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Classical and quantum chaos in a three-mode bosonic system
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We study the dynamics of a three-mode bosonic system with mode-changing interactions. For large mode
occupations the short-time dynamics is well described by classical mean-field equations allowing us to study
chaotic dynamics in the classical system and its signatures in the corresponding quantum dynamics. By
introducing a symmetry-breaking term we tune the classical dynamics from integrable to strongly chaotic, which
we demonstrate by calculating Poincaré sections and Lyapunov exponents. The corresponding quantum system
features level statistics that change from Poissonian in the integrable to Wigner-Dyson in the chaotic case. We
investigate the behavior of out-of-time-ordered correlators (OTOCs), specifically the squared commutator, for
initial states located in regular and chaotic regions of the classical mixed phase space and find marked differences
between the two cases. The short-time behavior is well captured by semi-classical truncated Wigner simulations
directly relating these features to properties of the underlying classical mean-field dynamics. We discuss a
possible experimental realization of this model system in a Bose-Einstein condensate of rubidium atoms, which
allows reversing the sign of the Hamiltonian required for measuring OTOCs.
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I. INTRODUCTION

Statistical mechanics is based on the assumption that in
thermal equilibrium all energetically accessible microstates of
a system are populated with equal probability. This assump-
tion allows to derive a comprehensive description of equilib-
rium phenomena. In contrast, the question how equilibrium
is reached if the system is prepared in a state far from equi-
librium turns out to be rather difficult to answer in general.
For classical systems the answer is closely connected to the
notion of classical chaos. If trajectories in phase space are not
closed and a given initial state eventually explores the whole
accessible phase-space volume, then the system thermalizes
in the sense that the long-time average of an observable is
equal to the microcanonical average [1]. This notion of chaos
also entails the exponential sensitivity to the initial condition,
i.e., that initially close trajectories will deviate exponentially
from each other at later times, which can be quantified by the
Lyapunov exponent [2].

For quantum systems the relation between the microscopic
dynamics and thermodynamic ensembles is more subtle since
the notion of trajectories in phase space is, in general, ab-
sent due to Heisenberg’s uncertainty principle. Moreover,
the dynamics governed by Schrödinger’s equation actually
conserves the overlap between two initial states. Thus, a
crucial step towards understanding how and in what sense
closed quantum systems thermalize is to extend the notion of
chaos and ergodicity to the quantum domain in a consistent
way [3,4]. For systems which feature a well-defined classical
limit it has been shown that the statistics of the energy levels
of the quantum Hamiltonian are a faithful indicator of chaos
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in the corresponding classical model. Wigner and Dyson fa-
mously noticed that for a generic quantum many-body system
the distribution of energy levels in a small energy window
essentially looks like that of a random Hamiltonian matrix
[5,6]. This insight led to the conjecture that the level statistics
of quantum systems that have a classically chaotic counterpart
can be described by random matrix theory [7], which has been
confirmed numerically [8–12].

Despite these successes, the statistics of the eigenstates of
a quantum Hamiltonian only provides a static picture, which
limits its usefulness for answering questions about relaxation
dynamics in quantum systems. Instead, the spreading of cor-
relations and entanglement [13,14] has shifted into the focus
as a tool for understanding relaxation in closed quantum
systems. Recently, a specific type of correlation functions,
the so-called out-of-time-order correlators (OTOCs), were
proposed as suitable indicators of chaos in quantum sys-
tems [15–18]. In particular, the squared commutator C(t ) =
〈[Ŵ (t ), V̂ (0)]

†
[Ŵ (t ), V̂ (0)]〉 [19] is of interest as its growth

can be related to the Lyapunov exponent by heuristic semi-
classical arguments. Here, V̂ (0) and Ŵ (t ) = Û (t )†ŴÛ (t )
are Heisenberg operators [20]. For example, if V̂ and Ŵ
correspond to position and momentum operators x̂ and p̂,
in the limit of small h̄ the short-time behavior of C(t ) is
obtained by replacing operators by classical fields and the
commutator by the Poisson bracket (see Refs. [15] for a more
rigorous argument). This results in the quantum to classical
correspondence [15,16,21,22]

C(t ) → |{x(t ), p(0)}|2 =
∣∣∣∣ ∂x(t )

∂x(0)

∣∣∣∣
2

∼ e2λt , (1)

where λ is the classical Lyapunov exponent. This sim-
ple argument suggests that the squared commutator grows
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exponentially at short times up to the Ehrenfest time [16] if
the corresponding classical model is chaotic. For this reason
the growth rate of the squared commutator has been termed
the quantum Lyapunov exponent. We emphasize that the men-
tioned semi-classical arguments only hold in systems with a
well-defined classical limit of high occupation numbers. Also,
as we discuss in more detail below, in higher-dimensional
systems the derivative appearing in Eq. (1) will, for a given
OTOC, involve a specific pair of phase-space coordinates
[∂xi(t )/∂x j (0)] and thus will not necessarily grow exponen-
tially with the largest Lyapunov exponent of the classical
dynamics, which characterizes the phase-space direction of
fastest growth. OTOCs have also been of interest in the con-
text of spin systems with local interactions and random unitary
circuits where they quantify operator spreading, or scrambling
of quantum information. The present study focuses on the
case of a bosonic few-mode system where a classical mean-
field description becomes exact in the limit of large particle
numbers N .

Intense theoretical efforts have recently been undertaken
to reach a more thorough understanding of the squared com-
mutator as an indicator for quantum chaos (see Ref. [23] for
a recent review). Measuring OTOCs experimentally has been
challenging due to the requirement of implementing many-
body echo protocols [24–27]. In particular, the predicted
exponential growth of OTOCs in systems showing classical
chaos in their mean-field dynamics has not been observed in
experiments. This motivates us to study OTOCs in a model
of three bosonic modes which can be realized experimentally
by a Bose-Einstein condensate (BEC) of rubidium atoms.
We demonstrate that this model shows rich dynamics being
tunable between regimes of regular and chaotic dynamics and
offers a way to implement the many-body echo experimen-
tally, thus providing an ideal platform for studying OTOCs
and quantum chaos.

Specifically, we consider a BEC in a tightly confining
trapping potential which constrains the dynamics to the lowest
trap state. The relevant degrees of freedom are the three
Zeeman levels of the F = 1 hyperfine manifold of 87Rb. The
dynamics of this three-mode system is governed by mode-
changing collisions between the atoms and the quadratic Zee-
man shift. The classical mean-field dynamics of this model is
integrable and has been studied extensively including several
experimental realizations [28–38]. By introducing a tunable
coherent coupling term between neighboring Zeeman states
[39] integrability is broken [40].

The objective of this work is thus to provide a detailed un-
derstanding of the classical mean-field dynamics of this model
and to explore signatures of classical chaos in the quantum
dynamics at finite particle number N . For this we first charac-
terize the classical dynamics by calculating Poincaré sections
and Lyapunov exponents for varying strength of the integra-
bility breaking term. We find that the classical phase-space
portraits and Lyapunov exponents show a transition from
regular to mixed phase space and strongly chaotic dynamics.
Turning to quantifiers of quantum chaotic behavior we find
that the level statistics changes from Poissonian to Wigner-
Dyson-like (more precisely to a Brody parameter of ≈0.6 [8]).
Finally, the squared commutator is found to generically show
a faster growth for initial states located in classically chaotic

regions than in regular ones. The short-time behavior before
the Ehrenfest time, or scrambling time, ts ∝ log(N ), is well
described by semi-classical methods showing that the OTOC
indeed reveals signatures of classical chaos in the quantum
dynamics at finite N . We find that OTOCs with respect to
an initial coherent state located in a classically chaotic region
of phase space often show exponential growth at short times,
however, the precise behavior is expected to depend strongly
on the initial state and will, in general, not yield the largest
Lyapunov exponent of the limiting classical dynamics.

Related work on OTOCs and chaos in few-mode bosonic
systems includes a study reporting on the growth of the
squared commutator in the integrable limit of a model closely
related to the one considered here [41]. The squared commu-
tator is found to show exponential growth if the system is ini-
tially prepared at a dynamically unstable point of the classical
phase space. Classically chaotic dynamics has been found to
emerge when extending this model to five modes [42], when
considering the motional modes of a single component BEC
in an anharmonic trapping potential [43], and in a three-site
Bose-Hubbard model (Bose trimer) [44–46]. In the later cases
the interactions are quite different from the mode-changing
collisions considered here, leading to different types of phase-
space structures. OTOCs have not yet been discussed in the
case of few-mode systems with classically chaotic dynamics.

The remainder of this work is structured as follows: After
introducing the model Hamiltonian in Sec. II, we first analyze
the classical phase space to determine the parameter regimes
in which chaotic behavior is encountered (Sec. III). Then,
in Sec. IV we conduct the corresponding analysis for the
quantum case, looking for quantum signatures of classical
chaos. Section V details the prospects of measuring OTOCs
experimentally in a spinor BEC. We draw our conclusions and
discuss possible future research directions in Sec. VI.

II. MODEL

We consider the following three-mode Hamiltonian in
second quantized form [37]:

Ĥ = g

{
(â†

0â†
0â1â−1 + â†

1â†
−1â0â0) + N̂0(N̂1 + N̂−1)

+ 1

2
(N̂1 − N̂−1)2

}
+ q(N̂1 + N̂−1)

+ r√
2
{(â†

1 + â†
−1) â0 + â†

0(â1 + â−1)}, (2)

where âi (â†
i ), with i = 0,±1, denote annihilation (creation)

operators of three bosonic modes giving rise to the corre-
sponding number operators N̂i ≡ â†

i âi. In the experimental re-
alization of this model in a spinor BEC [33–37,47] mentioned
in the Introduction the parameter g represents the strength
of s-wave interactions between the atoms, q is the quadratic
Zeeman shift, and r corresponds to a coherent coupling be-
tween the modes induced by an rf-modulation of the magnetic
field. All these parameters are tunable. For more details on the
proposed experimental realization see Sec. V.

The Hamiltonian (2), in addition to the total energy, con-
serves the total number of particles N̂ ≡ N̂−1 + N̂0 + N̂1 and
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for r = 0 it also conserves the imbalance, or magnetization,
Ŝz ≡ N̂1 − N̂−1. Thus, as we will see shortly, at r = 0 the
model is integrable in the classical mean-field limit. By tuning
r 
= 0 magnetization is no longer conserved and integrability
is broken. In the following we fix gN as the reference energy
scale. Since we also set h̄ = 1 times are given in units of
h̄/gN . We employ these energy and time units in all figures.
The observed qualitative features are independent of the exact
choice of q/gN as long as it is at most of order 1. We thus fix
gN = q = 1 in the following discussion. The parameter r will
be varied from the classically integrable case (r = 0) to the
strongly chaotic case (r ≈ 1).

Bosonic systems with a finite number of modes can be
described by classical mean-field equations in the limit of
large mode occupations and at times shorter than the Ehrenfest
time [48], which scales as

√
N for integrable and log(N ) for

classically chaotic systems. For finite N the dynamics can be
described as that of classical wave packets of width ∝ 1/

√
N

and thus the classical limit is controlled by h̄eff ∼ 1/N [49].
Technically, the classical mean-field Hamiltonian is obtained
by replacing the creation and annihilation operators âi and
â†

i by ζi

√
N and ζ ∗

i

√
N , respectively, where ζi are complex-

valued, normalized classical fields. This approximation be-
comes exact in the large-N limit where terms of order 1/N are
negligible [50]. The resulting mean-field Hamiltonian reads
(keeping gN fixed)

Hmf = gN{ζ ∗2
0 ζ1ζ−1 + ζ ∗

1 ζ ∗
−1ζ

2
0 + |ζ0|2(|ζ1|2 + |ζ−1|2)

+ (|ζ1|2 − |ζ−1|2)/2} + q (|ζ1|2 + |ζ−1|2)

+ r/
√

2{(ζ ∗
1 + ζ ∗

−1)ζ0 + ζ ∗
0 (ζ1 + ζ−1)} . (3)

From Eq. (3) one straightforwardly derives the equations of
motion (setting h̄ = 1)

i ζ̇1 = q ζ1 + gN{(ρ1 + ρ0 − ρ−1)ζ1 + ζ ∗
−1ζ

2
0 } + r√

2
ζ0,

i ζ̇0 = gN{(ρ1 + ρ−1)ζ0 + 2ζ ∗
0 ζ1ζ−1} + r√

2
(ζ1 + ζ−1),

i ζ̇−1 = q ζ−1 + gN{(−ρ1 + ρ0 + ρ−1)ζ−1 + ζ ∗
1 ζ 2

0 }
+ r√

2
ζ0, (4)

where ρi = |ζi|2. We integrate these equations numerically to
find the classical time evolution.

It is convenient to reparametrize the fields ζi by explicitly
exploiting conservation laws [37]: We express the fields by
real amplitudes and phases ζ j = √

ρ j ei� j . As mentioned
above, the Hamiltonian conserves the total particle number N
which implies that the norm of

∑
i ρi is constant (=1). Fixing

also the global phase reduces the number of relevant classical
variables (phase-space coordinates) from six to four [33]

ζ1 =
√

1 − ρ0 + m

2
ei �s+�m

2 ,

ζ0 = √
ρ0,

ζ−1 =
√

1 − ρ0 − m

2
ei �s−�m

2 ,

(5)

with the normalized magnetization m = ρ1 − ρ−1 = (N1 −
N−1)/N , the Larmor precession phase �m = �1 − �−1 and
the spinor phase �s = �1 + �−1 − 2�0. As we will use this
parametrization in the following description of the classical
phase space, it is useful to rewrite the mean-field Hamiltonian
as

Hmf = gNρ0

{
(1 − ρ0) +

√
(1 − ρ0)2 − m2 cos �s

}

+ gN

2
m2 + q(1 − ρ0)

+ r
√

ρ0

{√
1 − ρ0 + m cos

(
�s + �m

2

)

+
√

1 − ρ0 − m cos

(
�s − �m

2

)}
.

(6)

As the canonical transformation (5) leaves us with two pairs of
canonical coordinates {ρ0,�S} and {m,�m}, we immediately
see from Eq. (6) that the magnetization m is conserved for
r = 0.

III. CLASSICAL PHASE SPACE

In this section we characterize the classical dynamics and
study its dependence on the strength of the integrability break-
ing term. We identify regimes of classically chaotic dynamics
adopting the following notion of classical chaos. For a system
to be chaotic we require that it is both sensitive to initial
conditions, meaning that two initially close-by trajectories
diverge exponentially, and also that any two trajectories with
equal energy and possibly other conserved quantities come
arbitrarily close to each other at later times. While the first
requirement can be checked numerically by calculating Lya-
punov exponents, the second is implied by ergodicity (almost
every trajectory passes arbitrarily close to almost every point
in phase space) [51] which can be numerically verified by
studying Poincaré sections.

A. Poincaré sections

Instead of looking at the full four-dimensional trajecto-
ries in classical phase space, we only record their crossings
with a certain (three-dimensional) surface of section, here
defined by �m = 0. For visualization, we further use that in
a time-independent classical Hamiltonian system energy is
conserved, such that we can project our Poincaré section onto
a two-dimensional plane (in this case the {ρ0,�s}-plane, see
Fig. 1).

The Poincaré sections contain all relevant information
to determine the range of parameters and initial states in
which the system exhibits ergodic behavior [52]. When the
intersection points are strictly confined to a one-dimensional
subspace of the section, dynamics is regular. When the points
of intersection are instead spread over a larger area, only
limited by conservation of energy and norm, the system is
likely to be ergodic in the sense described above. In a chaotic
system the described phase-space properties can be found for
arbitrary surfaces of section, but it turns out that the choice of
the hyperplane influences how well the transition from regular
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(a) r = 0.00

−2π −π 0 π 2π
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(b) r = 0.15
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(c) r = 0.50

FIG. 1. Poincaré sections illustrating the phase-space structure for increasing values of r. The plane of intersection is defined by �m = 0.
In (a) the points of intersection of each trajectory for a given energy are confined to a line. This changes in (b) and (c) for increasing values
of r: In (b) we can see a mixed phase space where for some trajectories the points of intersection spread over a larger area of phase space
while for others the points are still confined to lines; in (c) the phase space is strongly chaotic where all allowed regions compatible with
energy and norm are reached from any initial point. To be able to show Poincaré sections for different initial states in one plot, the initial states
in (a) correspond to different energies. Here the initial states are chosen by varying ρ0 while keeping, �s = 0, m = 0.1, and �m fixed. The
separatrix between vibrational and rotational motion is shown as a solid black line. In (b) and (c) we only use initial states corresponding to an
energy of E = 1.005 chosen equal to the energy of the separatrix in the unperturbed case. To adjust the energy of the initial states for a given
initial ρ0 and �s, we choose m and �m accordingly. Different colors represent trajectories corresponding to different initial states.

to chaotic behavior can be visualized. We found the surface
defined by �m = 0 to be a suitable choice in the case at hand.

Figure 1(a) shows a sample of trajectories for the regular
case r = 0. In this case m is conserved and thus θm is cyclic.
To be able to show multiple Poincaré sections in one plot,
each initial state (color encoded) corresponds to a different
energy. The Poincaré sections in this regular case are confined
to one dimension (lines). Figures 1(b) and 1(c) show the
Poincaré sections for nonintegrable cases. We used a raster of
initial states in the {ρ0,�s}-plane with m and �m chosen such
that all trajectories have the same fixed energy of E = 1.005.
This energy shell was chosen to ensure that the energetically
allowed region in the {ρ0,�s}-plane stays sufficiently large
for all considered values of r. It matches the energy of the
separatrix between vibrational and rotational motion [solid
black line in Fig. 1(a)] in the integrable case (r = 0).

We observe the transition from a regular [Fig. 1(a)] to
a strongly chaotic phase space [Fig. 1(c)], transitioning a
mixed phase space [Fig. 1(b)] where, depending on the initial
state, a trajectory is confined to a one-dimensional subspace
or samples a larger part of the available phase space. The
regular structure first starts to dissolve around the separatrix.
The regions around the stable fixed points of the integrable
dynamics retain closed orbits up to relatively large values
of r. In the case of r = 0.5, where we do not observe any
regular islands any more in the shown energy shell, we still
found a mixed phase-space structure at other energies, which
is why we do not call this case fully chaotic but rather strongly
chaotic.

We note here that we computed Poincaré sections for a
large set of values of q and r (and accordingly adjusted
energy E ) in addition to the ones shown in Fig. 1 and found
that the qualitative features are the same in all cases: If one
of the parameters dominates (e.g., q � 1 or r � 1), or if
r ≈ 0, the system looks regular. If all parameters are of
similar magnitude, ergodic parts of the phase space emerge

and eventually dominate. This transition is not as well visible
for all choices of parameters and energy since regions where
regular and chaotic patches coexist may only be found in
certain parts of the phase space.

B. Lyapunov exponents

As an ergodic phase space is only a necessary condition for
classical chaos, we also need to check for the linear instability
of the trajectories, measured by the Lyapunov exponent. The
sensitivity of a dynamical system to initial conditions can
be quantified by the (largest) Lyapunov exponent λ [15].
Given a classical trajectory in phase space x(t ) and some
initial conditions x0, the sensitivity to initial conditions can be
expressed as the exponential divergence of initially infinitesi-
mally separated trajectories:

|�x(t )|
|�x0| ∼ eλt . (7)

Thus, the largest Lyapunov exponent λ is defined as

λ = lim
t→∞ lim

|�x0|→0

1

t
ln

|�x(t )|
|�x0| . (8)

For chaotic systems the largest Lyapunov exponent λ is
greater than zero, i.e., we are interested in the long-time limit
as this will converge to the largest Lyapunov exponent for
almost all orientations of the initial separation [2].

For the numerical calculations we use an equivalent def-
inition of the Lyapunov exponent explicitly in terms of two
(infinitesimally) close trajectories z1(t ) and z2(t ) ≡ z1(t ) +
ξ (t ). Then the largest Lyapunov exponent λ can be obtained
as (see, e.g., Ref. [53])

λ = lim
t→∞

1

t
ln

|ξ (t )|
|ξ (0)| . (9)
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(a) r = 0.00
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FIG. 2. Lyapunov exponents λ (color encoded) for a raster of 80 × 80 values of ρ0 and �s, �m = 0. At each point the value of m has been
adjusted to match a given energy, here E = 1.005. The choice of energy mainly influences the allowed compatible regions in phase space but
not the qualitative features of the phase-space portrait. The plots are shown for increasing values of r. As in Fig. 1, we see the transition from
a (a) regular through a (b) mixed to a (c) strongly chaotic phase space.

For evaluating this quantity we employed the following nu-
merical procedure [54]: Given a starting point in phase space
z1(t0) we choose a random point z2(t0) with initial distance
ξ0 = |ξ (0)| from z1(t0). We then calculate the time evolution
for both trajectories simultaneously by numerical integra-
tion. After each time step l (t ) = ln(ξ (t )/ξ0) is evaluated and
recorded, where ξ (t ) = |z1(t ) − z2(t )|. When reaching the
reset time Tr the current Lyapunov exponent is calculated as
λt = l (Tr )/Tr and the distance between the trajectories is reset
to ξ0 by shifting z2(t ) to z′

2 along the vector z1(t ) − z2(t ).
This procedure is repeated up to a certain time and the largest
Lyapunov exponent is calculated as the average over all λt

omitting the values up to a time tmin. We omit these first values
to ensure that we reached the basin of attraction which is
important to get a sensible estimate of the Lyapunov exponent.
An alternative method which is inherently linear in the initial
separation is evolving the fundamental matrix 
t (ζ ) together

with the equations of motion ̇ζ = F (ζ ) [55]:

( ̇ζ

̇

)
=

⎛
⎝ F

(
ζ
)

Dζ F
(
ζ
)



(
ζ
)
⎞
⎠ . (10)

Here Dζ F (ζ ) denotes the Jacobi matrix of the equations of
motion. To ensure differentiability, we work in a (real) six-
dimensional phase space consisting of the real and imaginary
parts ζ R,I

i , i ∈ {−1, 0, 1} of the components of ζ . At t = 0
we set ζ according to the desired initial state and 
 = 16x6.
Having calculated the time evolution of the fundamental ma-
trix 
t , which contains derivatives of the form ∂ζ

R/I
i (t )/∂ζ

R/I
j

evaluated along the trajectory ζ (t ), we obtain the deviation
vector at time t as ξ (t ) = 
t ξ (0). Choosing again a random
initial deviation vector ξ (0), this provides an alternative way
to calculate the largest Lyapunov exponent via Eq. (9). We
checked that both methods yield consistent results within
numerical errors.

In Fig. 2 we show the Lyapunov exponents calculated as
described above for a raster of initial points in the {ρ0,�s}-
plane corresponding to the same energy used to generate the

Poincaré sections in Fig. 1. We find the same qualitative
signatures of classical chaos as for the Poincaré sections
in Fig. 1: The integrable system (r = 0) shows no signs of
classical chaos. Increasing r, we first observe a mixed phase
space where it depends on the initial state whether a trajectory
has zero or positive Lyapnuov exponent and thus whether it
exhibits chaotic behavior. Finally, for a perturbation r of the
same order as the other contributions to the Hamiltonian (2),
we see that chaotic regions clearly dominate the phase space.
As for the Poincaré sections, the same qualitative features are
found for other combinations of the parameters q and r.

IV. QUANTUM SIGNATURES OF CHAOS

Our aim in this section is to reveal features of the quantum
system that can be traced back to chaos in the corresponding
classical system and thus may be useful indicators of ergod-
icity in the quantum system. For this we solve the model (2)
by exact diagonalization in Fock space for N � 100, which is
feasible as the Hilbert space dimension scales as N2.

A. Level statistics

A well-established indicator for chaos (or, more precisely,
for randomness) in quantum mechanical systems is the distri-
bution of the energy eigenvalue spacings of the Hamiltonian
[56].

If a regular system is perturbed, formerly allowed level
crossings (e.g., due to symmetries in the unperturbed system)
will be avoided. This level repulsion changes the distribution
of energy level spacings: In the unperturbed case, as level
crossings are allowed, the distribution is peaked at zero and
follows a Poisson distribution P(s) = e−s. Now with level
repulsion, small spacings are suppressed and the distribution
of energy level spacings is best approximated by a Wigner dis-
tribution P(s) = π/2 s e−πs2/4, which is what is also obtained
for random matrices [8,57].

As the Hamiltonian (2) possesses a Z2 symmetry con-
sisting in the invariance under exchange of the state labels
1 and −1, i.e., under m �→ −m, we first transform to an
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FIG. 3. Histograms of the level spacing distributions for different
values of r, corresponding to regular (a) and largely chaotic (b)
classical phase space. We show the combined distributions of the
subspaces defined by the spin flip symmetry, see text. N = 100
atoms, leading to 5091 energy eigenvalues, are used. The solid red
lines are fits of a Brody distribution to the data.

eigenbasis of this symmetry such that the Hamiltonian matrix
becomes block diagonal and calculate the spectrum for each
block separately. In addition, we unfold the spectrum in each
block to remove the influence of the level density (see, e.g.,
Ref. [58]) before finally recombining the statistics from the
different blocks. The resulting distribution of level spacings
s is visualized in Fig. 3 for the values r = 0 and r = 0.5
where also the Poisson (dashed green) and Wigner (dotted
blue) distributions are shown. To get a quantitative estimate
of how strongly chaotic the Hamiltonian is we fit the so-called
Brody distribution Pb(s) to the distributions (solid red). This
function interpolates between the Poisson (b = 0) and the
Wigner distribution (b = 1) and is given by [8]

Pb(s) = α(b + 1)sb exp[−αsb+1] , α =
[


(
b + 2

b + 1

)]b+1

.

(11)

In Fig. 3 we see that level statistics nicely reflect the
classical analysis: For r = 0 we essentially get a Poisson
distribution and for r = 0.5 the Brody parameter b ≈ 0.6
suggests that the system is strongly chaotic as expected from
the analysis of the classical phase space. The observed b < 1
is most likely due to the presence of islands of stability at

other energies than the one shown in Fig. 1(c). The level
spacing distributions shown in Fig. 3 are averaged over the
full spectrum. A more thorough analysis would require an
energy-resolved analysis of the spectral statistics, for which
larger Hilbert space dimension would be necessary to keep
statistical fluctuations small.

A drawback of level statistics as an indicator of quantum
chaos is that they only reflect global properties (independent
of initial states) and thus do not allow to distinguish the
relaxation dynamics of initial states corresponding to different
regions of the classical phase space. Also, they are hardly
accessible experimentally, which motivates us to turn to ex-
perimentally measurable quantities that allow us to resolve
the phase-space structure, namely Husimi distributions and
OTOCs, in the following.

B. Dynamics of Husimi distributions

Husimi distributions allow the visualization of quantum
states in a quantum phase space, which is convenient for
drawing analogies to the classical picture. In the following,
we focus on the case of a classically mixed phase space
(r = 0.15) and consider as initial states coherent states located
in the classically chaotic and regular region, respectively, see
Fig. 4(a). To get an intuition for the differences between these
two cases, we study the evolution of the Husimi distribution
of each state. The Husimi distribution of a state |ψ〉 is a
phase-space representation and is defined as

Q(α) = |〈α|ψ〉|2

for coherent states {|α〉}. To obtain the Husimi distribution
of a state |ψ〉 numerically we would need to calculate the
overlap of |ψ〉 with each element of a four-dimensional grid of
coherent states {|ρ0,�s, m,�m〉}. But as we ultimately want
to obtain a two-dimensional phase-space representation of |ψ〉
that we can compare to the Poincaré sections (see Sec. III),
we fix �m = 0 and, for each value of ρ0 and �s, sum the
projections over a grid of m values. The Husimi distributions
of two initial coherent states and their time evolution are
shown in Fig. 4.

In the limit of large N the size of a coherent state rep-
resented in this way would shrink to zero as 1/

√
N . Here

we use a moderate value of N = 100 where the extension of
the distribution in phase space is still large compared to the
classical phase-space features we wish to resolve. In fact, the
width, i.e., the quantum fluctuations, are so large that both
initial states overlap with classically regular as well as chaotic
regions of phase space. For the following discussion we
should keep in mind that this quantum mechanical smearing
over the classical phase space is what fundamentally limits
the applicability of semi-classical methods and leads to their
breakdown at long times. This point is further discussed in
Sec. IV C and in the Appendix.

Figures 4(b) and 4(c) show the Husimi distributions of the
time-evolved state |ψ (t )〉 at time t = 10. We find that despite
the relatively large initial fluctuations qualitative differences
between the two cases are clearly visible. The “regular” state
remains compact in phase space and still resembles a well-
localized wave packet while the “chaotic” state is distributed
across almost the whole classically allowed phase space. This
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FIG. 4. (a) Husimi distributions of the two initial coherent states (color encoded) plotted on top of the outline of the classical Lyapunov
exponent for r = 0.15 (cf., Fig. 2). The state on the right-hand side corresponds to the coherent state centered at ρ0 = 0.2, �s = 4π/3, �m = 0,
and m chosen such that its energy corresponds to E = 〈Ĥ〉 = 1.005, which lies in the classically regular region of the phase space for the given
parameters. The left one is centered in the classically chaotic region at ρ0 = 0.2, �s = −2π/3, �m = 0, and m chosen again such that its
energy corresponds to E = 1.005. Panels (b) and (c) show the Husimi distributions of the time-evolved states at t = 10 corresponding to both
initial states in (a).

confirms the expectation that the Ehrenfest time, i.e., the
time at which quantum interference effects become relevant
and the semi-classical wave-packet description breaks down
[16,22,41,59–62], is much shorter for chaotic (∼ log N ) than
for regular dynamics (∼√

N) [49].

C. OTOCs

As discussed in the Introduction, semi-classical
arguments suggest that OTOCs of the form C(t ) =
〈[Ŵ (t ), V̂ (0)]

†
[Ŵ (t ), V̂ (0)]〉 should grow exponentially

at short times for systems that exhibit chaotic dynamics in
the classical limit. This exponential regime is preceded by
an initial power-law growth up to the so-called dephasing
time and extends up to the Ehrenfest time, or scrambling
time. The size of the window of exponential growth in
general depends on the chosen observables and initial states
[63]. In the following we discuss to what extent this picture
applies to OTOCs with respect to initial coherent states in the
three-mode model under study. For models with collective
interactions [21,22,64–67] the classical limit is well defined
and corresponds to the limit of large particle number. We note
that OTOCs have also been studied for systems with local
interactions and low-dimensional local degrees of freedom,
like spin systems. There, no meaningful classical limit exists
and exponential growth is generally not expected [68–71].
Nevertheless, in this context OTOCs have proven to be useful
measures for the spatial spreading of correlations [72–74]
or diagnosing many-body localization [75,76], to give some
examples. Here, instead, we focus on a system of collectively
interacting bosons and ask whether signatures of the limiting
classical dynamics can be observed at finite N .

We discuss the time evolution of the squared commutator
specifically focusing on the case of V̂ = Ŵ = ρ̂0 ≡ N̂0/N ,
and keeping the same parameters and initial coherent states
as in the previous section. The evolution of C(t ) is shown in
Fig. 5(a). The OTOC of the initial state localized in a regular
region remains small initially, which is consistent with the
regular state evolving quasiperiodically for a long time as ob-

served for the evolution of the Husimi distribution. The OTOC
of the chaotic initial state rises extremely fast in comparison.
At short times, the onset of the expected exponential behavior
is observed in the chaotic case while it is absent in the regular
case (inset). At late times, corresponding to the Heisenberg
or recurrence time given by the typical inverse level spacing
[16,61], the OTOCs reach a saturation value in both cases.

Next, we study the short-time dynamics (before the Ehren-
fest time) in more detail. In this regime we can employ
the semi-classical truncated Wigner approximation (TWA),
allowing us to simulate arbitrarily large N . The squared
commutator can be evaluated in TWA through a phase-space
average over the Poisson bracket [15,18,21,22,63–65] (see the
Appendix for details)

〈|[ρ̂0(t ), ρ̂0(0)]|2〉 = h̄2
eff

〈∣∣∣∣2ζ R
0 (0)

∂ρ0(t )

∂ζ I
0

∣∣∣∣
2
〉

W

, (12)

where 〈. . . 〉W denotes the average over the Wigner function of
the initial coherent state. The above expression is based on an
expansion in orders of the size of phase-space cells h̄eff ∼ 1/N
to order h̄2

eff. We first validate this approach by comparing
to exact diagonalization results for N = 100 in the inset of
Fig. 5(a). This shows that while in the regular case, the OTOC
is reproduced perfectly up to rather long times, it starts to
deviate after the short-time growth regime in the chaotic case.
The short-time behavior is always captured well. We note that
we had to rescale the TWA results by a factor of order 1, which
depends on the initial state and Hamiltonian parameters, but
not on the atom number N to match the exact diagonalization
result. Further benchmark simulations including single-time
observables are provided in the Appendix showing agreement
of TWA with exact diagonalization to much longer times than
observed for the OTOCs. We can thus confidently use TWA to
explore the short-time dynamics in the large N regime.

As can be seen from Fig. 5(b), particle numbers of N �
104 show a more pronounced exponential growth regime at
short times. However, this regime does not extend to longer
times if we increase the particle number further. Given the
observation of exponential growth in the dynamics of the
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FIG. 5. (a) Time evolution of the OTOC C(t ) = 〈ψ0||[ρ̂0(t ), ρ̂0]|2|ψ0〉 for the two initial coherent states |ψ0〉 shown in Fig. 4(a) for N =
100 particles (dotted blue line for classically regular state, solid red line for classically chaotic state) from the exact quantum mechanical
calculations. The inset shows the short-time behavior (quantum calculation marked as crosses in the respective color) where the appropriately
scaled OTOCs calculated using TWA are shown as dotted blue and solid red lines, respectively. Note that around t � 3.5 the TWA starts to
deviate from the exact quantum mechanical solution for the classically chaotic initial state. (b) OTOCs C(t ) calculated using TWA for the
same parameters as in panel (a) and Fig. 4. Two OTOCs are shown in red for the classically chaotic initial state; for N = 100 particles (solid)
and N = 104 particles (dash-dotted). We also show an exponential fit for the OTOC with N = 104 as a black dashed line using the data in the
shaded area. The OTOC for the classically regular initial state also for N = 104 is shown as a dotted blue line to illustrate that at sufficiently
high particle numbers the OTOC can indeed be used for a proxy of chaotic behavior in the limiting classical dynamics.

OTOC one may now want to compare the growth rate to
the classical Lyapunov exponents shown in Fig. 2. Extracting
the growth rate by an exponential fit in Fig. 5(b) we found
large deviations from the classical Lyapunov exponent. We
emphasize that an agreement between the two is not expected
in general. As follows from Eq. (12), the specific OTOC we
consider probes the stability in specific phase-space directions
(ζ R

0 and ζ I
0 ) with respect to initial changes in another direction

(ζ I
0 ), see the Appendix for details. This corresponds to two

specific elements of the fundamental matrix 
, while the
largest Lyapunov exponent is related to the largest eigenvalue
of this matrix. As described in Ref. [54], a derivative such
as ∂ζ R

0 (t )/∂ζ I
0 (0) evaluated with respect to a single initial

condition will in general show erratic behavior including
oscillations and at most its envelope is expected to grow
exponentially. Exponential growth with the largest Lyapunov
exponent λ can only be expected after averaging over all
initial states of an energy shell. This averaging is what is
accomplished by the reset procedure we use in Sec. III for
calculating the Lyapunov exponents. In conclusion, for sys-
tems with higher-dimensional phase spaces (d > 2), OTOCs
of specific observables and initial coherent states may show
clear differences between chaotic and regular initial states, but
in general do not reveal the largest Lyapunov exponent of the
limiting classical dynamics.

We also note that OTOCs of initially commuting operators
always show power-law growth at short times [63]. The
discussions of quantum versus classical Lyapunov exponents
one finds in the literature typically consider cases where the
squared commutator is finite at t = 0 allowing exponential
growth to start immediately [21,64,71,77,78].

We calculated C(t ) for a large range of other initial con-
ditions and choices of the parameters q and r and evaluated a
variety of other OTOCs, for example using spin operators such
as Ŝz and Ŝx = [â†

0(â1 + â−1) + H.c.]/
√

2. While the overall
features of initial growth and saturation at long times are the
same in all cases, we cannot always clearly identify exponen-

tial growth at short times for classically chaotic initial states
which we attribute to the fact that we probe specific elements
of the stability matrix, which may show arbitrary behavior
in general [54], and that the time window between the initial
power-law growth and the Ehrenfest time may be small. For
small values of r we consistently found that if the initial state
overlaps with the position of the separatrix of the (regular)
classical phase space, the OTOC C(t ) grows much faster than
if it lies close to the stable fixed points. We conclude that
despite OTOC growth not being directly related to the largest
Lyapunov exponent of the corresponding classical dynamics,
OTOCs show clear differences between initial states localized
in classically chaotic and regular regions of phase space, thus
qualifying as indicators of quantum chaos.

To simulate dynamics past the Ehrenfest time, and in
particular to study the asymptotic behavior of OTOCs in the
long-time regime we need to resort to exact diagonalization.
An exciting alternative is to measure OTOCs in quantum
simulation experiments with spinor condensates, discussed in
the following, where particle numbers up to 104 are reached
easily.

V. EXPERIMENTAL REALIZATION

In this section we discuss a protocol for measuring OTOCs
experimentally based on time reversing the system dynamics
and propose an implementation using a spinor BEC of rubid-
ium atoms.

The most intuitive protocol for testing reversibility and
chaos in a quantum system is the following: Prepare an initial
state, evolve it to time t , apply a perturbation Ŵ , evolve
for another period t under the sign-reversed Hamiltonian,
and then measure an observable V̂ . This protocol results in
the measurement of 〈Ŵ (t )†V̂Ŵ (t )〉. If the initial state is an
eigenstate of V̂ , then the measured quantity has the desired
form of the out-of-time-order part of the squared commutator
[24]. Note, however, that in this protocol Ŵ is the unitary
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operator that induces the applied perturbation. To make the
connection to Lyapunov exponents we need Ŵ to be a Her-
mitian operator. For spin-1/2 chains one can, for example,
choose Ŵ to be a spin flip on one of the spins, σ̂ x

i , which
is Hermitian (and unitary). In the case of bosonic systems,
however, this simplification cannot be made.

A possible ansatz for solving this problem is to consider
small perturbations and to extract the resulting signal to
low order in the perturbation strength. Mathematically, we
consider Ŵ = exp [−iφÂ], with a Hermitian operator Â. To
second order in φ one obtains

〈Ŵ (t )†V̂Ŵ (t )〉 = 〈V̂ 〉 + iφ〈[Â(t ), V̂ ]〉
+φ2(〈Â(t )V̂ Â(t )〉 − 1

2
〈{Â(t )2, V̂ }〉)

+ O(φ3), (13)

where the contribution quadratic in φ contains an OTOC
of Hermitian operators: Â acts at time t , then V̂ acts at
time 0 followed by Â acting at time t . This ordering is not
compatible with the ordering of operators on a Schwinger-
Keldysh contour where the ordering is from small to long
and back to small times, hence the name OTOC. In general,
it is not straightforward to separate the OTOC part from the
additional terms that appear. However, in the case where the
initial state |ψ0〉 is an eigenstate of the operator V̂ matters
simplify considerably and the squared commutator can be
obtained from measurements of the quadratic response after
time reversal as we discuss in the following.

For V̂ |ψ0〉 = �|ψ0〉 the squared commutator becomes (ex-
pectation values are always with respect to |ψ0〉)

C(t ) = 〈[Â(t ), V̂ ]†[Â(t ), V̂ ]〉
= −2�〈Â(t )V̂ Â(t )〉 + 〈Â(t )V̂ 2Â(t )〉 + �2〈Â2(t )〉
= 〈Â(t )(V̂ − �)2Â(t )〉 . (14)

For the response of the nth moment of V̂ the commutator term
[linear term in φ in Eq. (13)] vanishes such that up to second
order in φ one obtains

〈Ŵ (t )†V̂ nŴ (t )〉 = �n + φ2[〈Â(t )V̂ nÂ(t )〉 − �n〈Â2(t )〉]
≡ �n + φ2

(2)
V̂ n , (15)

where we defined the quadratic response 
(2)
Ô

of an operator Ô.
Thus the squared commutator can be obtained by measuring
the quadratic response of the first and second moments of V̂
in the time-reversal protocol described above as

C(t ) = −2�
(2)
V̂

+ 
(2)
V̂ 2 . (16)

In the case at hand one could, for example, initialize the
system in the state where all particles are in the mF = 0 mode
and measure V̂ = N̂0.

We now turn to a concrete experimental implementation of
the model studied above. As mentioned in the Introduction, it
can be straightforwardly realized using a BEC of 87Rb atoms
in the F = 1 hyperfine manifold in a tightly confining trap.
The integrable case r = 0 has been realized experimentally
and its dynamics studied by a number of groups [33–37,47].
The integrability breaking term can be implemented by con-
tinuously applying an rf driving field where r corresponds to

the Rabi frequency induced by the drive. rf-driving is com-
monly used to implement spin rotations that are fast compared
to the interacting dynamics in order to read out different
components of the spin [39]. By reducing the modulation
amplitude of the magnetic field the Rabi frequency can be
adjusted such that r is widely tunable. The interaction term in
the Hamiltonian results from s-wave collisions and is typically
on the order of gN/2π ≈ −2 Hz. The parameter q can be
adjusted by microwave dressing to be of the same order [35].

The challenge for experiments lies in measuring the
OTOC, which involves time-reversing the unitary dynamics
of the system as illustrated by the protocols discussed above.
Indeed, for 87Rb the nature of the collisional interactions
between the different hyperfine components allows one to do
exactly this. In the F = 2 hyperfine manifold the sign of g
in the spin-changing collision term is opposite to F = 1 and
significantly larger. The other parameters of the Hamiltonian
can be adjusted freely through external control fields. Thus,
reversal of the dynamics can be accomplished by transferring
the BEC into the F = 2 manifold and running the dynamics
under the sign-reversed Hamiltonian for a time that has to
be adjusted to compensate for the different magnitude of
the Hamiltonian parameters. The additional two levels (mF =
±2) in the F = 2 manifold can be tuned out of resonance by
adjusting the magnetic field and thus the quadratic Zeeman
shift, or by off-resonant microwave dressing, resulting in
effective three-mode dynamics.

Finally, we discuss a number of recent proposals for mea-
suring OTOCs. We tried to adapt them to the proposed imple-
mentation, however, all of them either measure OTOCs with
respect to thermal (or even infinite temperature) states or have
technical requirements that seem extremely challenging for
spinor BECs. Protocols using randomized measurements [79]
only allow to determine OTOCs of the maximally mixed state.
The scheme proposed by the authors of Ref. [73] requires
preparing two identical copies of the system and detecting
the atom number parity, while [80] additionally requires an
ancillary systems that controls the sign of the Hamiltonian
and similarly for [81] which is designed to detect OTOCs of
thermal states.

VI. CONCLUSION AND OUTLOOK

This study shows that a three-mode bosonic system with
spin-changing collisions and tunable integrability breaking
rf-coupling term can serve as a showcase system for studying
classical and quantum chaos. In the classical limit the system
transitions from regular to chaotic phase-space dynamics as
the strength of the rf-coupling is increased from zero to ∼1
in units of the characteristic energy scale of the interactions.
This transition is also confirmed by the Lyapunov exponents
which are positive in the emerging chaotic regions of phase
space. The statistics of eigenenergies, a traditional indicator
of quantum chaos, behaves as expected and changes from
Poissonian to Wigner-Dyson as the integrability breaking term
is tuned. For OTOCs, which have been proposed as faithful
indicators for quantum chaos in the semi-classical regime,
we find faster growth for initial states close to the separatrix
where the classical dynamics becomes chaotic even for small
integrability breaking. The characteristic exponential growth
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that is expected due to the connection between the OTOC and
the Lyapunov exponent in the classical limit is visible in an
appreciable time window for large particle numbers (�103).
A direct comparison of the resulting growth exponent to the
largest Lyapunov exponent defined in the standard way is not
meaningful here, which can be understood by considering
the semi-classical truncated Wigner expression (12) for the
OTOC. This form shows that an OTOC of specific operators
will depend on specific elements of the stability matrix, or
fundamental matrix, of the classical dynamics, which are in
general not expected to grow exponentially with the largest
Lyapunov exponent.

The considered model can be implemented experimentally,
potentially giving access to OTOCs beyond the Heisenberg
time for much larger particle numbers than what is reachable
by exact diagonalization. Time-reversal may be achieved in
BECs of 87Rb atoms by exploiting the collisional properties
in different hyperfine states. This enables the measurement
of OTOCs with respect to initial states that are eigenstates of
the measured operator. Specifically the squared commutator,
which has a particularly direct semi-classical meaning, can
be extracted for initial coherent states which are easy to pre-
pare experimentally. The protocol for extracting the squared
commutator requires measuring the quadratic response with
respect to a perturbing generalized rotation. More straightfor-
ward protocols for testing the reversibility and sensitivity of
the many-body dynamics with respect to perturbations also al-
low measuring quantities that are of interest for semi-classical
physics and quantum chaos [64]. Therefore, in the future,
we will seek to clarify the meaning of the resulting more
general types of OTOCs in the context of operator spreading
and thermalization. Intuitively, these objects should still be
indicators of ergodicity and emerging operator complexity,
and are in addition related to quantum Fisher information [82],
enabling connections to entanglement.
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APPENDIX: TRUNCATED WIGNER APPROXIMATION

The TWA relies on a phase-space representation of quan-
tum states where expectation values of quantum operators can
be calculated by evaluating their corresponding Weyl symbols
averaged over phase space weighted with the Wigner function
where the last of these is the Weyl symbol of the density
matrix of the initial state. As we are interested in calculating
OTOCs, we first note that the Weyl symbol of the commutator
[Â, B̂] is given by

[Â, B̂]W = ih̄eff{AW , BW }MB

= ih̄eff{AW , BW } + O
(
h̄2

eff

)
, (A1)

where {. . . }MB denotes the Moyal bracket, {. . . } the Poisson
bracket and OW is the Weyl symbol of the quantum operator
Ô [83]. h̄eff quantifies the minimal phase-space volume that
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FIG. 6. Comparison of the time evolution of (a) the expectation
value of N̂0 and (b) its standard deviation calculated with TWA (solid
blue line) to the exact quantum mechanical calculation (dashed black
line) for N = 100 particles. As initial state we used the classically
chaotic state from Fig. 4 along with the same parameters. For the
TWA we averaged over 1000 samples. We also compared the TWA
to the exact quantum calculations for different observables and initial
states yielding similar results, for classically regular dynamics the
agreement is even better.

a state can be confined to due to Heisenberg’s uncertainty
relation, which corresponds to the phase-space volume of a
coherent state, h̄eff ∼ 1/N in our case. Working directly in the
ζ representation (see beginning of Sec. II) where the real and
imaginary parts of ζi act as pairs of conjugate variables, the
Poisson bracket is defined as

{A, B} ≡
∑

i=1,0,−1

∂A

∂ζ R
i

∂B

∂ζ I
i

− ∂A

∂ζ I
i

∂B

∂ζ R
i

, (A2)

i.e., we have for A = ρ0(t ) = [ζ R
0 (t )]2 + [ζ I

0 (t )]2 and B =
ρ0(0) up to order h̄2

eff

〈|[ρ̂0(t ), ρ̂0(0)]|2〉 = h̄2
eff〈|{ρ0(t ), ρ0(0)}|2〉W

= h̄2
eff

〈∣∣∣∣∂ρ0(t )

∂ζ I
0

∂ρ0(0)

∂ζ R
0

∣∣∣∣
2
〉

W

= h̄2
eff

〈∣∣∣∣2ζ R
0 (0)

∂ρ0(t )

∂ζ I
0

∣∣∣∣
2
〉

W

, (A3)

where 〈. . . 〉W denotes the phase-space average weighted by
the Wigner function. In the second step we used that we can
always choose ζ0 to be real initially by choosing an appro-
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priate global phase. The derivative ∂ρ0(t )/∂ζ I
0 is evaluated

numerically by evolving two trajectories initially separated
by ideally infinitely small d0 in the imaginary part of the
ζ0 component and evaluating the difference in ρ0 at each
time step numerically integrating the mean-field equations of
motion (4). Alternatively, we can rewrite

∂ρ0(t )

∂ζ I
0

= 2

{
ζ R

0 (t )
∂ζ R

0 (t )

∂ζ I
0

+ ζ I
0 (t )

ζ I
0 (t )

∂ζ I
0

}
, (A4)

where now the derivatives can be evaluated as elements
of the fundamental matrix as described in Sec. III B. We
again checked that the two methods yield the same results
for small-enough initial deviations d0 in the case of the
two trajectory calculation (or equivalently, for short-enough
times). The Wigner function of the initial coherent state is
well approximated by a Gaussian with mean and variance
matching the expectation value and variance of the initial state

with regard to the quantum operators. Technically, we sample
from |(x1 + ix2)/2, N, (x3 + ix4)/2〉 where all xi are indepen-
dently drawn from a Gaussian distribution with zero mean and
standard deviation 1/

√
N to approximate the Wigner function

of the initial state |0, N, 0〉. To get the Wigner function of an
arbitrary initial coherent state, we rotate the sampled states
using spin operators as generators of the rotation.

We checked that the sampling of arbitrary initial states as
described above works by comparing the expectation values
and variances of different spin operators calculated within
TWA to the exact quantum mechanical calculations for up
to N = 100 particles, see Fig. 6. We also checked that in
the case of the two trajectory calculation d0 is small enough
such that the difference quotient is independent of d0 and
matches the quantum calculations after appropriately scaling
the amplitude (see inset of Fig. 5). We can confirm that the
TWA results match the exact quantum calculations up to t ≈
2.5 for N = 100 particles and expect that the approximation
holds up to longer times with increasing N as t ∼ log N .
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