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We investigate the classical nonrelativistic dynamics of three bodies in Efimov’s −1/R2 potential in three
spatial dimensions, with a view towards semiclassical quantization and insight into the geometry of Efimov
states. Without the short-distance cutoff, these dynamics are superintegrable, which allows an exact integration
of the equations of motion for arbitrary initial conditions. We show that periodic orbits necessarily lead to exactly
vanishing binding energy of the bound states, in disagreement with Efimov’s quantum-mechanical results. A
scaling anomaly demands that the quantum dynamics of three bodies in this potential be augmented by additional
boundary conditions affecting all three particles at the short-distance cutoff point, i.e., near the triple collision.
We discuss the inherent difficulties in the definition of appropriate three-body boundary conditions in three
spatial dimensions and briefly discuss their consequences for (quasi)periodic orbits. Consequently, the classical
orbits corresponding to Efimov states cannot be exactly periodic, but must have a finite timescale (lifetime),
associated with the time it takes the system’s hyperradius to fall to zero, or to the cutoff value, which is typically
much longer than the (quasi)period of the hyperangular motion. The scaling properties of the lifetime are in
agreement with the quantum-mechanical predictions of the half-life (width) of Efimov states surrounded by an
ultracold gas. Detailed spatiotemporal evolution of the system is generally unpredictable beyond the three-body
collision point, even though global conservation laws ensure that the system’s hyperradius must be periodic.
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I. INTRODUCTION

The quantum-mechanical three-body problem in weak
but singular two-body potentials has well-known three-body
negative-energy (bound state or resonance) solutions due to
Efimov [1–6]. Over the past 50 years, these predictions have
been confirmed first by other theorists [7–9] and then in
experiments. The first albeit indirect detection of Efimov
states was by Kraemer et al. [10]. Then three other groups
reported observations of Efimov states in bosonic quantum
gases near a Feshbach resonance. The field of experimental
Efimov physics has expanded beyond that of Bose gas physics
after the discovery of the first helium trimer Efimov states
[11].

One particularly remarkable aspect of Efimov (quantum)
states is their discrete dilation symmetry, by a constant com-
mon factor of 22.7. This is in close relation to the continuous
dilation symmetry of the −1/R2 potential, which is the prime
example of dilation-symmetric interaction in classical nonrel-
ativistic physics, harking back to the 19th century [12–15].

The Zaccanti et al. experiment [16] reported the first
measurement of Efimov’s scaling factor of 25 ± 4, which is
consistent with Efimov’s prediction of 22.7, within experi-
mental uncertainties. In the meantime, the first dilated Efimov
states have been detected [17] at the predicted energies and
extending over length scales of around 1 μm, which is much
larger than the largest Rydberg states observed thus far (up to
100 Å; see Sec. 1.3.2 in [18] as well as [19–21]).

*dmitrasin@ipb.ac.rs

The next (third) triatomic resonance has the size of or-
der 22.7 μm [22] and the fourth is of order 22.72 μm �
515 μm = 0.5 mm, i.e., practically of macroscopic size,
which might make it almost visible by the naked eye, provided
it is visible at optical wavelengths. Thus one may ask, for
example, the following questions. What is the semiclassical
limit of Efimov states? Can one observe their shape(s) and/or
the motion(s) of the three atoms? If yes, then what should one
expect?

Another interesting facet of Efimov states dilated n times is
that their dynamics slows down as (negative) powers of 22.7:
Velocities of particles in the nth state are 22.7−n times smaller
than in the n = 1 one and the classical period Tn of periodic
motion grows as Tn ∼ 22.72nT1. This suggests that the n = 3
state should be (quasi)static, which raises many questions. For
example, what is the relation of such large-scale slow states
to truly static and macroscopic continuum properties of an
ultracold dilute Bose gas? What kind of real or gedanken
experiments can be devised to test this (predicted) slowing
down?

The above questions indicate a need for a semiclassical
study of Efimov states. Moreover, in an elaboration [5] of his
original work in [1], Efimov emphasized certain qualitative
aspects of his three-body resonance states and suggested a
hyperradial −1/R2 effective potential in which to study their
semiclassical properties. This is supposed to correspond to
the unitary limit of the original quantum treatment of Efi-
mov effect. So far, the only published semiclassical study of
Efimov states is that by Bhaduri et al. [23], which does not
even begin to address the above kinds of questions however.
Rather, the Bhaduri et al. WKB analysis, which is reduced to a
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one-dimensional one-body dynamics in the −1/r2 potential
with a short-distance boundary condition, which was intro-
duced to prevent a fall to the center, showed that an Efimov-
like energy spectrum appears as a consequence of semiclas-
sical quantization of a periodic orbit that corresponds to a
breathing mode of three bodies with a fixed shape. This par-
ticular orbit expands at first to its maximal size and then col-
lapses back to the lower cutoff, only to bounce back again, etc.

Such an orbit can only be periodic in one spatial dimension.
In two dimensions the particle would not bounce back in
the direction from which it arrived, but would rather scatter
in an arbitrary direction (see Sec. III B). Three-dimensional
periodic orbits in the Efimov potential do not involve any kind
of collapse. Indeed, we will show that the opposite must be
true: The hyperradius, which effectively describes the size
of periodic orbits, must remain constant in time. A proper
extension of the WKB method to three bodies moving in three
spatial dimensions requires either (i) a precise definition of
the boundary conditions for all three particles at the small-
hyperradius cutoff, which we show is impossible, or (ii) a
relaxation of the requirement of strict periodicity.

The question of whether the three-body system can
reemerge (bounce) from the three-body collision intact and
then complete the period is subject to the (nonuniversal)
physics at the hard-core cutoff. The answer depends crucially
on the boundary conditions. Indeed, there are mathematical
obstacles to a (simple) definition of such boundary conditions
(see Refs. [24,25]). In Sec. VI we briefly discuss some in-
tuitive sets of such boundary conditions, but do not try to
implement them numerically, due to complications that they
involve.

The second option, which we prefer here, is to relax the
condition of strict periodicity: Nonstationary states can also
be dealt with semiclassically. Indeed, a classical orbit with
negative energy in the −1/R2 potential, corresponding to a
(dilated) Efimov state, must necessarily lead to a collapse
of the system in a triple collision, subsequent to which the
classical evolution of the system becomes to a large degree
unpredictable, i.e., highly dependent on the (nonuniversal)
boundary conditions at the cutoff. Global conservation laws of
energy and hyperangular momentum ensure that the system’s
hyperradius must rebound after the triple collision, along with
a possibly discontinuous change of the triangle’s shape at
the singularity or at the boundary condition. Thus, the orbit
is periodic in the hyperradius and (mostly) smooth in the
hyperangles, interrupted at periodic intervals by instantaneous
random changes.

The free-fall time τ , associated with the collapse of the
classical three-body system to the triple collision or to cutoff,
as opposed to the period T of motion in the hyperangu-
lar shape space, determines the energy E spectrum of the
semiclassical Efimov states, as shown by the Bhaduri et al.
analysis [23], as well as the (possible) half-life (width) of the
quantum-mechanical state, whether it is due to the interaction
with the surrounding gas or with the electromagnetic (EM)
radiation.1

1Dilated Efimov states in realistic situations, i.e., in experiments,
are expected to decay towards the ground state (see Refs. [26,27]),

The classical orbits that correspond to semiclassical Efi-
mov states collapse increasingly slowly as the absolute value
of the energy of the system is reduced. The time τ it takes for
the classical three-body system to fall to the center presents
also an upper bound on the half-life τ = 2/� of semiclas-
sical Efimov states. Scaling arguments lead to the inverse
proportionality of the half-life τn and the energy En of the
nth Efimov state: τnEn = const. This result is in agreement
with the quantum-mechanical predictions (see Refs. [26,27])
of the half-life (i.e., of the quantum-mechanical width) of
Efimov states, which are longer lived as n increases and
indeed become perpetual in the limn→∞ En = 0 limit. These
predictions form a coherent and at least partially falsifiable
semiclassical picture of Efimov states which has not yet been
tested in experiment.

The paper is organized as follows. In Sec. II we briefly
introduce Efimov’s effective potential and discuss its purpose
and limitations. In Sec. III we discuss some general properties
of the classical mechanics of N bodies moving in a hyper-
radial −1/R2 potential. In Sec. IV we present the necessary
mathematical background, where we show that Efimov’s dy-
namics are superintegrable in the absence of a cutoff. Then
in Sec. V we find (all) periodic orbits satisfying Efimov’s
initial or boundary conditions and show that they cannot lead
to Efimov states’ energy spectrum; however, we show that a
class of quasiperiodic adiabatically shrinking orbits leads to
Efimov’s spectrum. In Sec. VI we discuss ways to introduce
an appropriate boundary condition at the small hyperradius
cutoff, which would prevent the collapse (fall to the center)
and lead to a bounce of the system, as well as the scaling
properties of Efimov state’s half-life. Finally, in Sec. VII we
summarize our results and draw conclusions.

II. EFIMOV’S EFFECTIVE POTENTIAL: PURPOSE
AND LIMITATIONS

Efimov’s original work [1] was a study of solutions to the
three-body Schrödinger equation in the short-range singular
Dirac δ-function potential. He used the so-called hyperspher-
ical harmonic expansion of the wave functions and of the
potential to solve the three-body Schrödinger equation. This
work led to the remarkable prediction of a three-body bound-
state energy spectrum, even though the two-body states are
not bound, which was experimentally corroborated some 35
years later. Classical motion, on the other hand, in the Dirac
δ-function potential is ill-defined at best, so there is no hope
for semiclassical quantization of these equations of motion or
for any intuition to be gained on the basis of classical concepts
such as shape or trajectory.

In the meantime Efimov [5] had tried to reach precisely
such a classically intuitive understanding of his perplex-
ing results. That led him to an effective attractive hyperra-

even though that feature has not yet been observed in experiment.
The dominant decay mechanism of such dilated Efimov states de-
pends on the environment surrounding the three-body system and
may be either of the following: mechanical inelastic collisions lead-
ing to deep-lying two-body bound states or (multi)photon radiation
in the deep infrared region.
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dial three-body −1/R2 potential, which is not singular in
the hyperangular variables, but is homogeneous, just as the
original δ-function one. Indeed, Efimov had noted [2] that
his equation of motion (EOM) “has the form of the radial
Schrödinger equation of [the] two-dimensional problem with
s2

i /R2.” The transition from a one-body problem in a radial
−1/R2 potential to the three-body problem in a hyperradial
−1/R2 potential appears immediate, though some differences
remain. The overwhelming similarity and the main difficulties
underlying these two classical systems remain: Both of their
dynamics are strictly speaking undefined beyond the free-fall
time. Nevertheless, global conservation laws can be used to
extract some information about the temporal evolution, of
at least one variable, beyond the free-fall time. This lack of
predictability (chaoticity) is easier to illustrate in the one-body
system, which we do in Sec. III B, than in the three-body
system, to which we devote Secs. IV and V.

Efimov’s potential depends only on the hyperradius R =√
1
3

∑3
i> j (ri − r j )2 of three bodies but not on the hyperangu-

lar degrees of freedom, which implies integrability (Sec. V C)
in any number of spatial dimensions. Moreover, the −1/R2

nature of this potential leads to yet another conservation law,
which implies superintegrability of its classical three-body
dynamics [14,28,29], a fact rarely mentioned and never prac-
tically used in the Efimov physics literature.2 In three spatial
dimensions there are 15 + 1 constants of motion, one each
for the 15 components of the hyperangular momentum tensor,
which include the three components of the (standard) angular
momentum vector plus one virial [12,15], which is the gen-
erator of dilations and contractions, besides the usual 3 + 1
(c.m. plus energy) ones (Sec. IV). This additional constant of
motion, also known as the virial, ensures the superintegrability
of this dynamical system [14,28,29].

Of course, even mere integrability generally allows for
(usually numerical) integration of periodic solutions to the
classical equations of motion and also to their semiclassical
quantization (which is the way things turned out for the
harmonic oscillator and the hydrogen atom). Semiclassical
quantization of a three-body system (viz., the He atom) in
the Coulomb potential, which is not integrable, was first
successfully completed by Wintgen and co-workers [30–34]
using Gutzwiller’s semiclassical quantization methods based
on periodic orbits [35], which suggests that we apply the same
program here.

There is one significant difference between three-body
dynamics in the Efimov potential and other examples of
superintegrable systems, such as the harmonic oscillator: The
dilational (conformal) symmetry is anomalous in the sense3

that it is in fundamental conflict with the quantization con-
ditions [15,36,37]. There are various ways of implementing

2Efimov did not emphasize this aspect of his potential either, but
rather discussed certain qualitative properties of solutions to the
EOM in his potential [5], which we now put to the test.

3This quantum anomaly is (presumably) also the reason for the ap-
pearance of the remnant discrete dilation symmetry in the quantum-
mechanical spectrum.

this anomaly in simple one-body, one-dimensional4 quantum-
mechanical systems, usually by way of a cutoff [36,38,39],
which has a counterpart in the semiclassical quantization [23]
as well. The periodic one-body orbit of Bhaduri et al. [23]
involves a fall to the center and a subsequent bounce from
the hard-wall boundary condition assumed at short distances,
which corresponds to the quantum-mechanical cutoff. This
sort of perfectly elastic bounce can be arranged to happen only
in one spatial dimension however. For one particle moving
in two dimensions, we show in Sec. III B that the particle
bounces elastically from the center, albeit in an arbitrary
direction.

For three particles moving in three dimensions, there are
fundamental theorems [24,25] that preclude the possibility of
continuation of dynamics beyond the three-body collision. In
Sec. VI we briefly discuss inherent difficulties in the definition
of appropriate three-body boundary conditions at the short-
distance cutoff.

It should be noted that both the scaling (conformal)
anomaly and the Efimov effect depend on the dimensionality
of space. There is no Efimov effect in one or two spatial
dimensions, as the quantum-mechanical problem of three
bodies in the pairwise sum of Dirac δ-function two-body
potentials in one spatial dimension is exactly solvable [40],
goes by the name of the Lieb-Liniger model, and does not
display the characteristic Efimov energy spectrum.5

Thus, the Efimov potential approach is ineffective in one
spatial dimension. In two spatial dimensions the quantum-
mechanical two-body problem in the Dirac δ-function po-
tential has been treated in Refs. [36,38] and references cited
therein, where a connection with the conformal anomaly is
established as well.6 At this point however it may be noted that
Ref. [23] did not discuss the differences between the one-body
system in one dimension and the three-body system in three
dimensions, which we do below.

All strictly periodic three-body three-dimensional (3D)
orbits in the Efimov potential, with or without a cutoff, must
have a constant hyperradius (size) throughout their periods
and exactly vanishing energy. Thus, all strictly periodic three-
dimensional three-body orbits are in manifest conflict with
Efimov’s quantum-mechanical eigenenergies, which do not
vanish. Therefore, one must look for other classes of orbits
in order to reproduce the Efimov spectrum.

We suggest to take such three-body orbits that have the
hyperangular dependence of a strictly periodic orbit, but with
a (nonconstant) periodic hyperradial dependence, as these two
degrees of freedom decouple in the Efimov potential. Hyper-
radial periodicity of such an orbit is ensured by global con-
servation laws, but the hyperangular evolution may undergo

4We are not aware of any attempts at a solution to the quantum-
mechanical three-body problem in the Efimov potential however.

5This should not surprise us, as the configuration spaces of Lieb-
Liniger and Efimov systems have different dimensionalities. The
classical motion of three bodies in Efimov’s effective potential can
also be solved in one dimension; however, the corresponding WKB
spectrum is not a good approximation to the Lieb-Liniger spectrum.

6The three-body problem in the Dirac δ-function potential in two
spatial dimensions has not been discussed.
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an abrupt discontinuous change at the moment of vanishing
hyperradius, i.e., of three-body collision (collapse). We say
“may” here because the actual dynamics (solution to the
equations of motion) at the time of collapse is strictly speaking
undefined (see the example in Sec. III B). Once the system
bounces from the singularity at R = 0, the hyperangular de-
pendence resumes its predictability.

Thus, such a solution would not be strictly periodic, as
its temporal evolution beyond the free fall or the cutoff time
is strictly speaking arbitrary. This suggests that orbits corre-
sponding to Efimov states are not strictly periodic, but change
their hyperangular dependences at regular (strictly periodic)
time intervals that equal twice the long (as compared with the
period of the hyperangular motion) albeit finite free-fall time
(lifetime), which increases as the binding energy decreases.

We show in Sec. VI that the free-fall time, i.e., the time
it takes the system to reach the triple collision, or the short-
distance cutoff, which is much longer than the hyperangular
period of the orbit, is also an upper bound on the half-life
of semiclassical Efimov states, which is in agreement with
the quantum-mechanical predictions of the half-life (inverse
of the width) of Efimov states (see Refs. [9,26]).

III. CLASSICAL MECHANICS OF N BODIES
IN EFIMOV’S POTENTIAL

The main feature of N-body dynamics in the homogeneous
potential Vtotal(R) � 1

R2 , also known as the strong or Jacobi-
Poincaré potential, is its dilational or conformal symmetry.
It determines the nature of its periodic orbits, as having
vanishing energy, irrespective of the number of bodies N .

A. Dilation and conformal symmetry of the problem

The Lagrange-Jacobi identity for any homogeneous poten-
tial Vtotal(R) � 1

Rα ,

m
d2

dt2

R2

2
= 2Ttotal + αVtotal, (1)

gives a relation between the kinetic Ttotal and the potential
energy Vtotal, where R is the hyperradius and α is a real
number. Here the left-hand side of Eq. (1),

m
d2

dt2

R2

2
= d

dt
G(R),

is the time derivative of the so-called virial

G =
N∑

i=1

qi · pi = m
d

dt

N∑
i=1

qi · qi = m

2

dR2

dt
= mR

dR

dt
,

which is (twice) the generator of dilations and contractions.
Note that, for α = 2, the equations of motion plus the
Lagrange-Jacobi identity lead to the conservation law [12–14]

dD

dt
= 0,

where

D = G

2
− Et = const.

As, for α = 2, the right-hand side of Eq. (1) is identical to
twice the total energy E [12–14],

lim
α=2

d

dt
G(R) = m

d2

dt2

R2

2
= 2Ttotal + 2Vtotal = 2E ,

which is a constant of motion itself. This conservation law can
be integrated as

G(t ) − G(t0) = 2
∫ t

t0

E dt = 2E (t − t0),

where G(t0) = mR(t0) dR
dt |t=t0 is the initial value of the virial,

which can have either sign, depending on the sign of Ṙ(t0) =
dR
dt |t=t0 .7

As G(t ) = mR(t )Ṙ(t ) and R(t ) � 0 for all t , this conserva-
tion law is equivalent to

dR

dt
= 1

mR
[G(t0) + 2E (t − t0)].

Thence, for E < 0 and for a sufficiently long time t > t0 +
G(t0 )
2E , the factor G(t0) + 2E (t − t0) < 0 must be negative, ir-

respective of the sign of the initial value G(t0). Therefore, this
equation always leads to Ṙ(t ) < 0, which in turn leads to the
collapse of the system for a sufficiently long time t � G(t0 )

2E .
Similarly, irrespective of the sign of G(t0), positive energy
E > 0 always leads to an infinite expansion of the system.

Thus, in the remaining case E = 0, the virial
G(t ) is an integral of motion G = G(t0) = const.8

Accordingly, at zero energy E = 0 there are three
kinds of motion: (a) unbounded, with G = mR dR

dt > 0,
which leads to endless expansion of the system
limt→∞ R(t ) = ∞; (b) bounded, with G = mR dR

dt < 0,
which leads to collapse of the system to a point (zero
extension) within a finite time tc, limt→tc R(t ) = 0; and
(c) bounded, with G = mR dR

dt = 0, which leads to endless,
including periodic, motions of the system at a constant
extension (size) R(t ) = R(0). The additional constant of
motion R = R0 makes this system superintegrable, similarly
to the Kepler problem (or the hydrogen atom problem) and
the harmonic oscillator, but it also makes its quantization
procedure more subtle than that in Ref. [23] (see Sec. V F).

B. Periodic orbits of the one-body problem
in the strong potential

Periodic orbits of the one-body problem in a central power-
law potential are well studied and known and thus are straight-
forward to picture and understand. The two-body problem is
equivalent to the one-body problem, after removal of the c.m.
variable, but the three-body problem, even in a hyperradial
potential, is more complicated. For this reason we start with
the one-body problem.

7Of course, the above is nothing but the statement of conservation
of the dilation generator D and of the conservation of the conformal
boost K from the general theory of conformal symmetry in nonrela-
tivistic systems [28,29]. We avoid this specialist terminology here so
as to keep the discussion accessible to a larger number of readers.

8This theorem is due to Jacobi [12].
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As we are interested only in periodic orbits of one body in
the strong potential −1/R2, we may impose E = 0 and Ṙ = 0
as an initial condition. This demands one of the following: (i)
vanishing angular momentum L = 0 and vanishing potential
energy 1/R2

0 = 0, i.e., R0 = const = ∞, or (ii) nonvanishing
angular momentum L �= 0 and nonvanishing potential energy
1/R2

0 �= 0, i.e., R0 = const < ∞. The former case is trivial
(no motion), whereas the latter allows circular motion, which
is the only periodic orbit.

If one insists on a vanishing angular momentum L = 0
and finite initial (hyper)radius R0 �= ∞, one must end up in a
collapsed state (see Sec. III A above). The temporal evolution
of this system is not defined beyond the free-fall (collapse)
time. If one nevertheless wishes to explore possible scenarios
for the time evolution beyond the free-fall time, one must
modify the potential, either by changing the power (order of
homogeneity) in the potential or by introducing a cutoff.

(i) If we view the strong potential −1/R2 as the limiting
case of the homogeneous potential Vtotal(R) � − 1

Rα as α → 2,
there are periodic solutions with E < 0 and L = 0. The orbit’s
precession angle �φ for a particle moving in the effective
potential VL,α (R) := L2

R2 − g
Rα was determined in Ref. [41] as

�φ(E , L) = 2
∫ ∞

Rmin

L

R2
√

2[E − VL,α (R)]
dR. (2)

In the limit of vanishing angular momentum L → 0, the
precession angle limL→0 �φ(E , L, α) is energy independent
and equals

�φ(E , L = 0, α) = 2
∫ ∞

1

du

u
√

u2−α − 1
= 2π

2 − α
,

which goes to infinity in the limit α → 2,

lim
L→0,α→2

�φ(E , L, α) = ∞.

As the angle �φ(E , L = 0, α) can only be defined modulo
2π , the above result tells us that a free-fall trajectory in
the strong potential −1/R2 scatters at an arbitrary angle
�φ(E , L = 0, α = 2) from the center of the potential. Thus,
in this sense, a free-fall orbit can be continued beyond the
free-fall time, but the resulting trajectory precesses through an
arbitrary (incalculable) angle after every free fall to the center.
Whether such an orbit can or should be called periodic is left
to the reader to decide.

This situation ought to be compared with the correspond-
ing one in the Coulomb potential, α = 1, where (a) the deflec-
tion angle (2) equals 2π in the L → 0 limit, i.e., the particle
backscatters after free fall, and (b) the period of the circular
(or any elliptic) orbit Tα=1 does not depend on the angular
momentum and equals twice the free-fall time Tα=1 = 2τα=1.
This time is only associated with the (binding) energy of the
orbit, which is not the case with α = 2. Thus, the motion
in the α = 2 power-law potential has two independent time
scales: Tα=2 and τα=2. The former is associated (only) with
the periodic motion, whereas the latter is independent and not
necessarily periodic.

(ii) By introducing a spherically symmetrical cutoff, the
problem of arbitrary orbits at vanishing angular momentum
L = 0 can be solved per fiat. This modification of the potential
breaks its homogeneity property however and thus leads to the

breaking of the Lagrange-Jacobi identity (1) together with all
of its consequences in Sec. III A.

An extension of the (hyper)spherical cutoff to three-
particles moving in 3D space is problematic; however, the
construction of a hyperspherical cutoff (in six dimensions)
for three bodies (moving in 3D space) with good or mean-
ingful kinematic and geometric properties remains an open
question (see Sec. VI). Whereas one may readily postulate the
existence of such a cutoff in a quantum-mechanical calcula-
tion, the corresponding classical equations of motion remain
unsolved (see Sec. VI). For this reason, the classical EOM
cannot be solved beyond the three-body collision time (point)
and thus a different timescale is introduced into the problem.

IV. CLASSICAL MECHANICS OF THREE BODIES
IN EFIMOV’S POTENTIAL

The first order of business is to find all symmetries, i.e.,
integrals of motion of three particles moving in Efimov’s
potential, so as to maximally simplify the integration of
equations of motion. Here we show the (super)integrability
of dynamics in the hyperspherical 1/R2 potential: There are
15 + 1 (hyperangular momentum tensor components, which
include three components of the usual angular momentum
vector plus hyperradius R) constants of motion besides the
usual 3 + 1 (c.m. plus energy) ones.

A. Kinematics

The kinetic energy of three-body motion can and must be
divided into the c.m. and the internal parts

T = 1

2

3∑
i=1

miṙ2
i = 1

2
(m1 + m2 + m3)R2

c.m. + Tinternal,

and the same holds for the angular momentum

L =
3∑

i=1

miri × ṙi

= (m1 + m2 + m3)Rc.m. × Vc.m. + Linternal.

The internal motion is what interests us here, so we remove
the c.m. motion, by introducing two relative-motion three-
vectors. There are infinitely many ways of choosing these
relative vectors, but we will follow convention and use Jacobi
vectors in the equal mass limit. When the masses are unequal
one may use Smith’s [42–45] version of mass-dependent
Jacobi vectors. Coordinates of three (identical) particles (with
equal masses) in the c.m. rest frame are given by two Jacobi
three-vectors

λ = 1√
6

(r1 + r2 − 2r3), (3)

ρ = 1√
2

(r1 − r2). (4)

B. Three-body hyperspherical variables

The kinetic energy in the rest frame is of the form

Tinternal = m

2
(λ̇

2 + ρ̇2). (5)
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It possesses an O(6) symmetry that is made manifest by
introducing the six-dimensional coordinate hypervector xμ =
(λ, ρ): The kinetic energy (5) can be written as

Tinternal = m

2
Ṙ2 + K2

μν

2mR2
, (6)

where the grand angular momentum tensor Kμν , μ, ν =
1, 2, . . . , 6, reads

Kμν = m(xμẋν − xν ẋμ)

= (xμpν − xνpμ) (7)

and has 15 linearly independent components that include
three components of the ordinary total angular momentum:
L = lρ + lλ = m(ρ × ρ̇ + λ × λ̇). Efimov’s potential energy
V (R) = −1/R2 is hyperradial and this large symmetry re-
mains unbroken, with an additional dilational symmetry.

C. The O(6) symmetry of the problem

The group of ordinary rotations SO(3)rot is the diagonal
SO(3) subgroup of the six-dimensional rotations SO(3)rot =
SO(3)diag ⊂ SO(6), which means that the rotations act equally
on the first three coordinates (λ) and the last three coordinates
(ρ) of the six-dimensional vector xμ. Then, as demonstrated
in Ref. [46], the 15 generators of the SO(6) Lie algebra
decompose as (3)rot + (3) + (3) + (5) + (1) with respect to
SO(3)rot, so there is only one extra generator of SO(6) that
commutes with the rotations. Upon introduction of complex
coordinates,

X±
i = λi ± iρi, i = 1, 2, 3. (8)

The tensor Kμν [Eq. (7)] can be written in terms of the new
coordinates as

Li j ≡ −i

(
X+

i

∂

∂X+
j

+ X−
i

∂

∂X−
j

− X+
j

∂

∂X+
i

− X−
j

∂

∂X−
i

)
,

(9)

�Li j ≡ −i

(
X+

i

∂

∂X−
j

+ X−
i

∂

∂X+
j

− X+
j

∂

∂X−
i

− X−
j

∂

∂X+
i

)
,

(10)

Wi j ≡
(

X+
i

∂

∂X−
j

− X−
i

∂

∂X+
j

− X+
j

∂

∂X−
i

+ X−
j

∂

∂X+
i

)
,

(11)

Qi j ≡ 1

2

(
X+

i

∂

∂X+
j

− X−
i

∂

∂X−
j

+ X+
j

∂

∂X+
i

− X−
j

∂

∂X−
i

)
.

(12)

Among these are three antisymmetric tensors, each with three
components: (i) Li j [Eq. (9)], which corresponds to the phys-
ical angular momentum, (ii) �Li j [Eq. (10)], which equals
the difference of partial angular momenta Lλ

i j − Lρ
i j ), which

is generally not conserved, and (iii) Wi j [Eq. (11)], with no
immediately obvious physical meaning.

The symmetric part of the tensor Kμν [Eq. (7)] contains the
quadrupole tensor Qi j [Eq. (12)], which can be decomposed
into an irreducible second-rank tensor (under rotations), with
five components and a scalar (with one component). The trace
of Qi j is the scalar

Q ≡
3∑

i=1

Qii =
3∑

i=1

X+
i

∂

∂X+
i

−
3∑

i=1

X−
i

∂

∂X−
i

, (13)

which (obviously) commutes with the rotation generators
Li j and generates the so-called democracy transformations
[42,46,47], which are continuous generalizations of permu-
tations of three particles.

V. PERIODIC SOLUTIONS IN THE 1/R2

HYPERRADIAL POTENTIAL

Due to the superintegrability of this system, all periodic
orbits in Efimov’s hyperspherical 1/R2 potential can be inte-
grated exactly. Efimov’s condition of vanishing (total) orbital
angular momentum L = 0 simplifies the problem further. For
this purpose we find the most appropriate variables.

A. The O(4) symmetry of L = 0 three-body motion

As Efimov’s effect involves only states with vanishing
(total) orbital angular momentum L = 0, we use the fact that
all such orbits (must) lie in a plane, e.g., the x-y plane with the
z components of all position and velocity vectors being equal
to zero. Thus the problem is reduced to a two-dimensional
one, without loss of generality. This means that the O(6)
symmetry turns into O(4) symmetry, which does not change
the superintegrability of the problem, but simplifies the search
for periodic orbits.

Therefore, we define the two-dimensional grand angular
momentum tensor Kμν ,

Kμν = m(xμẋν − xν ẋμ)

= (xμpν − xνpμ), (14)

where xμ = (ρ,λ), as a subset of the three-dimensional one
(7) with μ, ν = 1, 2, 3, 4. In particular, lρ ≡ K12 and lλ ≡ K34

generate SO(2) rotation of vectors ρ and λ, respectively.
Next we introduce

M = 1
2 (lρ + lλ, K13 − K24, K14 + K23), (15)

N = 1
2 (lρ − lλ, K13 + K24, K14 − K23). (16)

Note that M and N commute and that each of them satisfies
separate SO(3) commutation rules

[Mi, M j] = iεi jkMk,

[Ni, N j] = iεi jkNk, (17)

explicitly demonstrating that o(4) = o(3) ⊕ o(3). In other
words, there are two quasi-three-dimensional hyperangular
momentum vectors M and N that completely describe the
four-dimensional antisymmetric tensor Kμν , very much like
the electric E and magnetic field B completely describe the
EM field tensor Fμν . In the limit when the total angular mo-
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FIG. 1. Real-space trajectories of periodic three-body orbits with
vanishing angular momentum in the Efimov potential. Two bodies
move on the oval in opposite directions, through the two-body
collisions, until they return to their initial positions, which is why
only one color (green) can be seen in the oval. The third body moves
back and forth on the straight (blue) line.

mentum vanishes L = lρ + lλ = 0, the kinetic energy attains
a new level of simplicity.

B. Shape sphere

We may relate the three scalar variables to the unit three-
vector n̂ defined by the Cartesian components

n̂ =
(

2ρ · λ

R2
,
λ2 − ρ2

R2
,

2(ρ × λ) · ez

R2

)
. (18)

The domain of these three-body variables is a sphere with unit
radius [48,49], as illustrated in Fig. 2. The sphere coordinates
depend only on the shape of the triangle formed by the
three bodies, not on the hyperradius R or on the orientation
of the triangle in space. The equatorial circle corresponds
to collinear three-body configurations (degenerate triangles).
The three points shown in Fig. 2 correspond to two-body
collisions, which are singularities in the potential. Three Euler
meridians on the shape sphere are orthogonal to the equator
and pass through one of the collision points and its corre-
sponding Euler point that lies on the equator opposite to the
collision point.

We will see that periodic three-body orbits with vanishing
angular momentum form great circles on the shape sphere,
including the equator (see Fig. 2). We may formulate the
initial conditions in terms of any one of the well-known
parametrizations of the shape sphere or hyperangles.

FIG. 2. Shape-space–sphere trajectories of periodic three-body
orbits with vanishing angular momentum in the Efimov potential are
great circles on the shape-space sphere.

C. Kinetic energy in terms of shape-spherical hyperangles

There are two standard sets of hyperangles: (i) the Delves
[50] hyperangles χ and θ ,

ρ = R sin χ, λ = R cos χ with 0 � χ � π/2, (19)

ρ · λ = R2 cos χ sin χ cos θ, (20)

leading to

λ2 − ρ2

R2
= cos(2χ ),

and (ii) the Smith-Iwai [44,45,48] hyperangles α and φ,
(sin α)2 = 1 − ( 2ρ×λ

R2 )2 and tan φ = ( 2ρ·λ
ρ2−λ2 ), which reveal the

full S3 permutation symmetry of the problem. The angle
α does not change under permutations, so all permutation
properties are encoded in the φ dependence.

The three-body kinetic energy with vanishing angular mo-
mentum L = 0 in two dimensions in terms of Delves angle χ

is [51]

T = m

2

[
Ṙ2 + R2

(
χ̇2(t ) + 1

4
sin2[2χ (t )]θ̇2(t )

)]
.

If we redefine χ ′ = 2χ , then this assumes the standard
spherical-angular form

T = m

2

[
Ṙ2 +

(
R

2

)2

{χ̇ ′2(t ) + sin2[χ ′(t )]θ̇2(t )}
]
.

In terms of Iwai-Smith hyperangles,

T = m

2

[
Ṙ2 +

(
R

2

)2

{α̇(t )2 + sin2[α(t )]φ̇(t )2}
]
.

This is equivalent to the kinetic energy of a free particle in
spherical coordinates, on the shape sphere defined in Sec. V B.

D. Efimov’s initial conditions

Efimov explicitly demanded [5] that all three pairs of parti-
cles have vanishing partial angular momenta ri j × ṙi j = 0, so
we see that both L and �L must vanish. As both L and �L
are conserved, due to the hyperradial nature of the three-body
potential, we set

L = lρ + lλ = m(ρ × ρ̇ + λ × λ̇) = 0

and

�L = lρ − lλ = m(ρ × ρ̇ − λ × λ̇) = 0

as an additional initial condition. That, together with the
constraint (initial condition) Ṙ = 0, i.e.,

RṘ = ρ · ρ̇ + λ · λ̇ = 0,

leads to the initial conditions

ρ0 �= 0, λ0 = 0,

ρ̇0 = 0, λ̇0 �= 0.

The first set of these initial conditions is equivalent to the
initial configuration being one of three Euler configurations,
i.e., the midway collinear configuration.
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The second set of initial conditions (the velocities) is
equivalent to all three bodies’ initial velocities ṙ0i, i = 1, 2, 3,
being parallel with one planar vector v. The absolute value
of v is determined by the vanishing energy condition E =
1
2 (2 + 1

4 )v2 − V (R) = 0, which leads to |v| = 2
3 . Thus there

is only one free parameter left: the angle of this vector with
respect to the initial collinear configuration.

The choice of center-of-mass system (v1 + v2 + v3 = 0)
cuts down the number of independent variables to eight, as
there are (only) two independent relative coordinate vectors
and two corresponding velocities. The choice of vanishing
angular momentum (L = 0) reduces this number down to
seven.

We choose the so-called Euler initial configuration, the
three bodies being collinear, say, on the x axis, with the
distance between bodies 1 and 2 equaling two units and with
body 3 at the midpoint between bodies 1 and 2. That sets the
(initial state) hyperradius at R = √

2 and fixes the potential
energy at V (R) = −1/2, with the coupling constant g set
equal to unity g = 1. As the hyperradius must remain constant
during periodic motion, we are left with six independent
variables. The conditions L = 0, Ṙ = 0, and v1 + v2 + v3 = 0
put together lead to

v1 = v2 = − 1
2 v3,

thus implying that only one velocity two-vector is independent
with Efimov’s choice of initial conditions.

Finally, demanding Ṙ = 0 leaves the system with two
independent variables: the angle φ between the x axis and
the velocity 2-vector v1, and the overall size R. Due to the
zero-energy condition E = 0, the size R of the system, which
has already been set at R = √

2 by our choice of initial
positions, determines the value of the initial kinetic energy
T as T = −V (R), thus leaving the angle φ as the only free
variable. This means that, in order to find periodic orbits
passing through the Euler point, the only variable that can
be varied in this subspace of initial conditions is the angle
φ between the two components of the vector v1 = (vx1, vy1):
tan φ = vy1

vx1
.

E. Strictly periodic solutions

Two arbitrarily chosen trajectories, out of infinitely many
periodic solutions in real space, are shown in Fig. 1 and on
the shape sphere in Fig. 2; they are distinguished by the
(arbitrary) value of the angle φ. Of course, for every orbit
shown here, there are two other independent orbits that are
cyclic permutations of the ones shown. There we can see that
two of the particles always move on a common (quasielliptic)
oval trajectory, including mutual two-body collisions, whereas
the third one moves on the straight line midway between the
first two and never gets close to either one. In other words,
the motion is clearly separated into a two-body system and
a third (spectator) body. As the initial inclination angle φ =
arctan( vy1

vx1
) decreases towards zero, the oval (quasiellipse) and

the straight line tend closer to each other until they merge into
the extreme collinear case, when all three particles interact
pairwisely with each other, including all possible two-body
collisions.

Only the collinear trajectory is consistent with Efimov’s
qualitative description [5] of his state as follows: “Any particle
of the pair can be picked up by the third particle to form
another pair. This process of particle exchange may take place
any number of times (and between any two particles), bringing
about an effective three-body interaction.” However, the same
collinear trajectory has the shortest time before a two-body
collision occurs and, moreover, as already described in the In-
troduction, in one spatial dimension the Efimov problem turns
into the one-dimensional (Lieb-Liniger) three-body problem.

The periodic orbits on the shape sphere are great circles,
with constant hyperangular velocities α̇ and φ̇ and constant
hyperradius R = R0. The period T equals T = 8.885 77 with
R0 = √

2 and coupling constant g = 1. However, this is just
the motion of a free rigid rotor in some (abstract) three-
dimensional space, a problem in quantum mechanics that was
solved long ago [52].

F. Semiclassical quantization of periodic orbits

The periods of all these orbits are equal, T = 8.885 77,
which also equals the action S of all orbits, as the (constant)
potential energy equals 1/2,

S(T ) =
∫ T

0
(K − V )dt = 2

∫ T

0
Kdt = −2

∫ T

0
V (R)dt

= −2V (R0)
∫ T

0
dt = −2V (R0)T = T,

due to our initial condition V (R0) = −1/2. Of course,
the action remains invariant under scale transformations
S(R0, T ) → S(λR0, λ

2T ), in accordance with the general
scaling rule S → λ1−α/2S, and independent of the periodic
orbit’s energy E = 0.9 Next we note that Bhaduri et al. [23]
obtained their discrete energy states by WKB quantizing the
hyperradial motion [see Eq. (52) in [23]]. Expressing action
as an integral over the hyperradius, we have

�SR = 2
∫ Rmax

Rmin

√
2m[E + V (R)] − (nφ h̄)2

R2
dR = nRh.

As shown in Sec. III A, hyperradial motion is (strictly) for-
bidden by the joint requirements of periodicity of motion
and the (classical) dilation symmetry in the V (R) = −1/R2

potential, so we have Rmin = Rmax and this integral vanishes
exactly. Therefore, any explanation of the discrete energy
levels in the Efimov potential must be looked for elsewhere.
This is a fundamental impasse to semiclassical quantization of
a scale-invariant system. As already suggested in Sec. II and
further elaborated in Sec. VI, one proposal is to introduce a
cutoff at low values of the hyperradius, which does not appear
to affect periodic orbits in this system, however, as they all
have fixed hyperradii. Therefore, we extend our analysis to
slowly shrinking quasiperiodic orbits.

9Recall the exact yet, in the case of α = 2, seemingly indeterminate
formula relating the action Sα

min = ( α+2
α−2 )ET to the orbit’s energy E

and period T .
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FIG. 3. Real-space trajectories of quasiperiodic adiabatically
shrinking orbits in the Efimov potential with energy E = −5 × 10−4.
Two bodies move on the inspirals (green and red), whereas the third
body oscillates on the straight (blue) line with decreasing amplitude.
The orbit was stopped arbitrarily at time t − t0 = 42, for better
clarity.

G. Adiabatically shrinking (and expanding)
quasiperiodic orbits

As the hyperradial and hyperangular motions decouple in
this potential (with or without cutoff), one may allow for some
small negative value of energy (following Bhaduri et al.), with
the understanding that such an initial condition necessarily
leads to inspiraling of all three bodies and ultimately to the
collapse of the system after a (finite) time interval t − t0 >
G(t0 )
2E . With appropriate initial conditions, the system might be

quasiperiodic: The hyperangular motion on the shape sphere
remains periodic (with its intrinsic period T ), provided it is so
at the initial time t = 0, whereas the hyperradius R(t ) shrinks
towards collapse. The free-fall time τ of such a system,

τ =
∫ Rmax

Rmin

dR√
2
m

(
E − K2

2mR2 + gR−2
) ,

depends crucially on the energy value E , both directly in the
integrand and through the upper integration bound (turning
point) Rmax.10 Here K2 is the value of the (conserved) hyper-
angular momentum squared on the shape sphere. Thus, if the
energy |E | = | K2

2mR2
max

− gR−2
max| is small enough, the (initial)

free-fall rate Ṙ is small, the motion is adiabatic, and the free-
fall time τ may be (many) thousands of times longer than the
intrinsic period T : τ � T . For example, if E = −5 × 10−7

(in our units), the hyperradius shrinks by only about 5% over
a time of 500 intrinsic periods, whereas for E = −5 × 10−5,
the hyperradius shrinks by about 50% over a time extending
over ten intrinsic periods (see Fig. 3). Such a system can
be quantized semiclassically, following the outline set out by

10Of course, in the E → 0 limit, Rmax → ∞ and the free-fall time
goes to infinity τ → ∞.

Bhaduri et al. [23], with corresponding results for the energy
spectrum.

What happens to the system beyond the free-fall time is
a sensitive function of the boundary conditions at the time
of collapse, just as in the one-body 2D case (Sec. III B):
The system may rebound along the same trajectory that it
fell in or it may emerge in a randomly different geometrical
configuration, i.e., at a random point in the shape space. In
this sense, this system is random, and thus unpredictable, and
its motion cannot be called strictly periodic, though the size
(hyperradius) of the system undergoes periodic oscillations.

If one were to speculate about the physical consequences of
these dynamics in a realistic situation, i.e., in the presence of
EM interactions and/or surrounding gas of particles, then one
might conclude that the three-body collision might be inelastic
and therefore that the rebounding system may emerge with a
smaller kinetic energy, leading thus to a deeper-lying Efimov
state. In other words, the higher-lying larger Efimov state
would decay, after a (classical) half-life equal to the free-fall
time, into a deeper-lying, smaller one, until it reaches the
ground state, which is stable.

Thus we may conclude that Efimov’s states are faith-
fully reproduced by an infinite set of quasiperiodic, adiabati-
cally shrinking and expanding three-body orbits, as described
above. This semiclassical picture of a quantum phenomenon
can be put to a test; see point (vii) in the following section.

VI. DISCUSSION

Several remarks are due now.
(i) It is well known [36–39,53] that the (nonrelativistic)

quantum-mechanical motion of a single particle in the −1/R2

potential in one and two spatial dimensions requires some
kind of regularization in order to provide finite results. This
(quantum-mechanical) regularization can be effected in differ-
ent ways; a common one is to introduce a solid wall (billiard-
ball) boundary condition at a finite distance from the center
[36–39]. Indeed, Bhaduri et al. used precisely such a regu-
larization of classical one-dimensional (hyperradial) motion
in Ref. [23]. What they did not address was the question of
what would such a quasi-one-dimensional boundary condition
imply for three-body dynamics in the Efimov potential in three
dimensions.

(ii) The above billiard-ball prescription for regularization is
clear enough in the case of 1D motion of one or two particles.
Its extension to three or more bodies moving classically in
two or three dimensions leaves many open questions however.
Thus, the problem of semiclassical quantization of three-body
motion in the Efimov hyperradial potential boils down to
finding and imposing boundary conditions that prevent the
classical motion of the system from collapsing into three-body
collisions (fall to center) and ensure the subsequent bounce
(time-reversed motion), i.e., so as to ensure the existence
of periodic orbits with a varying hyperradius in the Efimov
potential.

(iii) Two-body (binary) collisions can be regularized in
power-law potentials rα , with α < 0, so long as the power sat-
isfies α > −2 [41]. There are several regularization methods
available for binary collisions in the Newtonian potential (α =
−1) [54,55]. However, in the α = −2 strong potential in two
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dimensions even the two-body collision is not regularizable
[41] by conventional (analytic continuation) means, e.g., by
the Levi-Cività regularization [54].

Unconventional methods have been tried in two-body dy-
namics however. For example, an alternative regularization of
the quantum mechanical problem, suggested in Ref. [56], is
to add a stronger repulsive interaction, e.g. power law, acting
at shorter distances; this procedure manifestly breaks the
assumed scaling symmetry of the system. Moreover, Wu and
Sprung [57] have studied, both numerically and analytically,
two-dimensional classical orbits (of one or two bodies) in
power-law potentials, as the power approaches the singular
limits α → −2 (the strong potential) and α → +∞ (the solid
wall or billiard ball). This might lead one to believe that such
methods can be extended to three bodies moving in three
dimensions, but the necessary work has not yet been done.

(iv) The fall to the center or, equivalently, the triple colli-
sion (“der Dreierstoß” in Siegel’s vocabulary [24]) singularity
is not regularizable in power-law potentials rα , with α < 0, in
general. Even the billiard-ball regularization of the classical
EOM, which works for one- and two-body dynamics, cannot
be unambiguously extended to three-body collisions [25],
so the numerical solutions to three-body EOM cannot be
continued in time beyond the three-body collision point. Thus,
even though this system is integrable, in the Liouville sense of
the word, it is numerically incalculable.

(v) One simple heuristic way to deal with the problem in
point (iv) might be to stop the numerical calculations at the
point of impact on the hard wall and to assume that after
the impact, the temporal evolution of the system is just the
time-reversed one of the preceding motion.11 We call this
assumption the elastic bounce from a hard wall, as if the
Efimov three-body system were a solid object that could
bounce without changing its shape or structure.12

(vi) Point (v) above is just a formal recipe that might be
used to continue the solution beyond the time of impact on
the hard wall, though physically many different scenarios may
appear here, including (a) formation of a dimer plus monomer
(which is explicitly forbidden in the original Efimov scenario
however) or (b) scattering into a (semi)classical three-body
state different from the initial one.

(vii) The dimer plus monomer scenario implies a finite
lifetime of classical Efimov states, even in vacuo, which is
just the free-fall time (or half-period of the Bhaduri et al.
periodic orbit) in the −1/R2 potential. The above scenario
makes definite predictions about the scaling properties of this
half-life τ or quantum mechanically half-width �/2, viz.,
1/τ = �/2 scales as τ → λ2τ , i.e., � → λ−2�. Since the
binding energy En scales in the same way as �, En → λ−2En,
we conclude that the line shape τnEn � En

�n
= const of Efimov

11This recipe is neither unique nor a good assumption; it demands
that the c.m. variables behave differently from the internal ones.

12However, in view of Efimov’s own description [5] of his three-
body states as floppy, as well as in quantum calculations, this
particular assumption seems rather inappropriate. There may exist
other ways of continuing the time evolution after the impact of the
hard wall (reversal of motion of two particles, with the third one
continuing in the same direction), but we do not consider them here.

states (resonances) must be invariant under scaling trans-
formations. Moreover, this shows that in the limit n → ∞
Efimov states become stable: limn→∞ τn = limn→∞ λ2nτ0 =
limn→∞(22.7)2nτ0 = ∞. Some quantum-mechanical esti-
mates of the Efimov states’ widths have been made in
Refs. [26,27], which results are in qualitative agreement with
our (semi)classical approach.13 As the line shape of Efimov
states has not yet been determined experimentally, this feature
would provide a clear and definite test of our (semi)classical
approach. If it passes this test, it will raise new questions about
the quasistatic nature of excited Efimov states.

VII. CONCLUSION

In summary, we have studied the classical three-body dy-
namics in Efimov’s potential. We have shown that this system
without a short-distance cutoff is superintegrable. There are
infinitely many periodic orbits, all of which have vanishing
(binding) energy, which therefore do not allow semiclassical
quantization. This is a consequence of the exact dilation-
scaling symmetry of periodic motion in such a potential. Of
course, Efimov states are a consequence of the quantum-
mechanical breaking (anomaly) of the dilation-scaling sym-
metry, usually by means of a cutoff introduced into the
quantum dynamics.

Once one formally introduces a cutoff into the classical
dynamics as well, the dilational symmetry is explicitly broken
and semiclassical quantization becomes possible. The primary
drawback of the cutoff scheme is that the boundary conditions
associated with the cutoff cannot be uniquely determined for
three-body dynamics in three dimensions, as opposed to one-
body dynamics, or three-body dynamics in one dimension.
Indeed, a practical implementation of the short-hyperradius
cutoff in three-body classical dynamics remains undefined.
This is a fundamental problem of three-body physics in
general [24,25], not merely of Efimov physics. However,
strictly periodic orbits remain unaffected by the cutoff, so
some other class of orbits must be the basis of semiclassical
quantization.

We turned to adiabatically shrinking quasiperiodic orbits
for this purpose and showed that they satisfy all require-
ments. Indeed, this scenario can be tested, by way of de-
cay properties of Efimov states: Our adiabatically shrink-
ing quasiperiodic orbits ultimately collapse to the size of a
point, or of the cutoff, which entails finite lifetimes, or quan-

13“The widths of the deeper Efimov states are proportional to their
binding energies, which behave asymptotically like Eq. (9). E (n)

T →
(e−2π/s0 )n−n0 h̄2κ2

∗/m as n → +∞, with a = ±∞. This geometric
increase in the widths of deeper Efimov states has been observed in
calculations of the elastic scattering of atoms with deep dimers [39],”
where Ref. [39] in [9] is our [26]. Of course, one ought to keep in
mind the fact that the decay of Efimov states in Ref. [9] is enabled by
introducing a complex three-body parameter θ∗ → θ∗ + iη∗ and in
Ref. [26] two-body potentials with deep bound states are considered.
These deep bound states provide the decay channels for Efimov
states. Both scenarios go beyond the Efimov effect as discussed in
Ref. [2].
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tum mechanically speaking half-widths. These semiclassical
widths compare favorably with the full quantum-mechanical
ones [26,27].

For most of the lifetime of a Efimov state, its size is close
to the maximum, the collapse of the triangle subtended by
three monomers occurring fairly suddenly. The narrowing
of widths with increasing n indicates longer lifetimes and a
general slowdown of Efimov dynamics of the higher-lying
and consequently also spatially larger states. In the n → ∞
limit, the Efimov states become absolutely static and grow
to macroscopic sizes. In this limit, the quasiperiodic adiabat-
ically shrinking orbits that correspond to this Efimov state
would stop moving entirely.14

14This is not in conflict with Heisenberg’s uncertainty principle
because the distances are macroscopic.

One theoretical challenge for the future is to construct a
viable set of boundary conditions for three bodies at short dis-
tances and then to implement them in a numerical calculation.
Another one would be to understand the relation between the
high-n states and the quantum-mechanical condensate of the
surrounding Bose gas. Finally would be the challenge to find
higher-n states in experiment and to study their spatial extent
and temporal evolution or decay.
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