact numeri-
cal diagonalization of the Hamiltonian matrix of Eq. (1) in the
basis above. Taking C

2aα = 1, we have the nontrivial diagonal
and off-diagonal elements for j 	= 0:

〈j|Ĥ |j〉 = �

2

⎛
⎜⎜⎜⎝

N∑
k, l = 1
k < l

1

|rk − rl |α − 2
N∑

i = 1
i 	= j

1

|ri − r j |α

⎞
⎟⎟⎟⎠, (5)

〈i|Ĥ |j〉 = 1

|ri − r j |α . (6)

For the special case of nearest-neighbor exchange interactions
one has

〈i|Ĥ |j〉 =
{

0 if |ri − r j | 	= 1
1 otherwise ,

〈j|Ĥ |j〉 =
N∑

i, k = 1
i < k

Sik,

where

Sik =
⎧⎨
⎩

�
2 if |ri − rk| = 1 and j 	= i, k,
−�

2 if |ri − rk| = 1 and j = i or j = k,
0 otherwise.

(7)
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The receiver’s state at time t is given by ρr (t ) =
Tr¬r[|
(t )〉〈
(t )|], where the trace is over all spins but the
receiver. Hence, the fidelity between the receiver and a given
sender state is given by F (|ψs〉, t ) = 〈ψs|ρr (t )|ψs〉. However,
as the initial state of the sender is generally unknown—
otherwise it could be transferred with unit fidelity by LOCC—
generally the average fidelity F (t ) is used as a figure of
merit of the quality of a QST protocol from the sender to the
receiver (orange spins in Fig. 1). F (t ) is readily obtained from
F (|ψs〉, t ) by integrating over all possible pure input states on
the Bloch sphere [16],

F (t ) =
∫

d�

4π
〈ψs|ρr (t )|ψs〉. (8)

Upon integration we obtain the general expression

F (t ) = 1
6 | fr,s(t )|2 + 1

3 | fr,s(t )| cos γ + 1
2 , (9)

where we defined fr,s(t ) = 〈r|e−iĤt |s〉, cos γ = arg{ fr,s(t )},
and set h̄ = 1. |s〉 and |r〉 are the singly excited states localized
at the sender and receiver, respectively. In the following, we
set in F (t ) the term cos γ = 1, which is obtained by applying a
magnetic field on the receiver state at the end of the QST [57].
Let us also mention that the presence of a uniform transverse
magnetic field, h

∑N
i=1 Ŝz

i , in Eq. (1) does not modify the
fidelity because, in the single-particle sector, it corresponds
to adding to Eq. (1) a term proportional to the identity. As
a consequence, the eigenvectors remain unchanged and the
single-particle eigenvalues experience a uniform shift yielding
an overall irrelevant phase factor. Indeed, a uniform magnetic
field can also be chosen [7] in such a way that cos γ = 1.

In the next section we analyze the dynamics of F (t ) for
configurations in one, two, and three dimensions as a function
of the power-law exponent α.

III. QUANTUM STATE TRANSFER WITH
LONG-RANGE COUPLINGS

In this section we discuss the maximum fidelity achievable
for the QST in a long-range-interacting system in one, two,
and three dimensions for different power-law interaction po-
tentials. In Fig. 2 we show the results of the simulations. In the
1D configuration (red dots) sender and receiver are located at
the extremes of the chain. In two dimensions (blue squares)
we consider a rectangle lattice with L × 5 spins where sender
and receiver are placed as in Fig. 1. In three dimensions (gray
diamonds) we examine a cubic lattice with (L × 5 × 5) spins
where sender and receiver are located next to the center of two
opposite faces of the parallelepiped with 5 × 5 spins, at the
distance a from the central spin. The exponents of the power-
law interaction that we analyze are Fig. 1(a) α = 0.5, Fig. 1(b)
α = 1, Fig. 1(c) α = 3, and Fig. 1(d) α = 6. We notice that
the higher the dimensionality of the lattice, the higher is the
fidelity. Furthermore, the enhancement is more pronounced
the larger the system, and in 3D lattices the fidelity even stays
close to one for relatively large system sizes.

From Fig. 2 we notice that, especially for 1D systems, the
fidelity increases with the range of the interaction. Further-
more, for fixed α, the higher the dimensionality of the lattice
the higher the fidelity. One can relate the interaction-range
and dimensionality enhancement of the fidelity to an effective
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FIG. 2. Maximum fidelity for quantum state transfer in a long-
range-interacting system in one, two, and three dimensions for
different power-law interaction potentials and � = −2. Red dot:
d = 1, blue square: d = 2, gray diamond: d = 3. L is the linear
size of the system. In two (three) dimensions we consider a rect-
angle (parallelepiped) lattice with L × 5 (L × 5 × 5) spins. In two
dimensions the sender and the receiver are located as in Fig. 1.
In three dimensions they are located in the center of the square
section of opposite faces of the parallelepiped, at distance a from the
central spin. The exponent of the power-law interaction is (a) α =
0.5, (b) α = 1, (c) α = 3, and (d) α = 6. Fidelity increases with
the dimensionality of the system for each power-law interaction.
We notice that in three dimensions the fidelity stays close to one
even for a large system size. The maximum fidelity is obtained by
following the dynamics in the interval t ∈ [0, t�E ] The time t�E ≈
h̄/�E is estimated to be inversely proportional to the difference �E
of the two eigenvalues with largest overlap with the sender and the
receiver.

weak-coupling effect. To illustrate this effect in a qualitative
way, let us first consider the interaction-range enhancement.
From Eqs. (5) and (6) we notice that all k diagonals of the ma-
trix representing the Hamiltonian in direct space are constant,
but for k = 0. This is a consequence of the open boundary
conditions. Whereas k 	= 0 secondary diagonals are given by
Eq. (6) implying a constant term along the kth diagonal for
fixed k = i − j, the terms in Eq. (5) depend on the position
j. As a consequence, for k = 0 (the main diagonal), 〈j|Ĥ |j〉
decreases, due to the second term in the RHS, for j closer
to the edges; see, e.g., Fig. 5 of Ref. [53]. This embodies
the boundary effect that spins closer to the edges have less
spins at shorter distances |ri − rj| than spins located more
towards the center of the system. Clearly, at fixed α, this
boundary effect is enhanced with the dimensionality of the
system.

As a consequence, the dynamics of the model in Eq. (1),
when restricted to the single-particle sector, is equivalent
to that of an Hamiltonian where the last term of Eq. (1)
is replaced by an effective magnetic field acting on site j
with intensity along the z direction given by Eq. (5). The
aforementioned effective magnetic field on the sender and
receiver spins weak with respect to that on the spins located
in the quantum channel, the QST mechanism is equivalent
to that falling into the class of the weak-coupling regime
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FIG. 3. Quantum state transfer for a long-range-interacting 1D
and 2D system with α = 6 (van der Walls interactions) and � = −2
of the XXZ model of Eq. (1). a) Maximum value of the fidelity for
a system with N spins (N = 2, . . . , 100). Red dots: 1D chain with
N spins. Blue squares: 2D L × 5 setup as in (d). (b) Dynamical
evolution of the fidelity as a function of the rescaled time t/t0. The
time t0 = πaα (L − 1)α/Ch̄2 is the time it takes for the two-spin
system (sender and receiver) to perform an ideal quantum state
transfer for N = 50. (c) Symmetric and antisymmetric eigenstates
ψ (s,a) with the greatest overlap with the sender and the receiver,
which are responsible for the high-fidelity state transfer for the 1D
case. (d) Overlap of the bilocalized states with the sender and the
receiver for a 2D system with 10 × 5 (the number of spins in the
line containing the sender and receiver is L = 10, and the height 5).
Notice that, as the the overlap is plotted in the natural logarithmic
scale, the figure is identical for the symmetric and antisymmetric
state.

QST protocols [11,26,27]. These protocols are characterized
by the presence of a pair of quasidegenerate energy eigen-
states, each bilocalized on the sender and receiver site, i.e.,
|E±〉 = ∑N

i=1〈i|E±〉|i〉 � a(|s〉 ± |r〉), reducing the dynamics
to an effective two-level system bringing along Rabi-like
oscillations of the excitation between the two locations. The
more pronounced the overlap of these energy eigenstates with
the sender and receiver site, with a = 1√

2
representing perfect

bilocalization, the higher the fidelity of the QST protocol.
Notice that the appearance in the energy spectrum of a pair of
quasidegenerate states, bilocalized on the sender and receiver
sites, is witnessing an effective decoupling mechanism by
which the sender and receiver site form an almost invariant
subspace trapping the excitation on the two sites. A rigorous
derivation of the equivalence of weak (strong) local magnetic
fields and weak coupling is presented in Ref. [27] by means
of perturbation theory.

A. Quantum state transfer in the presence of vacancies
and the role of symmetry

In Fig. 3(a) we plot the maximum value of the fidelity for
a system with N spins (N = 2, . . . , 100) with the 1D chain
(red dots) and 2D lattice with 10 × 5 spins (blue squares).
In Fig. 3(b) we show the dynamical evolution of the fidelity
as a function of the rescaled time t/t0, where we define

F(
t)

F(
t)

t/t0 t/t0

0.5
0.6
0.7
0.8
0.9
1

0 20 40 60 800.5
0.6
0.7
0.8
0.9
1

20 40 60 80

(a) (b)

(d)(c)

FIG. 4. Quantum state transfer and mirror symmetry of the va-
cancies in a linear chain with α = 1. Dynamical evolution of the
fidelity F (t ) with one vacancy (a) and (c), and two vacancies (b) and
(d). In (a) and (b) spins are removed symmetrically with respect to
the center of the chain. In (c) and (d) vacancies are created randomly
along the chain.

t0 = πaα (N − 1)α/Ch̄2. t0 is the time it takes for the two-spin
system (sender and receiver) to perform an ideal quantum
state transfer in the absence of the channel. As we discussed
above, a quantitative explanation of the increase of the fidelity
can be obtained by studying the eigenstates with maximal
overlap with the sender and the receiver. In Figs. 3(c)–3(d)
we plot the symmetric and antisymmetric eigenstates ψ (s,a),
which are responsible for the state transfer for the regular
chain with N spins (c) and for the 2D lattice 10 × 5 (d).

The Hamiltonian we consider in our work is mirror sym-
metric, which in Refs. [8,10] was found to be a necessary
condition for perfect QST. Here we investigate the breaking of
the mirror symmetry by removing arbitrary spins in the con-
figurations. For simplicity we focus on 1D and 2D systems.
The results are reported in Fig. 4 and Fig. 5.

In Fig. 4 we plot the configuration and the dynamics of
the QST fidelity in a linear chain with Coulomb interaction

FIG. 5. Quantum state transfer and mirror symmetry of the va-
cancies in a 2D square lattice with α = 1. Dynamical evolution
of the fidelity F (t ) with (a) two symmetric vacancies and (c) two
asymmetric vacancies.
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FIG. 6. Distribution of the maxima of the fidelities for Gaussian disordered atomic position configurations for several values of the disorder
strength. Particles are displaced with respect to their equilibrium value according to a Gaussian distribution with width σ/a in a 2D lattice with
length L = 10 and height h = 4. The strength of the disorder is connected to the temperature of the configuration as explained in the text. We
consider Nr = 2000 realizations. (a–c) α = 1 Coulomb spin-exchange interaction. (d–f) α = 6 van der Walls spin-exchange interaction. The
distribution of frequencies NF is normalized to the peak value of each histogram Nmax.

α = 1 in the presence of one and two vacancies. In Figs. 4(a)
and 4(b) spins are removed symmetrically with respect to
the center of the chain. In Figs. 4(c) and 4(d) vacancies are
created randomly along the chain. Without mirror symmetry
the fidelity decreases to approximately the random guess
value of 1

2 . This corresponds to a vanishing probability for
the excitation to reach the sender site; see Eq. (9). However,
in the presence of mirror symmetry, the fidelity has maxima
close to 1.

We repeat the analysis for a 2D system with a channel with
9 × 5 spins. We observe that, preserving mirror symmetry as
in Figs. 5(a) and 5(b), the dynamics displays a high value
of the fidelity. In contrast, when mirror symmetry is broken
by the removal of two spins, fidelity decreases again to
around 1

2 .

B. Finite temperature effects

We now discuss the effect of disorder in the particle
configuration. We focus on the 2D case. However, the re-
sults can be generalized to both one and three dimensions
straightforwardly. The motivation for this analysis is related
to recent experiments on Rydberg atoms trapped in optical
tweezers [58]. There atoms are trapped in a strongly focused
laser field, with a small but finite dispersion of the position.
We model this effect as a temperature-induced quenched
disorder on the particle configuration as in Ref. [59]. This
description is valid if the dynamics of the spin is decoupled
from the motional degrees of freedom, i.e., if the time tid
associated to the QST protocol is much faster than the typical
motional timescales h̄/kBT , where T is the temperature of
the system. Then we model the dynamics of the motional
degrees of freedom of particle i centered in the lattice site with
coordinates (x0

i , y0
i ) with a classical Boltzmann distribution

f (r, p) = exp [−βHm(r, p)], where

H (i)
m (r, p) =

∑
j=x,y

p2
j

2m
+ m

2
ω2

j (r j − r0
j )2. (10)

To find the distribution of the position f̄ (x, y), we integrate
the momentum contribution and normalize

f̄ (x, y) = 1

2π

1

σxσy
exp

[
− (x − x̄)2

2σ 2
x

− (y − ȳ)2

2σ 2
y

]
, (11)

where we defined the variance σ 2
i = 1/(βmω2

i ). We notice
that, although we restrict our analysis to fluctuations along
the plane x-y, if we were to fully model an experimental
setup, the confinement along the z direction also should be
considered. Therefore our study corresponds to the limiting
case of vanishing σz. For simplicity, we are restricting it to
σx = σy = σ . We observe that, although particle positions
in the lattice are uncorrelated, interparticle distances (in the
definition of the spin exchange couplings Ji j) are correlated
[60].

The results of the simulations are shown in Fig. 6. We plot
the distribution of the maxima of the fidelities for Gaussian
disordered atomic position configurations for several values
of the disorder strength σ/a rescaled to the lattice spacing.
Particles are displaced with respect to their equilibrium value
in a 2D lattice with length L = 10 and height h = 4. We
consider Nr = 2000 realizations of the disorder and α = 1
Coulomb spin-exchange interaction [Figs. 6(a)–6(c)] and α =
6 van der Walls spin-exchange interaction ([Figs. 6(d)–6(f)].
For clarity the distribution is normalized to the peak value of
each histogram. Fixing α and for low disorder the distribution
is peaked close to unitary fidelities. Increasing the disorder
strength a plateau appears in the distribution with a peak at
Fmax = 1. By further increasing the disorder the distribution
has a peak at Fmax = 1/2 and the plateau disappears. We
notice that this behavior is quite generic for the long-range
exponents that we analysed. The second relevant feature of the
fidelity distributions is that, upon increasing α, smaller values
of the disorder σ/a are needed to obtain a distribution peaked
at higher fidelities. The qualitative explanation is that a longer-
range interaction makes the system more insensitive to the
fluctuation of particle positions. To be more quantitative, this
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can be seen by computing the variation of the spin-exchange
couplings as a function of the disorder [61]

�Ji j

Ji j
= J̃i j − Ji j

Ji j
= ri j

α

|ri j + δ|α − 1, (12)

where we defined ri j = ri − r j , J̃i j = C/2aα|ri j + δ|α , and
δ is the difference of the fluctuations of the two particles.
Monitoring the variation of �Ji j

Ji j
as a function of α for a

fixed equilibrium interparticle spacing and disorder strength,
the ratio vanishes for α = 0. This corresponds to a position-
independent spin coupling that clearly should not depend on
the specific value of disorder. In the opposite limit, when α

increases the ratio �Ji j

Ji j
decreases to the limiting value −1 for

infinite α (position-dependent nearest-neighbor interaction).
In this limit disorder dominates and the regularity of the
particle configuration, including a strong breaking of mirror
symmetry, leads to a dramatic reduction of the fidelity of the
quantum state transfer.

IV. CONCLUSIONS

In this work we studied the problem of quantum state
transfer in lattices with open boundary conditions in one, two,
and three dimensions for the anisotropic Heisenberg XXZ
model with of power-law couplings with variable exponent
α and with a sender and receiver spin symmetrically coupled
to its edges.

We first analyzed the case of regular lattices and found that
the fidelity increases upon increasing the dimensionality of the
lattice for sufficiently large system sizes, and the enhancement
of the fidelity is more pronounced for systems with long-range
interaction. We interpreted this result as a combined effect
of the open boundaries of the lattice and the presence of the
interspin interaction term in the z direction, resulting in an
effective weak-coupling Hamiltonian in the single-excitation
sector, although the couplings are all uniform. We justified this
interpretation by noticing that the quantum state transfer takes
place via Rabi-like oscillations involving only two single-
particle eigenstates localized on the sender and receiver site,
a mechanism that is related to resonant tunneling in effective
decoupled models.

We studied also the effect of vacancies both in 1D and
2D lattices, confirming the necessity of the presence of mir-
ror symmetry in the lattice configuration with the removed
spins in order to increase the fidelity of the quantum transfer
transfer. Also, for the relevant case of 1D systems, we ob-
served that for longer-range interactions, one might consider
a larger number of vacancies to obtain a higher fidelity.
Finally, inspired by experiments of cold atoms in optical
tweezers, we considered the effect of a finite temperature
inducing displacements of the particles by studying the dis-
tribution of the maxima of the fidelity. We observed that, as
a general property, longer range interactions suffer less from
temperature-induced disorder than shorter range potentials.
Quantitatively, this effect can be understood by analyzing the
fluctuations of the spin couplings Ji j due to disorder as a
function of the exponent α.

Our study is relevant for the characterization of quan-
tum state transfer in experimental platforms for quantum

simulation and technology. We were mostly inspired by ap-
plications to ultracold ions and atoms where long-range inter-
actions are an intrinsic tool in the realization of spin models,
e.g., in cold atoms trapped in a photonic crystal waveguide.
Extensions of this work include the study of the effect of
decoherence and excited state decay, relevant for experimental
platforms. Calculations for open systems will be considered
elsewhere.
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APPENDIX: NEAREST-NEIGHBOR INTERACTIONS IN
HIGHER LATTICES

In this Appendix we present the results of the maximum
fidelity for nearest-neighbor interactions in a slab with linear
dimension L and transverse length L⊥ = 5 in two dimensions
and a parallelepiped L⊥ × L⊥ = 5 × 5 in three dimensions
(Fig. 7). For a purely 1D system, our results are equivalent
to Ref. [7] We observe that, similarly to the long-range case,
fidelity is higher for a higher dimensional slab. However, the
maximum fidelity is notably smaller than unity even for the
3D case, in contrast to Fig. 2, where for each α � 6 fidelity is
close to one even for very large sizes.
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FIG. 7. Maximum fidelity for quantum state transfer in a nearest-
neighbor interacting system in a 1D, 2D, and 3D slab and � = 1
(isotropic Heisenberg model). Red dot: d = 1, blue square: d = 2,
gray diamond: d = 3. N is the linear size of the system. In two (three)
dimensions we consider a square (cubic) lattice with N × 5 (N × 5 ×
5) spins. In two dimensions the sender and the receiver are located
as in Fig. 1. In three dimensions they are located in the center of two
opposite faces of the cube, at distance a from the central spin. Fidelity
increases with the the dimensionality of the system for sufficiently
large system sizes.
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