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Magnus-force model for active particles trapped on superfluid vortices
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Experimentalists use particles as tracers in liquid helium. The intrusive effects of particles on the dynamics
of vortices remain poorly understood. We implement a study of how basic, well understood vortex states, such
as a propagating pair of oppositely signed vortices, change in the presence of particles by using a simple model
based on the Magnus force. We focus on the two-dimensional case, and compare the analytic and semianalytic
models with simulations of the Gross-Pitaevskii (GP) equation with particles modeled by dynamic external
potentials. The results confirm that the Magnus force model is an effective way to approximate vortex-particle
motion either with closed-form simplified solutions or with a more accurate numerically solvable ordinary
differential equations. Furthermore, we increase the complexity of the vortex states and show that the suggested
semianalytical model remains robust in capturing the dynamics observed in the GP simulations.
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I. INTRODUCTION

Superfluidity occurs in a wide variety of systems, includ-
ing terrestrial ones—e.g., 4He II [1], 3He B [2], versatile
Bose-Einstein condensates (BECs) of alkali atoms [3], and
exciton-polariton condensates [4] in laboratory experiments—
and exotic astrophysical objects, such as neutron stars [5,6].
Moreover, a monochromatic light while passing through a
nonlinear medium, e.g., photorefractive crystals [7], has been
shown to exhibit a flow that is essentially superfluid. The
unusual flow properties of these superfluid flows have held the
attention of experimentalists and theorists alike. For example,
helium II can sustain rotational motion only through forma-
tion of quantized vortices, wherein the circulation along paths
enclosing vortices is restricted to multiples of h/m4, where h is
Planck’s constant and m4 is the mass of a 4He atom [8]. These
quantized vortices in helium II are angstrom size in diameter,
and they occur either as closed loops or filaments that must
end at the boundary of the fluid.

Quantized vortices display rich dynamical behavior [9];
for example, in three-dimensional (3D) rotating superfluid
systems above the vortex nucleation threshold where the
number of vortices increases with rotation speed and can
form a vortex lattice. At still higher rotation speed the system
transitions to a turbulent state [10]. It is a nonequilibrium
state involving processes that span a broad range of length
and time scales, and is characterized by the presence of a
dynamic random tangle of interacting vortices [11–13]. These
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quantized vortices upon close approach can undergo re-
connections [14,15], a topology changing process that fur-
ther drives the system to a turbulent state. Reconnec-
tion events excite Kelvin waves on the vortices, and the
nonlinear interaction of these waves gives rise to a cas-
cade process that transfers energy to smaller length scales,
which is ultimately radiated as sound [16–19]. Turbulence
in these superfluid systems can also be excited by stir-
ring, shaking, moving objects, etc. [1,3,20]. Moreover, tur-
bulent states can also be realised in two-dimensional (2D)
superfluids [21,22], where pointlike vortices move chaoti-
cally [23–25] and can organize to produce large-scale flows.
This subject has seen a spurt of recent activity, both nu-
merical and experimental, to find its universal features
and provide a comparison with its classical counterpart
[26–28].

However, it must be emphasised that the experimental
study of the fundamental processes involved in superfluid tur-
bulence is a difficult task and requires state-of-the-art facilities
[8,29]. In particular, visualization of the quantized vortices
has been a challenge because of extremely low temperatures
and small system sizes. The flow visualization methods avail-
able for classical fluids are difficult to adapt to superfluid
helium [30].

Use of particles to probe superfluid flows involving vor-
tices was suggested in Ref. [31]. A great deal of information
about quantized vortices, including their existence, in helium
II has been obtained, in the past, by the use of moving
ions [32]. More recently, solid-hydrogen particles were used
to visualize quantized vortices in helium II at temperatures
∼2 K [33,34]. These particles were also used to study vortex
reconnection events [14] and Kelvin waves [18] on vortices in
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superfluid helium. Note that in these experiments, even though
particles used were roughly 104 times the vortex diameter,
they managed to capture the essential physics.

Now much smaller particles in the form of metastable 4He∗
2

excimer molecules, ∼100 nm in size, are available that can be
used as vorticity tracers in the T = 0 limit, in the absence of
normal fluid; at temperatures above 1 K they act as tracers of
the normal component [35].

Notwithstanding the significant experimental progress in
the use of particles to characterize superfluid turbulence, the
exact level of intrusion of the particle on the vortex motion
remains unclear. Therefore, it is important to explore and
understand these issues by building simplified models to study
particle-vortex dynamics both theoretically and numerically
[36,37].

The models presented may also be relevant to BECs with
impurities [38] and optical fluid of light experiments [7] with
multiple beams interacting.

In this work, we focus on the Magnus force that acts on
a particle trapped on a translating vortex. To do so, we make
use of both the Gross-Pitaevskii (GP) equation description of
superfluids [39,40] and the suitably adapted classical treat-
ment of point vortices in 2D. In our GP description, we make
use of a recently developed minimal model [41–43], wherein
we couple the equations of motion of particles with the GP
classical wave function ψ . We demonstrate that the Magnus
force description borrowed from the theory of ideal hydrody-
namic flow provides a good description of the dynamics of
vortices loaded with particles in superfluids. We first study a
particle loaded vortex-antivortex pair configuration and carry
out a systematic direct numerical simulations (DNS) of the
GP based minimal model. We compare these GP equation
DNS results with a Magnus force model that we have derived
(see below), both in the simplified analytically tractable case
of constant background flow and a more realistic situation
wherein the background flow is allowed to vary in response
the particle loaded vortices (or other external vortices). We
then extend our study of the particle loaded vortex-antivortex
pair to more complex vortex configurations, where (i) each
vortex is multiply charged and (ii) free external vortices are
present in the neighborhood. We will argue that under certain
circumstances the effects can be observed in superfluid helium
experiments. Moreover, our study indicates that particles can
be a useful tool for future studies of vortex motion in Bose-
Einstein condensates (BECs).

The advantage of our analytical and semianalytical mod-
els is that they can be applied, and work better, for setups
with particles much larger than the healing length, whereas
it would be virtually impossible to simulate such systems
with huge scale separations in DNS. Such models will be
useful, for example, in investigations of the effect of hydrogen
ice tracers whose typical diameter is the order of a few
micrometers [33], while the vortex core diameter is of the
order of an angstrom (1 Å = 10−10 m). In this situation, we
can think of a classical flow with a thin boundary layer,
so that one can use classical textbook solutions relating the
force on a moving object with the circulation around the
object [44]. This indicates that the Magnus model will work
better in describing the motion of large particles relative
to vortex core size. However, the validity of such a model

in quantum fluids cannot be taken for granted due to the
presence of the compressibility, acceleration, as well as a flow
nonuniformity over the distances comparable to the particle
sizes.

In our paper, we demonstrate that the Magnus force model
works very well even for situations well beyond the formal
limits of applicability of the ideal flow descriptions, e.g., when
the size of the particle is no so much bigger than the healing
length and the velocity is not so much smaller than the speed
of sound.

II. MODEL AND NUMERICAL METHODS

A. Gross-Pitaevskii equation coupled with particles

We use the GP theory to model the superfluid flow and
study its interaction with particles. The GP framework pro-
vides a good hydrodynamical description of a weakly inter-
acting superfluid at lowtemperatures and is able to reproduce
the qualitative features of the strongly interacting superfluid
helium. Within this framework, the state of the system is
specified by the complex scalar field ψ (r, t ).

The particles that we consider are active; they are affected
by flow and act back on it too. In our earlier works [41–43] we
introduced a Lagrangian for this combined system, wherein
particles were represented by specifying the potential VP .
This procedure yields the following GP equation for the
spatiotemporal evolution of ψ (r):

ih̄
∂ψ

∂t
= − h̄2

2mb
∇2ψ − μψ + g|ψ |2ψ +

N0∑
j=1

VP (r − q j )ψ,

(1)

where h̄ = h/2π is the reduced Planck’s constant, mb the
mass of bosons constituting the superfluid, g the effective
interaction strength among these bosons, μ the chemical
potential and q j the position of the jth particle (i.e., center
of the potential).

The strong interactions within liquid helium are not cap-
tured by the GP equation. However, phenomenologically the
GP equation captures some well known behaviors of liquid
helium such as superfluidity and quantized vortices especially
in the zero-temperature limit. One main aspect of helium the
GP equation does not capture is the dispersion relation and
the roton curve. It would be an interesting study to see if
modification to the GP equation which have the roton (such
as with a nonlocal nonlinearity) affect the predictions of the
model.

Our modeling of the particles by specifying VP allows us
to control their characteristics, e.g., shape and size. For the
purpose of present study, we use the Gaussian potential

VP = V0 exp

(
− r2

2d2
p

)
; (2)

here V0 is the strength of the potential and dp is the measure
of its width. In the presence of another field (noncondensed
atoms, another species of BEC, or an obstacle caused by
laser or normal fluid, to give some examples) which we can
denote the density of fluid trapped in the vortex core, ρv , then
VP ∝ ρv .
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Furthermore, we include a two-particle, short-range repul-
sion potential. Thus, the Newtonian dynamics of the particles
is governed by the following equation:

mj q̈ j = f0, j + G j, (3)

where mj is the mass of the jth particle, which we assume to
be same for all, mj = m0, vector f0, j is the force exerted by
the superfluid onto the particle,

f j =
∫
B

|ψ |2∇VP (r − q j ) dr, (4)

B is the area occupied by the particle [determined
by a cutoff of the potential (2)], and G j = (Gx, Gy) =
êx

∑N0
i=1,i �= j

�E r12
SR

|(qi−q j )·êx |12 + êy
∑N0

i=1,i �= j
�E r12

SR
|(qi−q j )·êy|12 is the inter-

particle short-range repulsion force. In Ref. [41] it was
demonstrated that there is a superfluid mediated attractive
force between two particles separated by a small distance
(of the order of few of healing lengths); therefore, to model
realistic particles we must include a short-range repulsive
interaction between particles that for simplicity is inspired by
the repulsive part of the widely used Lennard-Jones potential.
The parameters rSR = 5dp and �E = 0.062c2ξ 2ρ0 together
control the strength and the distance of closest approach; we
keep these fixed in our study.

B. Numerical methods, units and parameters

To study the dynamics of particles in complex superfluid
flows, we solve Eqs. (1) and (3) numerically. In order to do
so, we perform direct numerical simulations (DNSs) of the
GP by using the Fourier pseudospectral method on a square,
periodic simulation domain A of side L with N2

c collocation
points [27]. In this method, we evaluate the linear terms in
Fourier space and the nonlinear term in real (physical) space,
which we then transform to Fourier space. For the Fourier-
transform operations, we use the FFTW library [45]. A fourth-
order Runge-Kutta scheme is used to evolve these equations
in time. Further details can be found in [43].

We define the length scale ξ = h̄/
√

mbgρ0, known as the
healing length, and the speed of sound c = √

gρ0/mb. The
mean density can be also calculated: ρ0 = ∫

A |ψ |2 dr/A. We
then choose to rescale the parameters in (1) with the following
scalings: μ̃ = μ/(gρ0), ṼP = VP/(gρ0), ψ̃ = ψ/

√
ρ0, r̃ =

r/ξ , and t̃ = tc/ξ . We arrive at the dimensionless equation
which we simulate:

i
∂ψ̃

∂ t̃
= −1

2
∇̃2ψ̃ − μ̃ψ̃ + |ψ̃ |2ψ̃ +

N0∑
j=1

ṼP (r − q j )ψ. (5)

From here onward we drop the tildes for simplicity of nota-
tion. Taking into account that we are in dimensionless units, in
our calculations we have ρ0 = c = ξ = μ = 1. In dimension-
less units we also choose the parameters L = 177.78, with the
grid spacing dx = L/Nc, and the number of collocation points
Nc = 256. For the external potential we choose the parameters
V0 = 10, and dp = 1.5. To calculate the initial conditions
we solve the real Ginzburg-Landau equation (RGLE); this
minimizes the energy of the fluid in the presence of the
potentials modeling the particles.

C. Magnus force model

Lift force or the Magnus effect is a well-studied phe-
nomenon in classical fluid dynamics [46]. In a fluid flow
with a uniform upstream velocity uflow, a cylindrical disk with
circulation � around it experiences a lift force ρ�uflow × êz,
where ρ is the fluid density and êz is the unit vector along
the cylinder corresponding to the vorticity direction. This
phenomenon in superfluid was first observed by Vinen [47]
by measuring modifications to frequency of a vibrating wire
submerged in He II, which also allowed demonstration of
the quantization of the circulation around the wire. In the
present work, the fluid flow relative to a solid object is induced
not by mechanical properties of the solid object itself (e.g.,
its elasticity), but rather by an external vortex (or multiple
vortices) not trapped by this particular object.

Here, we want to explore the dynamics of an assembly of
particles trapped on 2D vortices in superfluids. In particular,
we want to elucidate the role of the Magnus force acting on
these particles. To this end, we develop a Magnus force model
(MFM) to describe this system. The Magnus force induced
acceleration of the jth particle trapped on a vortex (circulation
strength �) at the location (x j, y j ) is given by

ẍ j = A(ẏ j − v j ) + Gx/(m0 + m′), (6)

ÿ j = A(u j − ẋ j ) + Gy/(m0 + m′), (7)

where the overhead dots indicate time derivative; (uj, v j ) is
the flow velocity at the location of the jth particle collectively
induced by the other (excluding the jth) vortices. In our
description of the particle dynamics, we ignore the variation
of the flow velocity over a distance comparable to the particle
radius. Such an approximation is valid when the distance
between the particles is large compared to both the particle
radius and the healing length. The parameter

A = �ρ

(m0 + m′)
(8)

is the natural oscillation frequency of the vortex trapped
particle in our system. m0 is the physical mass of the particle
and m′ the hydrodynamical added mass (see below). The
circulation and density are a result of the Kutta-Jukowski lift
forces on the particle from the fluid. The parameter A cor-
responds to the Kelvin quasiparticle frequency of the vortex.
Interestingly, the effective mass of a vortex [(m0 + m′) in (8)]
is nonzero even in the absence of the additional tracer particles
at nonzero temperatures [40,48]. This is due to added mass
being nonzero because the core is finite and induces drag due
to the acceleration of flow around the vortex. This frequency
was highlighted in the single vortex 3D case in [49].

Note that in (6) and (7) we have introduced a short-range
repulsion G between the particles, which acts only when the
particles come to distances comparable to their size. Strictly
speaking the approximation that the velocity around a particle
is uniform fails at such short distances; however, our goal
in this paper is to test the model beyond its formal limits
of applicability in order to test its robustness. The added
mass can be computed using the unsteady Bernoulli equation
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(derived from the GP equation),

∂φ

∂t
+ 1

2
(∇φ)2 −

N0∑
j=1

VP (r − q j ) = 1

2

∇2√ρ√
ρ

− p

ρ
, (9)

where φ = arg ψ , which relates to the superfluid velocity v via
v = ∇φ, density ρ = |ψ |2, and the first term on the right-hand
side in Eq. (9) is the quantum pressure term. Note that in this
model the dynamics are compressible and that ρ = ρ(x, t ).

Let us assume for the moment that the potential represent-
ing the particle is hard, i.e., it has a well defined boundary
(an extension to the case of “soft” particle potential is made
later). In such a case, the superfluid density ρ is zero within
the particle boundary and it “heals” to its bulk value over
a boundary layer that is approximately healing length wide.
Now, if the particle radius R 	 ξ , then we can regard the
particle and its boundary layer as a single moving control
volume. This allows us to neglect the quantum pressure at the
boundary of the considered control volume, and we can write

p = −ρ

(
∂φ

∂t
+ 1

2
|∇φ|2

)
, (10)

i.e., the classical expression for irrotational ideal fluids. Thus,
we can apply the classical textbook calculations for both the
Magnus force and the added mass by integrating the pressure
distribution over the control volume boundary [50]. If the
particle under consideration is a 2D disk of radius R, then the
∂φ

∂t term gives rise to the added mass m′ = ρπR2.
Our method of treating the dynamics of particle loaded

vortices self-consistently takes into account the variations in
the background flow velocity around the particles because
of the dynamically varying separation between the vortices.
It is important to appreciate the fact that the Magnus force
description given by Eqs. (6) and (7) depends on the motion
of the particle relative to the fluid and the resulting force is
perpendicular to the motion. In the other words, there would
be no Magnus force if the particle motion was tracing the fluid
paths (this regime would be realized by the limit of very small
and light particles).

In our GP simulations, we use a Gaussian potential, which
has a soft boundary, to represent particles; therefore, we need
an estimate of an effective radius to compute the added mass
m′. A consequence of the soft boundary is that the fluid can
penetrate a region of the potential, but is slowed down by the
increasing strength of the potential until the reflection point.
A correct estimation of the effective radius is a nontrivial
exercise. Therefore, we compute it in an ad hoc manner by
making use of the Thomas-Fermi (TF) profile of the superfluid
density around the particle potential. The TF profile is the
density of a time-independent solution of Eq. (5) in which
we remove the Laplacian term; this approximates the density
depletion due to the particle on the surrounding fluid with
no kinetic energy. The TF profile |ψTF|2 in the presence of
a single particle is then given by

|ψTF|2 = (
1 − V0e

−r2

2d2
p
)
H(r − RTF), (11)

where H denotes the Heaviside step function and RTF the
radius of the region within which the profile is zero. In Fig. 1
we show a slice of the TF profile, along with the initial
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FIG. 1. Density profile of particle and TF profile: The density
profile of the simulated particle is blue (dashed) and the TF profile is
red, both with the same parameters, V0 = 10gρ0 and dp = 1.5ξ .

condition. The initial condition is a slice across the particle as
calculated by solving the RGLE with the potentials modeling
the particles. The radius RTF, computed from the Eq. (11), is
given by

RTF = dp

√
2 ln(V0). (12)

The TF profile allows us to obtain an estimate of the displaced
mass of the superfluid due to the particle (while fluid density
is held fixed at ρ0). We use this displaced mass as the added
mass, as this captures the features of the soft potential. Thus,

m′ = 2π

∫ ∞

0
(1 − |ψTF|2)r dr. (13)

To be more clear here, the added mass can be decomposed
into two parts: m′

1, the contribution governed by the geometry
of the particle, while assuming incompressibility, and m′

2, the
contribution coming from the boundary layer. We express this
as follows:

m′ = m′
1 + m′

2 = πR2
TF + 2π

∫ ∞

RTF

V0e
− r2

2d2
p r dr

= πR2
TF + V0d2

pe
− R2

TF
2d2

p

= d2
p[2π ln(V0) + 1]. (14)

It is worth emphasising that the added mass depends on the
geometry of the particle, and in the case of an arbitrarily
shaped particles further considerations are required compared
to what we wish to address in the present study. For the
parameters used in this study, we find m′ to be 46.69.

We use the added mass m′ of the displaced superfluid from
the TF profile to define the ratio

M ≡ m0

m′ , (15)

which allows us to distinguish between heavy (M > 1),
neutral (M = 1), and light (M < 1) particles. We empha-
sise here that the added mass in general differers from the
displaced mass; however, for disk shaped particles they are
identical.

We express the MFM equations in a more compact form as

z̈ j = iA(w j − ż j ) + G/(m0 + m′), (16)
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FIG. 2. Schematic diagram illustrates the initial configuration,
wherein a vortex-antivortex pair loaded with particles is translating
along the x axis. Particles are shown by blue disks. The circle with
anticlockwise (clockwise) arrow represents a vortex (an antivortex)
with circulation vector pointing out of (in) the plane. The centers of
the particles (the coincident vortices) are separated by a distance d0.

where z j = x j + iy j , w j = u j + iv j and G = Gx + iGy.
We can easily extend our 2D MFM to 3D by using the

local induction approximation (LIA) of the Biot-Savart law,
wherein a vortex element s of a vortex line at the arc length ζ

and time t has velocity [51]

ṡ(ζ , t ) = βs′ × s′′, (17)

where the overhead dot and prime correspond to derivatives
with respect to the time and arclength, respectively, β =
ln(l/ξ ), and l is a suitable cutoff length scale that is approx-
imately equal to the mean curvature radius. In particular this
approach was used to study the modifactions of Kelvin waves
in the presence of tracer particles [49].

Therefore, in 3D the dynamics of the vortex line, with
uniform mass distribution, is given by

q̈ = As′ × [q̇ − ṡ(ζ , t )], (18)

where q(ζ , t ) is the position of the particle. This equation
corresponds to a vortex line with test particles densely filling
its core. Another interpretation could be normal fluid trapped
into the superfluid vortex core. Similar to the 2D case, in 3D
we can include a short-range repulsion between the particles.

The LIA is derived from the more general Biot-Savart law.
Using the Biot-Savart description with our model requires
more complexity. This is due to the vortex arclength not being
conserved in the Biot-Savart description. Thus, in general a
separate equation for the mass density along the vortex line
would be required.

D. Simplified Magnus force model for particle loaded
vortex-antivortex pair

A vortex-antivortex pair of size d0 is the simplest multivor-
tex configuration that occurs in a periodic 2D domain. This
vortex-antivortex pair translates at a speed u = �/(2πd0) in a
direction perpendicular to the line joining the two vortices (see
Fig. 2). Therefore, the dynamics of the two particles P1 and
P2 trapped on the vortex and antivortex, respectively, serves
to provide a simple demonstration of the Magnus effect.

To simplify our discussion, we assume that the y compo-
nent of the velocity of the underlying flow experienced by the
particles is zero, i.e., v = 0 in Eqs. (6) and (7). Also, we con-
sider a large vortex-antivortex pair, d0 	 Rp, that allows us
to neglect the short-range repulsion. As our vortex-antivortex
pair is symmetric about the x axis (See Fig. 2), in what follows
we discuss the dynamics (trajectory) of only one particle. The
equation of motion for the particle is then given by

ẍ = −Aẏ, (19)

ÿ = −A[u(y) − ẋ]. (20)

To further simplify the discussion, we impose a condition that
the horizontal component u(y) = constant during the dynami-
cal evolution of this system, thereby furnishing a readily solv-
able set of coupled ordinary differential equations (ODEs).
Hereafter, we refer to this model as the simple Magnus force
model (SMFM). In SMFM, with the initial conditions

x(0) = x0, y(0) = y0,

ẋ(0) = 0, ẏ(0) = 0,
(21)

the particle trajectory is of the following form:

x(t ) = x0 + ut − u

A
sin(At ), (22)

y(t ) = y0 − u

A
[1 − cos(At )]. (23)

Note that this rather restrictive description is valid only when
the oscillations of the particles are small.

In the present study, we compare the predictions of the
MFM and SMFM against the GP description to illustrate
the Magnus effect. Therefore, it is important to recognize
the fact that, due to the periodicity of the phase of the
wave function representing the vortex-antivortex pair within
the GP description in a 2D periodic domain, the motion of
the pair is altered as compared to that in the ideal fluid. We
discuss this in detail in the Appendix, where we provide a
detailed comparison of the vortex-antivortex pair dynamics in
the GP equation and the ideal fluid case (Weiss-McWilliams
formula).

III. RESULTS

A. Dipole configuration

We first discuss the dynamics of the particle loaded vortex-
antivortex pair, starting with an initial configuration as shown
in Fig. 2. We choose this configuration, rather than a single
vortex and particle, to satisfy the periodic boundary condi-
tions. It would be possible to simulate such an interaction by
imposing different boundary conditions; however, we propose
that the self-induced motion (i.e., velocity field) makes the
dipole a more interesting example. We provide reasoning
for the expected dynamics of a single vortex and particle
in Sec. III B. In Fig. 3, we show the pseudocolor plots of
the density field ρ(r) overlaid with trajectories of the two
particles, along with SMFM predictions (blue dashed curves)
given by Eqs. (22) and (23). We find that the particles follow a
nearly cycloid trajectory, in good agreement with the SMFM
predictions. The cycloid trajectory of the particles is charac-
terized by the displacement amplitude δa in the y direction and
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FIG. 3. Trajectories of loaded vortex dipole. Parameters: mass
ratio M = 17.15 and initial separation d0 = 52.50ξ . Pseudocolor
density [|ψ (r, t f )|2] plots with simulated (red) and MFM-predicted
(blue dashed) trajectories overlaid.

the periodic length Xp in the x-direction. These two quantities
are easily deduced from the SMFM [Eqs. (22) and (23)]
yielding δa = 2u/A and Xp � u2π/A; note the dependence on
the flow velocity u.

To better appreciate this dependence, we approximate the
flow velocity u by the following three values, with upair given
by Eq. (A10):

(1) u = upair (d0);
(2) u = upair (d0 − 2δ0), where δ0 = 2upair (d0)/A is the

amplitude of case (1);
(3) u is the mean of the estimates obtained from (1) and

(2) above.
In Figs. 4(a) and 4(b) we show the plots of δa/d0 and Xp/ξ ,

respectively, vs M obtained from the GP equation simulations
(curves with circles as markers) and the use of the above three
test cases for u in SMFM; we do this for two initial values of
d0 = 52.30ξ (blue curves) and d0 = 72.41ξ (red lines). This
exercise reveals a clear dependence of the results on the choice
of u; thereby suggesting that, in any modeling scheme based
on the MFM model, the flow velocity u must be updated in a
self-consistent manner. Note that case 1 is the velocity at the
initial time; this also corresponds to the minimum velocity,

as the particles are at maximum separation. Case 2, which
tends to overshoot, is based on the approximate minimum
distance, thus resulting in maximum velocity. Case 3 is a
simple average; we see that this predicts well the parameters
of the cycloid trajectories for all the simulations.

Also note that in Fig. 4 the data for d0 = 52.50ξ and
M > 30.87 are absent, as for these values of the parameters
the amplitude of the cycloid motion becomes larger than half
the initial vortex-antivortex pair size and results in a collision
of the two particles, thereby annihilating the vortices. Later (in
Fig. 7) we show that the model fits well up until the collision.

Now let us recall an assumption of our model, that the flow
is uniform across the particle. This assumption is good as long
as the vortex-antivortex pair size is large. However, as the size
decreases, the finite size of the particles becomes increasingly
important due to the external flow varying over the particle.
Despite these restrictions, the analytic model provides a good
phenomenological description of the dynamics of the particle
loaded vortices.

To improve the simplified model we remove the assump-
tion that the velocity is constant throughout the dynamics;
namely, we let the velocity vary depending on the current
separation of the particles. We solve the MFM Eqs. (6) and
(7) numerically, while accounting for the variation in u ≡
upair(d (t )) as the vortex-antivortex pair size varies; this allows
us to improve the accuracy. We compare the trajectories of
the particles obtained directly from the GP simulations with
those predicted by the MFM. We solve the coupled ODEs
of the MFM by using the specialized ODE solver ODE45 in
MATLAB. We also include the short-range repulsion forces as
now they are relevant for the cases where our model is tested
beyond the formal limit of applicability, namely, when the
inequality ξ  R  d does not hold.

For comparing the above two solutions, we define an
average error

ε =
Nt∑

i=1

{[xs(ti ) − xp(ti)]
2 + [ys(ti ) − yp(ti )]

2}1/2/Nt , (24)

where (xs, ys) are the GP simulated coordinates of the particle
and (xp, yp) are the coordinates from the simulated ODE. We
choose Nt points on each trajectory which are evenly spaced
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FIG. 4. Amplitude and period analysis of SMFM. All blue (top four) lines correspond to a separation d0 = 52.50ξ and red lines (bottom
four) to d0 = 72.41ξ with the circles representing simulated data in both (a) and (b). The other types of line correspond to the fit for velocity
upair (d0) (square, case 1 in text), for velocity upair (d0 − 2δα ) (asterisk, case 2 in text), and the average of the other two (cross, case 3 in text).
(a) The amplitude δα of the cycloid in units of initial separation against mass ratio M. (b) The period Xp against mass ratio M.
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FIG. 5. Trajectories of the loaded upper vortex in the dipole.
Example of DNS trajectories (red) compared to predicted trajectories
(blue dashed). Two cases show d0 = 52.50ξ (bottom curve) and
72.41ξ (top curve) with M = 17.15. The final time of the simulation
is t f = 100.

in time. The measure of error, ε, is the average distance the
predicted value is away from the true value over the entire
run; we present this in units of ξ .

In Fig. 5, we present two examples (d0/ξ = 52.50 and
72.41) of direct comparison between the particle trajectories
obtained from the GP simulations and those predicted by the
MFM. Note that we only show the trajectory of the particle
trapped on a vortex with positive circulation because of the
symmetry. The mismatch between the trajectories gives a
visual indication of the error.

We perform numerical simulations for a large range of
particle masses M ∈ [5, 50] for the same two initial sepa-
rations, keeping the total time of the dynamics fixed at t f =
100ξ/c. We then compute the error ε and present the results
in Fig. 6(a). We observe that the error for all simulations
stays of the order of a healing length. Surprisingly, we see
that as the mass grows the error decreases for the pair with
larger initial separation. As we increase the mass, we expect
that the particle is less sensitive to compressibility effects.
We also note that, for a greater mass, the amplitude of the
cycloid for a given initial position is larger. We see the effect
of this on the pair with smaller initial separation. The error
grows rapidly as the mass approaches M = 30; at this point,
the particles collide, causing the vortices to annihilate. In
general, the model predicts the behavior of more massive
particles more accurately as long as the inequality ξ  R  d
holds. However, increasing the mass causes larger amplitudes,
subsequently causing the inequality to break.
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FIG. 6. Error with simple dipole configuration. (a) Two cases
show d0 = 52.50ξ (blue circles) and 72.41ξ (red triangles) for a
range of different masses. For values of M greater than 30.87 the
particles have collided for d0 = 52.50ξ (blue circles), so they have
been omitted. (b) For M = 17.15 with a range of different initial
distances.

In another protocol, we keep the mass fixed at M =
17.15 and vary the initial size of the vortex-antivortex pair.
The nonlinear shape of this error is again due to competing
assumptions of our model. For low separations the finite size
of the particle becomes important, thus we see high error. We
conjecture that the minimum that follows is due to the change
in velocity due to the separation, (∂u/∂d )2R, becoming small
compared to the velocity; see Fig. 13 in the Appendix. The
error always stays of the order of a healing length. This clearly
demonstrates the usefulness of a simple ODE based MFM
model, which is easily solved numerically and able to capture
the phenomenological motion of the vortices loaded with
particles. Moreover, it predicts their motion to high accuracy.

The above examples show that the MFM model provides a
good description for a simple configuration. Now we extend
its use to predict more complex configurations.

As mentioned earlier, one of the limitations of our model
is that it does not capture the possible annihilation of vortices
during a collision event. This process plays an essential role
in the dynamical evolution of an assembly of vortices in 2D
in the presence of particles, which can potentially increase the
annihilation rate [43]. This has implications for the quench
(relaxation) dynamics of the 2D superfluid system, which
undergoes the Berezinskii-Kosterlitz-Thouless (BKT) [52,53]
phase transition via vortex annihilations. Consequently, the
increased annihilations in 2D and vortex reconnections in
3D will have a strong influence the velocity statistics in a
turbulent state [54].

In Fig. 7 we show that the model describes the dynamics
well up until a collision in which the vortices annihilate. The
annihilation is followed by linear motion of the particles, with
the particles conserving their momentum from the collision.
Although the current models do not account for the anni-
hilations, this feature can be added in an ad hoc manner,
for example as in Ref. [55]. To add this we require further
study of the collisions to define some particle separation cutoff
value for which the vortices annihilate. In order to define such
a cutoff we need to study the different possible dynamics
during such a collision and to further understand the exchange
of momentum of the particles and the role of the acoustic
component. However, this is beyond the scope of the current
work.

B. More complex configurations

We studied the case of particles on vortices in a dipole
configuration in detail. We now want to briefly consider
further configurations to see how the model performs in more
complex setups.

It is well known that vortices with more than one quanta
of circulation are unstable [56,57] and move apart due to the
emission of sound due to the rotational acceleration. There
have been studies on the role of static potentials in stabilizing
the vortices [58–61]; however, this can be extended to cases
with external flows and dynamic potentials like the particles
presented here. We show that the particles can be used to
add stability and to create a localized region in a flow with
circulation larger than one quanta.

We consider a vortex-antivortex pair configuration similar
to that in Fig. 2, but where each vortex has two quanta of
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FIG. 7. Collision of loaded vortices. Parameters: mass ratio M = 36.02 and separation d0 = 52.5ξ . Pseudocolor density [|ψ (r, t f )|2] plots
with DNS (red) and MFM (blue dashed) trajectories overlaid with time presented in the each panel. Sound produced during annihilation can
be seen as variations in the pseudocolor density. The MFM trajectories are only presented up until the collision.

circulation and a particle trapped on it. Such a system exhibits
exciting dynamics: it remains stable, i.e., both vortices remain
on the particle, up until the collision. We show the collision
of the particles in Fig. 7, where on colliding only one of the
pairs is annihilated via the emission of an unstable Robert-
Jones [62] soliton. The other pair remains on the particles,
continuing to propagate, with the dynamics being captured
by the MFM. Figure 8 shows that the MFM can successfully
model the post-collision dynamics. We initialize the MFM
with a position and velocity taken from the simulated GP
data after the collision. Even in the presence of considerable
background sound waves, we obtain an excellent agreement
with the GP dynamics, with the error being ε = 2.74ξ . The
fact that the collisional interaction exhibits annihilation of
only a single vortex-antivortex pair merits further investiga-
tion, as it is not trivial to understand why the entire vortical
charge on the particle was not annihilated. This example
also emphasizes how particles can change the dynamics of
a simple configuration, and that reconnection events may be
more common when vortices are loaded with particles.

We also present an example of vortex becoming trapped
by a particle in Fig. 9. Here we have the same initial configu-
ration as in Fig. 2; however, we have displaced the particle
from the vortex core. The vortex is positioned such that it
will collide with the particle. As the particle is trapped it
quickly centers itself on the center of the vortex with any
excess energy radiated as sound. The MFM ignores the self-

induced velocity. However, the alignment of the vortex core
and particle happens quickly due to the emission of sound.
This could be added to our model algorithmically in a manner
similar to what is done in Biot-Savart type models; this would
include predicting the outcome of the interaction of a free
vortex and a particle and applying this outcome once a particle
and vortex become closer than some predefined threshold
value. To apply this we would need to estimate the attractive
force between the particle and the vortex. The attractive force
can be understood from considering Eq. (4). Around the
particle we can qualitatively separate the domain into three
subdomains: 1. Inside the TF radius, where |ψ |2 = 0 so there
is no contribution to the force. 2. The region where |ψ |2 = 1
and VP ≈ 0; here there is not much contribution to the force
on the particle. 3. The space in between where VP ≈ V0

dp
and

|ψ |2 increases with r. In this 3third region we can approximate
the trapping force of a vortex on a particle by assuming a
vortex is a hole in the density of area πξ 2. Thus the trapping
force can be approximated by fT ∼ ρ0πξ 2V0/dp. We could
then use this to modify the velocity of a particle trapped
on a vortex in MFM shortly after a trapping event occurs.
Although the MFM does not account for the effect of the
radiated sound on the subsequent dynamics, this could also
be phenomenologically added as random perturbations to the
trajectories of the particles. From this reasoning we propose
that in the case of a single particle and vortex the particle will
always become trapped, and with any fluctuations there will
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FIG. 8. Multiple vortices on particles: Pseudocolor density [|ψ (r, t f )|2] plots with DNS (red) and MFM (blue dashed) trajectories overlaid
at different times as presented in the panel. The MFM trajectories are only calculated post-collision. Initially each particle has two vortices or
two quanta of circulation on its core. The Robert-Jones soliton is shown by large density changes in (b) and (c).

be a restoring force realigning the center of the particle with
the center of the vortex.

To further increase the complexity, we consider a final
example in which free vortices (i.e., vortices not loaded with
particles) are positioned in front of a vortex-antivortex pair
loaded with particles; in the latter each vortex has two quanta
of circulation. We compute the motion of the free vortices
using (A10) such that the velocity contributions from the
vortices loaded with particles are the same as if they were free
vortices. The motion of the particles is once again obtained
by numerically solving Eqs. (6) and (7); however, the velocity
field is more complicated now. This model is more general
as it can handle a combination of free vortices and vortices
trapped on particles; we will refer to this as PV+MFM (point
vortex and Magnus force model). We employ a simple Euler
method to advance in time, with the velocity field coupling
the two motions. The model predicts well the general motion
not only of the particle, but also the free vortices as seen in
Fig. 10. The average error of the model is 3.57ξ , and one can
see in Fig. 10 that with the additional complexity the dynamics
are captured phenomenologically.

IV. CONCLUSIONS

We have shown that the particles trapped on vortex
cores experience a Magnus force in the presence of neigh-
boring vortices or a relative background flow. For simple

configurations, where the flow velocity is known, this method
can be employed to efficiently predict particle trajectories.
It is also possible to generalize our model in the presence
of many free vortices by accounting for their motion using
the usual point vortex expressions. The MFM predictions are
good enough, as long as we can ignore the finite size of the
particles, e.g., for large size vortex-antivortex pairs, where it
fits well even for massive particles. The model performs well
outside of its formal limits of applicability.

The MFM description naturally extends to 3D by combin-
ing the model with the LIA; we hope to further develop the
method beyond LIA and incorporate the full BS description
in future work. Our model can be generalized to include cases
in which annihilation takes place and, of course, describes
well the post-collision dynamics. Further work could focus on
how the attractive forces added to vortices can increase vortex
annihilations and further aid phase transitions like the BKT
phase transition; similar ideas have been discussed in [54].
The development of a simple theoretical framework which
accounts for the motion of particles in the presence of vortices
would significantly improve the ability to study the effect of
particles in superfluid turbulence. We could algorithmically
add annihilations of vortices and vortices on particles using
similar, commonly used methods [63]; this will be the subject
of future work. To do this, we would need to choose some
physical cutoff value of the particle separation for which
vortices annihilate. This could be found by further studies
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FIG. 9. Free vortices being trapped by a particle. Parameters: mass ratio is M = 17.15 and initial separation d0 = 52.5ξ . Pseudocolor
density [|ψ (r, t f )|2] plots with DNS (red) and MFM (blue dashed) trajectories of particles and free vortices overlaid. The smaller disks in the
pseudocolor density plots are free vortices. The DNS (red) and MFM (blue) are overlaid and are difficult to distinguish.

into the annihilation of vortices in the presence of external
potentials. However, with the current model we have a fast
and accurate way to simulate 2D turbulence interacting with
tracer particles.

The physics that emerges from such a treatment of active
particles could also be qualitatively relevant for the studies
of stabilization of a vortex in a harmonically trapped BEC.
For example, noncondensate atoms could become trapped
on the vortex core, leading to the stabilization of the vortex
at finite temperatures [64,65]. Similarly, the dynamics of a
vortex which has been stabilized by providing a pinning
potential via a focused laser beam at the vortex core could
be modeled by our approach; however, in such a case the
resulting vortex dynamics would have a prescribed component
and not be completely active. Furthermore, if we consider
two different species of BECs we would expect to see a
similar phenomenon. The dynamics in such a situation may
become interesting as not only vortices will accrue particles of
a second species, but also other compressible structures such
as solitons will accrue particles.
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APPENDIX: WEISS-MCWILLIAMS FORMULAS FOR
IDEAL FLUIDS AND GP SYSTEM

The adaptation of the Weiss-McWilliams formula for the
translational velocity of a vortex-antivortex pair in an ideal
fluid to the GP system with a periodic domain requires a
modification because of the periodicity of the phase of the
wave function in the latter. Below we demonstrate this for a
vortex-antivortex pair, which we then generalize to the case
of N pairs. A similar adaption has been made in [66] based
on Ramanujan’s formula. Here, we present a simpler, more
intuitive argument and highlight the case of a vortex dipole.
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FIG. 10. Free vortices and loaded vortices. Parameters: mass ratio is M = 17.15 and initial separation d0 = 52.5ξ . Pseudocolor density
[|ψ (r, t f )|2] plots with DNS (red) and PV+MFM (blue dotted) trajectories of particles and free vortices overlaid. The smaller disks in the
pseudocolor density plots are free vortices. The DNS (red) and PV+MFM (blue dotted) are overlaid and are difficult to distinguish.

We also show below that the velocity shift is not necessarily
small compared to the dipole velocity.

Consider a vortex-antivortex pair, translating along the x
axis with a vortex at (x, π + d/2) and an antivortex at (x, π −
d/2). Now let us consider the circulation along three lines Ci

for i = 1, 2, 3, as shown in Fig. 11:

Ci(d ) =
∫ 2π

0
u(x, yi )dx, (A1)

FIG. 11. Schematic of two vortices separated by distance d ,
overlaid with the contours on which we calculate the x contributions
of the circulation.

where 0 < d < 2π , 0 � y1 < π − d/2, π − d/2 < y2 <

π + d/2, and π + d/2 < y3 � 2π . These contours can be
closed by joining x = 0 and x = 2π , without generating any
contribution to the circulation, as guaranteed by the periodic
boundary condition. Thence,

C1 − C2 = −�, (A2)

C2 − C3 = �, (A3)

C1 = C2 − � = C3, (A4)

for the contours enclosing vortices. The circulation can now
be solely expressed as a function of the y position of the
contour and the separation between the vortices:∫ 2π

0
u(x, y)dx = C(y, d ) =

∫ 2π

0
−∂h

∂y
dx, (A5)

where h is the stream function and u = −∂h/∂y. Let us define
the mean velocity

ū = 1

(2π )2

∫ 2π

0
C(y, d )dy (A6)

= 1

(2π )2

∫ 2π

0

∫ 2π

0
u(x, y)dx dy. (A7)

From the periodicity of stream function it follows that the
mean velocity is zero. The integral in (A7) can be then
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FIG. 12. Velocity of the vortex-antivortex pair as a function of its
size. The red dashed curve represents the data obtained from the GP
simulations, whereas the blue solid line indicates the velocity given
by the adapted Weiss-McWilliams formula; see text for more details.
The black dashed horizontal line indicates upair = 0 and the black
dashed vertical line marks the midpoint of the periodic domain.

computed as a sum of the areas multiplied by the circulation,
that is,

(
π − d

2

)
C1 + C2d +

(
π − d

2

)
C3 = 2πC1 + �d

= 0, (A8)

by using Eq. (A4). Thus C1 = −�d/(2π ) for a system with
a periodic stream function. Note that the Euler equations are
Galilean invariant and any constant velocity can be added to
the system, which corresponds to moving to a different inertial
frame. However, the requirement that the stream function
is periodic fixes the frame of reference such that the mean
velocity is zero. This is the choice of frame in Ref. [67].
Such a choice is inconsistent with the periodicity of the
wave function, as it would result in a phase change which is
not an integer multiple of 2π (for � = 2π, C1 = d �= 2πn).
Therefore, if we want to use the Weiss-McWilliams prescribed
velocity (ideal fluid case), we must work in a frame in which
the phase of the wave function is periodic. Thus, we must add
a constant background velocity equal to C1/2π .

Note that in order to be consistent with the contents of
the main text, in our discussion here we have used a vortex-
antivortex pair that is only separated along the y direction.
However, our arguments are still valid if the vortices are sep-
arated in the x direction as well. In that case, we simply have
to repeat the argument with vertical contours which separate
the vortices to find the contribution to the y component of the
velocity.

Moreover, our discussion here is generalizable to the case
of 2N vortices, with an equal number of vortices and an-
tivortices. This is so because the system is linear, i.e., the
contribution to the velocity field is additive. Also, the argu-
ment is valid, as the sum of the periodic phases will also be
periodic. Therefore, for a system of 2N vortices, the additional
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FIG. 13. Derivative of velocity with respect to separation against
separation.

background velocity ub is

ub =
2N∑
i=1

�i

(2π )2
êz × xi, (A9)

where xi is the position of the ith vortex, which is, up to
a constant, the total momentum of the point vortex system.
We note here that the velocity shift is not necessarily small
compared to the average vortex velocity. In systems of ran-
domly positioned vortices one would expect the shift to be
small compared to the mean velocity ∼�/2πdiv , where div

is the mean intervortex distance [due to the cancellations in
(A9)]. However, in a system that is polarized such that the
positive and negative vortices form large clusters, the shift
maybe be larger than the velocity of the clusters depend-
ing on the separation (|ub| ∼ �Nd

4π2 > vcluster ∼ N�[1+cos(d )]
4π sin(d ) for

2 � d � 5.2).
For an odd number of vortices, the system will have a net

circulation. Therefore, to make arguments, we now have to
work in a rotating frame of reference. This is the same as
adding a constant background vorticity, such that the frame
has net circulation zero. The ratio between the angular veloc-
ity of the rotating frame and the vorticity is 1/2. Other valid
configurations could include constant vorticity such as shear.
In this case, such a formulation is consistent when periodicity
is imposed in sheared coordinates.

In Fig. 12 we show the comparison of the vortex-antivortex
pair velocity as obtained from the GP equation DNS (dashed
red curve) and the adapted Weiss-McWilliams formula (blue
curve). For very small pair size, we observe a disagreement,
as now the vortex core size is important. At still very small
sizes, vortices annihilate and become a localized density
perturbations. The original Weiss-Mcwilliams (ideal fluid)
x-directional velocity of a vortex pair (as in 11) is given by

uW Mc(d ) = − �

4π

∞∑
n=−∞

sin(d )

cosh(2πn) − cos(d )
. (A10)

Therefore, the expression obtained by adapting this to the case
of the GP equation in a periodic domain is given by

upair (d ) = − �

4π

( ∞∑
n=−∞

sin(d )

cosh(2πn) − cos(d )
+ d

π

)
. (A11)
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For our purposes, we calculate the velocity until it has
converged within 10−9, this corresponds to retaining nine
terms, i.e., n = −4 to n = 4. Therefore, to the leading
order,

upair (d ) = �

4π

(
1 + cos(d )

sin(d )
+ d

π

)
, (A12)

and its derivative with respect to separation (Fig. 13) is

∂upair (d )

∂d
= − �

4π

(
1 + cos(d )

sin2(d )
+ 1

π

)
. (A13)

This has a minimum at d = π , thus the approximation of
constant velocity across the particle is most suitable close to
half the domain size, L/2.
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