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Generation of propagating electron vortex states in photodetachment of H−
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Generation of propagating electron vortex states in ionization of H− by short, circularly polarized laser pulses
is studied within the strong-field approximation. The latter, being particularly suitable for treating negative ions,
is shown to be gauge independent for an s-electron system like H−. Most importantly, it is demonstrated that
the orbital angular momentum from the laser field can be efficiently transferred to photoelectrons, thus resulting
in high orbital angular momenta electron vortex states. The conditions for this to happen are formulated and
visualized with the help of coarse-grained probability distributions of photoelectrons, which are calculated by
Monte Carlo method.
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I. INTRODUCTION

Since the first experimental observation of propagating
electron vortex states (EVSs) [1,2], an increasing amount of
attention has been paid to their generation and manipula-
tion. They have found numerous applications in electron mi-
croscopy, modern spectroscopic techniques, mechanical con-
trol of nanostructures, and many other fields [3,4]. EVSs are
characterized by helixlike wave fronts with a vanishing prob-
ability at the helical axis. However, their most attractive fea-
ture is a nonzero (and quantized) orbital angular momentum
(OAM) equal to h̄M (M is the so-called topological charge
or winding number). In general, nonrelativistic propagating
vortex states are special solutions of the field-free Schrödinger
equation with a well-defined OAM; they are simultaneous
eigenstates of the field-free Hamiltonian and the orbital an-
gular momentum operator. Due to their axial symmetry, it
becomes natural to analyze EVSs in cylindrical coordinates.
Under those conditions, the Schrödinger equation accepts
two types of solutions, the Bessel states and the Laguerre-
Gaussian states. All those topics have been discussed in
review articles [3,4], and the most relevant references are cited
there.

We note that standard techniques of generating EVSs in-
clude the propagation of electron wave packets through spiral
plates or gratings and by the action of magnetic monopoles
upon electron beams [3,4]. However, it has been predicted that
electron Bessel states of large angular momentum (topological
charges up to thousands of units of h̄) can be obtained in
the strong-field photoionization of neutral atoms driven by
short and intense laser pulses [5,6]. In this paper we shall
investigate the generation of EVSs in photodetachment from
atomic anions [7] (in particular, from H−) by light pulses
comprising only a few cycles.
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The theoretical complexity of studying above-threshold
detachment (ATD) from negative ions is reduced compared
to that of studying above-threshold ionization from neutral
atoms. This is because of the lack of long-range Coulomb
interaction between the freed electron and its parent atom.
Since short-range or zero-range potentials (ZRPs) are used to
model negative ions (see, e.g., Refs. [8–18] and the review
in [19]), the application of strong-field approximation (SFA)
[20–22] to ATD is fully justified [23,24]. The drawback of
the SFA is, however, that it is not gauge invariant. Hence,
important discrepancies between length and velocity gauges
are expected to appear, especially at high intensities of the
driving laser field [25]. We show, however, that, when a ZRP
model is used, the SFA leads to gauge-invariant results, as
predicted by Gribakin and Kuchiev [23].

Based on the treatment developed by Gribakin and Kuchiev
[23], we analyze here the electron photodetachment from
H− driven by ultrashort and circularly polarized laser pulses.
While our method makes use of the strong-field approxima-
tion, the electron interaction with the neutral core is modeled
as a ZRP. For the sake of comparison, we present some of
our results in both velocity and length gauges. In particular,
we explore the possibility of obtaining EVSs with a large
topological charge in ATD. For our numerical illustrations
we chose two light fields of different frequencies; we ex-
plore photodetachment driven by a CO2 laser pulse (carrier
frequency ωL = 0.117 eV) and by a terahertz (THz) field
(ωL = 0.01 eV). Hence, the results presented here can be used
not only for the analysis of ATD from a gas of negative
ions but also to study the interactions of low-frequency laser
fields with negative impurities doped in solid materials or
at surfaces. Following this line of ideas, it would be, in
principle, possible to generate propagating EVSs in solids.
This could open a new field of research where the conduction
properties of electrons are governed not only by their charge
and spin (which are usually considered in spintronics [26])
but, additionally, by their orbital angular momentum.

This paper is organized as follows. In Sec. II we present
the basis of the strong-field approximation for laser-induced
photodetachment from negative ions. While in Secs. II A and
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II B we derive general expressions for the probability ampli-
tudes of ATD in the velocity and length gauges, in Sec. II C we
restrict our attention to photodetachment from the 1s state of
H− within the ZRP model. Our treatment, in the length gauge,
is similar to the one presented by Gribakin and Kuchiev
[23]. However, the integral in time defining the probability
amplitude of detachment is calculated numerically, instead of
by means of the saddle-point approximation. The properties
of the laser pulses considered for our numerical illustrations
are established in Sec. III. In Sec. III A we extend the concept
of spiral of ionization in momentum space [27–29] to pho-
todetachment by ultrashort laser pulses. The energy spectra
of photoelectrons, the coarse-grained probability distribution
(CGPD), and their relationship with the spiral of ionization are
presented in Secs. III B and III C. We also calculate the total
probability of detachment by Monte Carlo methods there.
The conditions necessary for the generation of propagating
electron vortex states in ATD are elucidated in Sec. IV.
Section IV A concerns the orbital angular momentum distri-
butions of EVSs. Finally, our conclusions and perspectives are
summarized in Sec. V.

Throughout the paper we set h̄ = 1, but we present the
electron mass me and charge (e < 0) explicitly. Unless stated
otherwise, in our numerical illustrations we use atomic units
(h̄ = me = |e| = 1). Furthermore, in these units the speed of
light is c = 1/α, where α is the fine-structure constant.

II. PROBABILITY AMPLITUDE OF DETACHMENT

Consider a negatively charged ion interacting with a short
laser pulse. Prior to that interaction (t < 0), the outermost
electron is assumed to be in the unperturbed bound state |�0〉.
In other words, |�0〉 is an eigenstate of the ionic Hamiltonian
ĤIon with eigenvalue E0, i.e.,

E0|�0〉 = ĤIon|�0〉, (1)

where

ĤIon = p̂2

2me
+ W (r̂), (2)

p̂ is the momentum operator, and W (r̂) is the binding potential
energy. As |�0〉 is a stationary state, the time evolution
operator corresponding to the Hamiltonian (2) ÛIon(t, t ′) is
given by

ÛIon(t, t ′) = e−iĤIon (t−t ′ ), t � t ′. (3)

In particular, we set our initial conditions such that, at time t ,
the electron is found in the state

|�0(t )〉 = lim
t ′→−∞

ÛIon(t, t ′)|�0(t ′)〉 = e−iE0t |�0〉. (4)

In the presence of the light field, the total Hamiltonian Ĥ (t )
governing the evolution of the system includes the electron
interaction with the binding potential and the electromagnetic
radiation, namely,

Ĥ (t ) = ĤIon + ĤI(t ) = p̂2

2me
+ ĤI(t ) + W (r̂), (5)

where ĤI(t ), the interaction Hamiltonian, is gauge dependent.
Specifically, as we are considering a finite laser pulse (dura-
tion Tp), it is assumed that ĤI(t ) = 0 for t � 0 and t � Tp.

The probability amplitude of electron detachment A(p)
(from its bound state to the scattering state with asymptotic
momentum p) can be calculated by making use of the time
evolution operator Û (t, t ′) associated with the full Hamilto-
nian (5) (see, e.g., Ref. [5]),

A(p) = lim
t ′→−∞

lim
t→∞A(p; t, t ′), (6)

where

A(p; t, t ′) = 〈p|Û (t, t ′)|�0〉 (7)

and |p〉 is the eigenstate of the momentum operator such
that 〈p|r〉 = e−ip·r, i.e., it represents a field-free electron plane
wave. Introducing now the Lippmann-Schwinger equation,

Û (t, t ′) = ÛIon(t, t ′) − i
∫

dτÛ (t, τ )ĤI(τ )ÛIon(τ, t ′), (8)

we obtain

A(p) = −i lim
t→∞

∫ Tp

0
dτ 〈p|Û (t, τ )ĤI(τ )|�0(τ )〉, (9)

where Eq. (4) was used. Moreover, we define the photoelec-
tron final scattering state,

〈�p(t )| = 〈p|Û (∞, t ), (10)

which, in principle, accounts for the presence of both the
binding potential and the laser field. However, for negatively
charged ions, the attractive potential exerted by the residual
core decreases very fast with distance. For this reason, the
exact scattering state can be approximated by a Volkov state
[30] in the laser field, |�p(t )〉 ≈ |ψp(t )〉. This substitution
is the essence of the strong-field approximation. Thus, the
probability of photodetachment (9) takes the form

A(p) =−i
∫ Tp

0
dt〈�p(t )|ĤI(t )|�0(t )〉

≈−i
∫ Tp

0
dt〈ψp(t )|ĤI(t )|�0(t )〉. (11)

It is worth mentioning that, similar to the interaction Hamilto-
nian, the Volkov solution is also gauge dependent. Therefore,
in the following section we shall introduce the superscripts
V and L to distinguish between the calculations in the ve-
locity and length gauges, respectively. [Those two gauges are
frequently used in the literature, although other forms of the
gauge-dependent interaction HI(t ) are also conceivable.]

A. Velocity gauge

The probability amplitude of detachment in the velocity
gauge is given by

AV (p) = −i
∫ Tp

0
dt

〈
ψV

p (t )
∣∣ĤV

I (t )|�0(t )〉. (12)

In this case,

ĤV
I (t ) = − e

me
A(t ) · p̂ + e2

2me
A2(t ), (13)
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where A(t ) is the vector potential defining the laser pulse. On the other hand, the Volkov solution |ψV
p (t )〉 is defined as

∣∣ψV
p (t )

〉 = |p〉 exp

{
−i

p2

2me
t + i

me

∫ t

0
dt ′

[
eA(t ′) · p − e2A2(t ′)

2

]}
. (14)

Inserting Eqs. (13) and (14) into Eq. (12), we find that the probability amplitude of detachment in the velocity gauge equals

AV (p) = −i
∫ Tp

0
dt �̃0(p)

(
− e

me
A(t ) · p + e2

2me
A2(t )

)
exp

{
i

[
p2

2me
− E0

]
t − i

me

∫ t

0
dt ′

[
eA(t ′) · p − e2A2(t ′)

2

]}
. (15)

Here, we have introduced the Fourier transform of the bound state �̃0(p) = 〈p|�0〉, which will be explicitly calculated in
Sec. II C.

B. Length gauge

As a consequence of the substitution of the exact scattering state by the Volkov solution, the expressions for the probability
amplitude of detachment differ when calculated in different gauges and may lead to dissimilar predictions. For this reason we
also present here the results corresponding to the length gauge. The probability amplitude reads

AL(p) = −i
∫ Tp

0
dt

〈
ψL

p (t )
∣∣ĤL

I (t )|�0(t )〉. (16)

The interaction Hamiltonian now takes the form

ĤL
I (t ) = −eE (t ) · r̂, (17)

where E (t ) = −∂t A(t ) is the oscillating electric field and r̂ is the position operator. In this gauge, the Volkov solution is given by

∣∣ψL
p (t )

〉 = |p − eA(t )〉 exp

{
−i

p2

2me
t + i

me

∫ t

0
dt ′

[
eA(t ′) · p − e2A2(t ′)

2

]}
. (18)

Therefore, from Eqs. (16), (17), and (18) we obtain the probability amplitude of photodetachment in the length gauge,

AL(p) = ie
∫ Tp

0
dtE (t ) · �̃[p − eA(t )] exp

{
i

[
p2

2me
− E0

]
t − i

me

∫ t

0
dt ′

[
eA(t ′) · p − e2A2(t ′)

2

]}
. (19)

Here, we have introduced the function �̃(p), defined as

�̃(p) =
∫

d3r r�0(r)e−ip·r = i∇p�̃0(p). (20)

As before, �̃0(p) denotes the Fourier transform of the bound-
state wave function �0(r), and ∇p is the gradient calculated
over momentum coordinates.

Once the amplitudes AV (p) and AL(p) are determined,
we define the triply differential probability distribution of
photodetachment P (p). According to the conventions adopted
in this paper, we have

P (p) ≡ d3P

d2	pdEp
= me

(2π )3
|p| · |AG(p)|2, (21)

where G = L,V is the gauge under consideration.
For our further purposes, we also introduce the differential

probability P̄ (p),

P̄ (p) ≡ d3P

d pxd pyd pz
= 1

(2π )3
|AG(p)|2, (22)

for which the total probability of detachment P becomes

P =
∫

d pxd pyd pzP̄ (p). (23)

This expression will be useful for the Monte Carlo analysis
presented in Sec. III C.

C. Wave function and its Fourier transform

To calculate the probability amplitudes AG(p) of photode-
tachment, it is necessary to know the wave function of a
weakly bound electron of a negative ion. Following [7,23], we
rely on the asymptotic form of the respective wave function,

�0(r) = 〈r|�0〉 ≈ A

r
e−κrY m

� (θr, ϕr), (24)

where A and κ > 0 are constant. Here, Y m
� (θr, ϕr) are the

spherical harmonics, � and m are the azimuthal and magnetic
quantum numbers, respectively, and θr and ϕr are the polar
and azimuthal angles defining the position of the electron. The
Fourier transform of the bound-state wave function (24) can
be easily determined in spherical coordinates,

�̃0(p) =
∫

d3re−ip·r�0(r)

= A
∫ ∞

0
dr

∫
d2	r re−ip·re−κrY m

� (θr, ϕr). (25)

In order to calculate analytically the integrals in Eq. (25) we
make use of the following plane wave decomposition [31]:

eip·r = 4π

∞∑
�′=0

�′∑
m′=−�′

i�
′
j�′ (pr)Y m′

�′
∗
(θp, ϕp)Y m′

�′ (θr, ϕr), (26)
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where j�′ (pr) are the spherical Bessel functions of the first
kind. With the decomposition (26) we arrive at

�̃0(p) = 4πA(−i)�Y m
� (θp, ϕp)

∫ ∞

0
dr r j∗� (pr)e−κr . (27)

In the following, we shall focus only on the 1s orbital of H−,
meaning that m = � = 0 and Y 0

0 (θp, ϕp) = 1/
√

4π . In such
a case the Fourier transform of the wave function (24) is
given by

�̃s(p) = 2
√

πA
∫ ∞

0
dr

(
sin pr

p

)
e−κr . (28)

After performing the integral over r we obtain (see also
Ref. [22])

�̃s(p) = 2
√

πA

κ2 + p2
. (29)

This formula depends only on the magnitude of momentum.
Therefore, expression (20) can be easily calculated, leading to

�̃s(p) = i∇p�̃s(p) = −i
4
√

πA

(κ2 + p2)2
p. (30)

The last two formulas will be used in (15) and (19) to calculate
the probability amplitude of detachment of H−. For this, we
employ the values A = 0.75 a.u. and κ = 0.2354 a.u. from
Ref. [23].

III. PHOTODETACHMENT BY ULTRASHORT
LASER PULSES

We focus on photodetachment driven by an ultrashort laser
pulse of circular polarization. In the dipole approximation,
the electric field defining the pulse depends only on time
through the phase φ = ωt . Here, ω = 2π/Tp represents the
fundamental frequency of field oscillations. We shall also use
the carrier frequency ωL = Noscω, where Nosc is the number

of cycles in a pulse. More specifically, we assume that the
electric field is given by

E (φ) = F1(φ)ε1 + F2(φ)ε2, (31)

where the shape functions Fj (φ) are defined as

Fj (φ) = F0 ω sin2

(
φ

2

)
sin(Noscφ + δ j ) cos(δ + δ j ) (32)

for φ ∈ [0, 2π ] and zero outside this interval. Here, F0 is
a constant prefactor which depends on the intensity of the
field, and δ and δ j determine its polarization properties. In
particular, for circularly polarized pulses we choose δ1 = 0,
δ2 = π/2, and δ = π/4.

The vector potential corresponding to the laser pulse (31)
A(φ) is given by

A(φ) = f1(φ)ε1 + f2(φ)ε2, (33)

with

f j (φ) = −
∫ φ

0
dφ′Fj (φ

′), j = 1, 2. (34)

With these definitions, we also guarantee that each function
f j (φ) vanishes at φ � 0 and φ � 2π . In the following, we
assume that the polarization plane of the electromagnetic
radiation is defined by the vectors ε1 = ex and ε2 = ey [see
Eqs. (31) and (33)].

Even though the derivations presented above are rather
general, our numerical calculations concern the photodetach-
ment of the H− ion (|E0| = 0.754 eV) driven by a three-cycle
(Nosc = 3) CO2 laser field (ωL = 0.117 eV) or a THz field
(ωL = 0.01 eV) of circular polarization.

In Fig. 1 we present the temporal evolution of the tips of
the vector potential A(φ) (left panel) and electric field E (φ)
(middle panel) for a CO2 laser pulse of maximum intensity
Imax = 5 × 1011 W/cm2 and frequency ωL = 0.117 eV and
comprising Nosc = 3 oscillations within the sin2 envelope.
The parametric plots start at the origin of coordinates and

0

30

60
90

120

150

180

210

240
270

300

330

0

0.2

0.4

0.6

0

30

60
90

120

150

180

210

240
270

300

330

0

1 10-3

2 10-3

3 10-3

0

30

60
90

120

150

180

210

240
270

300

330

0

2

4

6

FIG. 1. Temporal evolution of the tips of the vector potential A(φ) (left) and electric field E (φ) (middle), in atomic units, for the laser
pulse (32). Both curves are plotted in the xy plane, and the angles are measured with respect to the positive ex axis. Here, the carrier
frequency corresponds to the CO2 laser field (ωL = 0.117 eV), the maximum intensity is Imax = 5 × 1011 W/cm2, and the pulse consists of
three field oscillations within the sin2 envelope (Nosc = 3). We have chosen the circular polarization for our calculations. The right panel shows
a parametric plot of the instantaneous ponderomotive energy as a function of the azimuthal angle Up(ϕ) (see Sec. III A). All three curves start
at the point (0,0) and evolve counterclockwise with the phase φ = ωt . For the THz laser pulse (Imax = 1 × 1011 W/cm2 and ωL = 0.01 eV) we
obtain curves with the exact same shape but multiplied by the scaling factors rA = 5.23 (for the vector potential), rE = 0.447 (for the electric
field), and rUp = 27.38 (for the ponderomotive energy).
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evolve counterclockwise with increasing phase φ = ωt . The
plots are generated in the xy-polarization plane. All angles
are measured with respect to the positive ex axis. In the right
panel of Fig. 1 we also show the ponderomotive energy of
the electron in the laser field, Up(ϕ) = e2A2(ϕ)/(2me ), for the
same CO2 laser pulse. The meaning and importance of such a
curve will be discussed in Sec. III A. When the THz laser field
is considered (Imax = 1 × 1011 W/cm2, ωL = 0.01 eV, and
Nosc = 3), we obtain parametric curves with the exact same
shape but multiplied by the factors rA = 5.23, rE = 0.447,
and rUp = 27.38 for the vector potential, electric field, and
ponderomotive energy, respectively.

A. Spiral of photodetachment

A fundamental requirement for the observation of EVSs
is that the probability of photodetachment is large enough.
Previously, in the case of photoionization, we showed that
this happens only around well-defined regions in momentum
space [27–29]. Such regions are determined by the so-called
spiral of ionization, which arises from the saddle-point anal-
ysis of the probability amplitudes. This three-dimensional
(3D) curve, which is parametrized by the phase of the laser
field, defines the polar and azimuthal angles of detection
and the magnitude of momentum for which electrons can
be observed with highest probability. However, the spiral
was originally defined for relativistic and quasirelativistic
ionization processes, where the so-called radiation pressure
plays an important role. In that case, the theory predicts
that photoelectrons acquire an additional momentum in the
direction of propagation of the laser field, hence the three-
dimensional nature of the spiral. In contrast, in the current
paper, photoelectrons are expected to appear near the polar-
ization plane, which is due to the lack of electron recoil. Thus,
the nonrelativistic momentum spiral is a flat, two-dimensional
curve. Here, we define it without accounting for the radiation-
pressure corrections (see Refs. [27–29]), i.e.,

pS(φ) = eA(φ), 0 � φ � 2π. (35)

As we have previously shown (see, e.g., Ref. [29]), the
ponderomotive energy acquired by the electron in the light
pulse at its time of birth (defined by a phase φ0) is transformed
into its asymptotic kinetic energy Ep after the interaction
with the electromagnetic radiation is over. This observation
remains valid both in the fully relativistic SFA (provided that
the plane-wave-front approximation holds) and in classical
physics. Let us consider an electron born at a time t0 = φ0/ω.
It interacts with the electromagnetic field characterized by
strength and direction of oscillations. While the latter can be
defined by the azimuthal angle of emission ϕp,

ϕp = arg[eA(φ0) · ε1 + ieA(φ0) · ε2], (36)

the former is directly related to the instantaneous ponderomo-
tive energy of the electron in the field,

Up(φ0) = e2A2(φ0)

2me
, (37)

which can be rewritten as

Up(φ0) = [pS(φ0)]2

2me
. (38)

According to our previous investigations [27–29,32], this
quantity determines the asymptotic kinetic energy of the
photoelectron after the interaction with the short laser pulse is
over, i.e., Ep = Up(φ0). In other words, by drawing the pon-
deromotive energy as a function of ϕ while it is parametrized
by the phase of the light pulse φ, we have access to infor-
mation concerning the final energy of the electron and its
direction of emission. We will call such a curve the pon-
deromotive spiral Up(ϕ). It is shown in the right panel of
Fig. 1 for the laser field parameters Imax = 5 × 1011 W/cm2,
ωL = 0.117 eV.

The ponderomotive spiral of ionization (or its extrapolation
to photodetachment) driven by ultrashort laser pulses has
many applications. For instance, given any azimuthal angle
of detection ϕp, the curve Up(ϕp) determines the energies at
which photoelectrons can be detected with significant prob-
abilities. Furthermore, the self-crossings of the spiral define
regions in space where intense interference effects can be
observed [27–29,32]. Note, however, that there are certain
restrictions to its predictions; the results arising from the spiral
are accurate provided that the energy of photoelectrons is
around or larger than ten times the ionization potential of
the target (Ep � 10|E0|), independent of whether the binding
potential is of Coulomb type or ZRP. If this condition is
not fulfilled, the spiral describes the angular-resolved energy
spectra of photoelectrons only qualitatively. The equation
defining the spiral is obtained by approximating the complex
saddle points, which contribute substantially to the probability
amplitude of ionization, by their real values. This implies that
the dominant saddle points must be characterized by small
imaginary parts. As we showed in Refs. [27–29,32], this is
exactly the case when the condition Ep � 10|E0| applies.

B. Energy spectra of electrons in photodetachment

Here we shall analyze probability distributions of photo-
electrons detached from the H− ion by the ultrashort laser
pulse described in Sec. III. In Fig. 2, the triply differential
probability distributions P (p) [Eq. (21)] are plotted as func-
tions of the electron kinetic energy Ep = p2/(2me ). Those
distributions are calculated for the polar angle of detection
θp = π/2 and the azimuthal angle ϕp = 0, i.e., along the
ex axis. The top panel corresponds to the photodetachment
driven by the CO2 laser field (Imax = 5 × 1011 W/cm2 with
ωL = 0.117 eV), and we show the results in the velocity
(dotted red line) and length (solid blue line) gauges. Both
gauges give identical results for the 1s bound state of the ZRP.
Such a result is far from obvious since the analytical formulas
defining the probability amplitudes differ considerably [see
Eqs. (15) and (19)]. Interestingly, the numerical calculation
involving the velocity gauge are more demanding from the
computational point of view, as the integrand in Eq. (15) oscil-
lates with a larger amplitude. Note that, in Ref. [23], Gribakin
and Kuchiev already mentioned the gauge invariance of the
probability distributions when the unperturbed atomic anion
is found in the 1s state of the ZRP. Hence, we corroborate
that the results obtained from velocity and length gauges are,
in fact, identical for photodetachment from such a state. In the
bottom panel of Fig. 2 we show the energy spectra of electrons
P (p) [Eq. (21)], driven by the THz laser field described above
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FIG. 2. Probability distribution (in atomic units) of electron pho-
todetachment P (p) [Eq. (21)] from the H− ion (1s state of the
ZRP) as a function of the electron kinetic energy Ep = p2/(2me ).
The driving field is a three-cycle, circularly polarized laser pulse,
as described in Sec. III. The polar and azimuthal angles of electron
detection are θp = π/2 and ϕp = 0, respectively; that is, electrons
are detected along the ex axis. In the top panel we show the energy
distribution for the laser field intensity Imax = 5 × 1011 W/cm2 and
frequency ωL = 0.117 eV, in the length (solid blue line) and velocity
(dotted red line) gauges. In the bottom panel we present the same but
for a driving field of intensity Imax = 1 × 1011 W/cm2 and frequency
ωL = 0.01 eV. In this panel, only the results corresponding to the
length gauge are shown (see the text).

(Imax = 1 × 1011 W/cm2 with ωL = 0.01 eV). This time we
present only the results obtained in the length gauge since, as
we have checked, the velocity gauge leads to the exact same
curve, with a larger computational effort.

The probability distributions shown in the top and bottom
panels of Fig. 2 are very small except around well-defined
photoelectron energies. There, pronounced lobes which span
along tens (or hundreds, for the THz pulse) of single-photon
energies appear without signs of multiphoton interference
effects (peaks). Similar interference-free structures have been
theoretically predicted in relativistic photoionization driven

by ultrashort laser pulses and are known as supercontinua
[32–34].

Now, let us analyze the relation between the ponderomo-
tive spiral of ionization Up(ϕ) = [pS(ϕ)]2/(2me ) (right panel
of Fig. 1) and the spectra of photoelectrons presented in
Fig. 2. For a laser field of intensity Imax = 5 × 1011 W/cm2

and frequency ωL = 0.117 eV and at polar and azimuthal
angles of detection θp = π/2 and ϕp = 0, the spiral predicts
the formation of a large interference-free structure located at
energies around Ep = 5.24 eV. This can be seen by looking
at the values at Up(ϕ = 0) (right panel of Fig. 1). In the
top panel of Fig. 2 we see that the supercontinuum acquires
its actual maximum at Ep ≈ 5.5 eV. For this photoelectron
energy, the spiral describes only qualitatively the photode-
tachment process, as Ep < 7.54 eV = 10|E0|. Nevertheless,
the maximum probability is achieved close to the predicted
5.24 eV.

For the smaller intensity Imax = 1 × 1011 W/cm2 and fre-
quency ωL = 0.01 eV, the curve Up(ϕ = 0) predicts the for-
mation of a supercontinuum at Ep ≈ 143.5 eV (see the right
panel of Fig. 1 accounting for the multiplicative factor
rUp = 27.38). The actual maximum is found at around Ep ≈
143.7 eV (bottom panel of Fig. 2), which is very close to the
expected value.

With those observations we conclude that, similar to the
3D spiral in the relativistic (or quasirelativistic) SFA [5,6,27–
29], the two-dimensional ponderomotive spiral in nonrela-
tivistic photodetachment predicts the energy regions for which
the angle-resolved spectra of photoelectrons show significant
probabilities. Furthermore, for the photodetachment from the
1s state of the H− ion, both velocity and length gauges lead
to the exact same probability distributions, even though the
analytical expressions for the amplitudes are substantially
different.

Up to now we have shown how the ionization spiral
determines the position of maximum probability in the en-
ergy spectra of photoelectrons. In light of the synthesis of
ultrashort electron wave packets [28,32–35], it is important,
however, to discuss the width of the supercontinuum as well.
In general, for a given laser carrier frequency, larger field
intensities lead to broader supercontinua, as demonstrated in
Refs. [28,32,35]. On the other hand, by comparing the top
and bottom panels of Fig. 2, we see that the frequency of
the laser pulse also affects the width of supercontinua; by
decreasing the intensity by a factor of 5 (from 5 × 1011 to
1 × 1011 W/cm2) and reducing the frequency by a factor of
10 (from ωL = 0.117 eV to ωL = 0.01 eV), the full width at
half maximum of the supercontinuum increases from 2.8 eV
up to 10 eV. Hence, one could conclude that smaller frequen-
cies and higher intensities produce broader structures in the
energy spectra of photoelectrons. Furthermore, the relative
width of the supercontinuum structure, i.e., the ratio of the
width to the central energy, becomes smaller. In general,
numerical analysis shows that although the supercontinuum
central energy increases together with the temporal pon-
deromotive energy, its relative width becomes more narrow.
This indicates that the concept of the ionization spiral is
particularly well suited to describe the high-energy ionization
spectrum.
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C. Coarse-grained probability distributions and total
probabilities

In this section, we shall calculate the CGPDs using the
Monte Carlo method. This is done in a way similar to what
we presented in Ref. [36]. To this end, we assume that the
differential probability distribution P̄ (p) [Eq. (22)] is negligi-
bly small outside the rectangular cuboid in momentum space
defined by the parameters pmin

a � pa � pmax
a , where a = x, y

or z. To perform the Monte Carlo integration, we introduce
three variables ξ ≡ (ξx, ξy, ξz ) such that ξa ∈ [0, 1]. It is pos-
sible to map this unit cube in ξ into the whole integration box
by means of the transformation

pa = pmin
a + ξa

(
pmax

a − pmin
a

)
. (39)

For simplicity, we define the vectors pmin ≡ (pmin
x , pmin

y , pmin
z )

and pmax ≡ (pmax
x , pmax

y , pmax
z ). The total probability of pho-

todetachment is then obtained as

P =
∫ 1

0
d3ξ P̄ (ξ). (40)

Here, the function P̄ (ξ) is given by

P̄ (ξ) =
∣∣∣∣∂ p
∂ξ

∣∣∣∣P̄ (p(ξ)), (41)

P̄ (p) is defined in Eq. (22), and∣∣∣∣∂ p
∂ξ

∣∣∣∣ = (
pmax

x − pmin
x

)(
pmax

y − pmin
y

)(
pmax

z − pmin
z

)
(42)

is the Jacobian of the transformation.
To obtain the coarse-grained probability distribution, we

divide the unit cube in ξ into 23n subcubes of constant volume
(�ξ )3 = 2−3n (in the numerical analysis presented below, n =
10). Each one of them can be identified by the three integers
i, j, k ∈ [1, 2n]. Such discretization allows us to define a set of
continuous variables ξ i

x, ξ
j

y , and ξ k
z that run along the edges of

the (i, j, k) subcube. Namely,

(α − 1)2−n � ξα
a < α2−n, α = 1, 2, . . . , (2n−1), 2n,

(43)

with α = i, j, k. It follows from these definitions that ξα+1
a =

ξα
a + �ξ . The CGPD is then obtained by integrating the dif-

ferential distribution (41) over all intervals in one ξ coordinate
and over the remaining two-dimensional (2D) rectangle of
area (�ξ )2 (i.e., it is the probability distribution projected onto
a two-dimensional surface). For instance, the coarse-grained
probability distribution in the ξaξb plane P̄ (ξa,ξb)

α,β reads (we use
the simplified notation a, b, c = x, y, z and α, β = i, j, k)

P̄ (ξa,ξb)
α,β =

∫ ξα
a +�ξ

ξα
a

dξa

∫ ξ
β

b +�ξ

ξ
β

b

dξb

∫ 1

0
dξcP̄ (ξ), (44)

where P̄ (ξ) is given in (41). In this way we obtain the
projections onto three planes: (ξxξy), (ξxξz), and (ξyξz). In our
numerical illustrations, we scale the total probability (sum
over all grains) to 1.

With the construction described above, the CGPD becomes
a two-dimensional distribution of the integrated probability.
The size of each “grain” or “pixel” is determined by the
number of intervals 2n, as (�ξ )2 = 2−2n. However, in real

experiments, even high-resolution detectors can provide only
an average count of electrons within a momentum interval.
For this reason, it is useful to introduce a two-dimensional
Gaussian window W (ξa, ξb) to obtain the average of the
probability distribution in the ξaξb plane P̄W (ξa, ξb),

P̄W (ξa, ξb) =
∫ 1

0
d3ζ W (ξa − ζa, ξb − ζb)P̄ (ζ), (45)

where the integration is carried out over ζ = (ζx, ζy, ζz ) and
P̄ (ζ) is given in Eq. (41). Like for the case of the CGPD, we
obtain a two-dimensional projection of the averaged proba-
bility distribution onto the ξxξy, ξxξz, and ξyξz planes, and the
total probability is scaled to 1. In our calculations, we have
chosen a Gaussian function multiplied by another smoothly
varying function which vanishes at ξa, ξb = −1/2, 1/2. In
particular, we use

W (ξa, ξb) = 1

4
(1 + cos 2πξa)(1 + cos 2πξb)

× exp

[
−ξ 2

a + ξ 2
b

σ 2

]
, (46)

with σ = 0.1.
In the left column of Fig. 3 we present the color mapping

of the CGPDs [P̄ (ξa,ξb)
α,β ]r [Eq. (44)] calculated with respect to

ξxξy (top panel), ξxξz (middle panel), and ξyξz (bottom panel)
for the laser pulse described in Fig. 1. To highlight the main
features of the distribution, we elevate the CGPD to the power
r = 0.5. In the right column we show the same, but for the av-
eraged probability P̄W (ξa, ξb). The difference between those
two calculations is that the averaged distribution enhances
the features of the projected ATD probabilities, so it can be
compared with potential experimental results. To obtain those
figures we have set the integration box in momentum space
as defined by the parameters pmax = (1.5, 1.5, 0.3) (in atomic
units) and pmin = −pmax. The Monte Carlo integration was
performed with 2.4 × 106 points and with a standard deviation
smaller than 2%. From the top row of Fig. 3 we see that, in
the ξxξy plane, the coarse-grained (and averaged) probability
distribution achieves high values in regions which coincide
with the outer ring of the 2D spiral. The latter, for the same
parameters, is plotted in ξ space in the top panel of Fig. 4.
This is expected, as the photodetachment is more probable at
large field strengths, i.e., when Up(ϕ) is large. Moreover, the
actual maximum is found at the phase φ = π , i.e., when the
time-dependent ponderomotive energy of the electron in the
laser field is peaked. From the middle and bottom rows we
see that the photodetachment happens close to the ξxξy plane,
which is a consequence of the flatness of the detachment spiral
(note also that the parameters defining the transformation into
ξ space are pmax

x = pmax
y > pmax

z ). In contrast, when radiation
pressure is taken into account (relativistic or quasirelativistic
SFA calculations), the equivalent 3D curve circulates over the
surface of an elliptic paraboloid with the axis at ξx = ξy = 0.5
(see Ref. [36]).

The total probability of photodetachment (40) is calculated
by Monte Carlo methods as a function of the number of field
oscillations Nosc. The remaining parameters of the laser field
are the same as in Fig. 1 (intensity Imax = 5 × 1011 W/cm2

and frequency ωL = 0.117 eV). The results are shown in

053430-7
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FIG. 3. Dimensionless and scaled [see the text below Eq. (44)] coarse-grained probability distributions [P̄ (ξa,ξb )
α,β ]0.5 [Eq. (44) raised to the

power 0.5 for visual purposes; left column] and averaged and scaled [see the text below Eq. (45)] probability distributions P̄W (ξa, ξb) (right
column) of photoelectrons detached from the H− ion. The laser field is as described in Fig. 1 (Imax = 5 × 1011 W/cm2 and ωL = 0.117 eV).
While the top row corresponds to the projection onto the ξxξy plane, the middle and bottom rows are the projections onto the ξxξz and ξyξz

planes, respectively. These photoelectron momentum correlations show that the detachment taking place in the polarization (xy) plane is
dominated by momenta in the vicinity of the outer rings of the 2D spiral of ionization. We observe that detachment probabilities for small
energies are negligible. In order to restore the absolute values, the scaled distributions P̄ (ξa,ξb )

α,β and P̄W (ξa, ξb) should be multiplied by the total
probability equal to 0.25.

Fig. 5. One can see that the total probability P increases
linearly with the number of cycles, and it is always less
than unity for the driving field considered here. Under those
circumstances it becomes meaningful to introduce the concept
of detachment rates W , even if the driving fields are of
ultrashort (few-cycle) duration. From Fig. 5 we estimate that
the photodetachment rate, defined as

W = P(Nosc)

2πNosc/ωL
, (47)

is W ≈ 2.3 × 1012 s−1. Note, however, that the theoretical
approach used in this paper is valid for moderate-field in-
tensities, such that the depletion of the ground state within
one cycle is much smaller than 1. Driving fields with Imax >

5 × 1012 W/cm2 could lead to unphysical probabilities ex-
ceeding unity even for a three-cycle pulse. For this reason, we
restrict our calculations to fields of maximum intensity Imax =
5 × 1011 W/cm2 or lower, such that the total probabilities of

detachment within one cycle are sufficiently small. In such
a case and by making use of the detachment rates (47), we
can redefine the probability of photodetachment accounting
for depletion effects, i.e.,

P = 1 − exp

(
−2π

WNosc

ωL

)
. (48)

For the case when W � ωL/(2π ), we obtain again the rela-
tion P ≈ W (2πNosc/ωL).

In Fig. 6 we present the same information as in Fig. 3,
but for the THz laser field (Imax = 1 × 1011 W/cm2 and
ωL = 0.01 eV). The CGPD is elevated to the power r = 0.2.
This time, the integration box in momentum space is defined
by the vectors pmax = (4.5, 4.5, 0.4) (in atomic units) and
pmin = −pmax. Here, 2.4 × 106 points are used in the Monte
Carlo integration, ensuring the convergence of the results. The
standard deviation does not exceed 4%. As can be seen, the
probability distribution projected onto the ξxξy plane (coarse
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FIG. 4. Spirals of photodetachment pS(φ) [Eq. (35)] in ξ space.
The transformation is performed according to Eq. (39). The top panel
corresponds to the laser field shown in Fig. 1 with the parameters
pmax = (1.5, 1.5, 0.3) and pmin = −pmax, in atomic units. The bottom
panel refers to the THz laser pulse with pmax = (4.5, 4.5, 0.4) a.u.
and pmin = −pmax. The outer rings of the spirals determine the mo-
menta for which detachment takes place with dominant probabilities
(see Figs. 3 and 6).

grained or averaged) also follows the outer ring of the spiral
(compare with the bottom panel in Fig. 4) with maximum
values near the phase φ = π . The ξxξz and ξyξz projections
also indicate that the photodetachment occurs close to the
ξxξy plane.

As for the case of the CO2 pulse (see Fig. 5), the total
probability of electron detachment for THz pulses increases
linearly with the number of cycles Nosc in the pulse. Our
Monte Carlo estimations show that the total photodetachment
probability per cycle is P/Nosc ≈ 0.006, which gives the rate
W ≈ 1.5 × 1010 s−1 for the considered peak intensity.

To summarize this section, we have analyzed the CGPDs
as opposed to doubly differential probability distributions of
photodetachment [i.e., P̄ (p) integrated over one momentum
coordinate] to relate to finite resolution in a measurement of
electron momenta. Note that measuring instruments detect

3 4 5 6 7 8 9 10
0.2

0.3
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FIG. 5. Total probability of electron detachment P [Eq. (40)]
as a function of the number of field oscillations Nosc. The driving
field is circularly polarized with a maximum intensity Imax = 5 ×
1011 W/cm2 and frequency ωL = 0.117 eV (CO2 laser field). The
total number of points used for the integration is not less than 106,
until convergence is ensured, and the resulting standard deviation is
smaller than 2%.

electrons only within a certain range of momentum �|p|
and angles. For instance, in a standard velocity map imaging
spectroscopy the ratio �|p|/|p| is around 1% [36,37]. Hence,
the resolution of momentum measurement can be related to
the size of pixels in two-dimensional density plots shown in
the left panels of Figs. 3 and 6. If the experimental setup is
such that the electron count is averaged not only over �|p| but
also over angles, then the CGPDs shown in the right panels
will describe the measured data. Finally, note that the two-
dimensional probability distribution obtained by integrating
without the Gaussian window would lead to similar patterns,
but with subtle interference structures (see, e.g., [27]) that can
hardly be resolved in an experiment.

IV. ELECTRON VORTEX STATES IN
PHOTODETACHMENT

In order to obtain EVSs, it is necessary that the asymp-
totic momentum of the photoelectron p circulates along the
surface of a cone with a well-defined symmetry axis [5,6].
According to the analysis presented in Sec. III A, if such a
cone approaches the spiral of ionization in momentum space,
EVSs with substantial topological charge can be detected
with significant probability. We start by defining the cone’s
symmetry axis as the unit vector n‖ (pointing at the polar
and azimuthal angles θT and ϕT, measured with respect to
the xz plane). It can be used to establish a set of three
orthonormal vectors in momentum space, denoted as n‖, n⊥,1,
and n⊥,2, such that n‖ = n⊥,1 × n⊥,2 (see Refs. [5,6]). In this
system of coordinates, the circulating momentum pT can be
parametrized by the so-called twist angle ϕ in the following
way:

pT(ϕ) = pT sin βT(n⊥,1 cos ϕ + ζH n⊥,2 sin ϕ)

+ pT cos βTn‖. (49)
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FIG. 6. The same as in Fig. 3, but for the THz laser field (Imax = 1 × 1011 W/cm2 and ωL = 0.01 eV). To highlight the main features of
the distribution, the CGPD is presented as [P̄ (ξa,ξb )

α,β ]0.2. By doing so we also observe, at least partially, the inner part of the ionization spiral.

The absolute values of the scaled distributions P̄ (ξa,ξb )
α,β and P̄W (ξa, ξb) are restored by multiplying them by the total probability, which is equal

to 0.018.

Here, 2βT and pT are the opening angle and slant length of
the cone, respectively, and ζH = ±1 determines the direc-
tion of circulation. For our calculations we set ζH = 1. A
superposition of electron states with momentum (49) over
all twist angles (0 � ϕ < 2π ) carries nonzero angular mo-
mentum (provided that βT �= 0); that is, it corresponds to
a propagating EVS. As our goal is the analysis of such
vortex states in photodetachment, we start by determining the
probability amplitude for the transition from the bound state
to a twisted state. Namely, we want to calculate A(pT(ϕ)) in
the length and velocity gauges. It is convenient to perform
a base transformation from the plane-wave states |p〉 to the
so-called Bessel states |p‖, p⊥, M〉 (see, e.g., Refs. [5,6]).
Here, the labels p‖ and p⊥ correspond to the parallel and
perpendicular components of momentum with respect to the
cone’s symmetry axis, i.e.,

p‖ = p · n‖, p⊥ =
√

p2 − p2
‖, (50)

and M is the topological charge. In position representation,
the Bessel states are given by [5,6]

〈r|p‖, p⊥, M〉 = iMeip‖r‖JM (p⊥x⊥)eiMϕr , (51)

where JM (p⊥x⊥) are the Bessel functions of the first kind.
The probability amplitude of photodetachment into the Bessel
state with topological charge M is [5]

AG(p‖, p⊥, M ) = 1

2π

∫ 2π

0
dϕe−iMϕAG(pT(ϕ)), (52)

where G = L,V stands for the chosen gauge. By means of
(52) we can obtain the probability amplitude of detachment
into field-free vortex states. Note that our analysis concerns
photodetachment by short laser pulses in the dipole approx-
imation. This means that, after a time Tp, the photoelectron
does not interact anymore with the light field. If that was not
the case (for instance, when an infinite plane wave acts upon
the negative ion), the final state would have to be modeled as
a laser-modified Bessel state (see, e.g., [38]). However, this
type of treatment, independent of the fact that its validity can
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FIG. 7. Schematic representation of the two-dimensional spiral
of ionization pS(φ) (solid yellow curve) and the cone of circulating
momentum pT(ϕ) (semitransparent green surface) for the geometry
considered in this paper (note that, for visual purposes, the diagram
represents the case of a laser field containing seven oscillations,
Nosc = 7). If βT is the half-opening angle, the cone’s symmetry axis
n‖ is chosen such that θT = π

2 − βT (thick red arrow). The thin
vertical arrow points along the direction of the vector n⊥,1 in Eq. (49).
For the parameters used here (see text), the twisted momentum pT(ϕ)
touches the spiral at φ0 = π and ϕ0 = 0.

be questioned for few-cycle pulses, is beyond the scope of the
present paper.

To obtain high topological charge EVSs we build the
cone of circulating momenta pT(ϕ) [Eq. (49)] in such a
way that it touches the spiral pS(φ) [Eq. (35)] at a given
phase φ0 and twist angle ϕ0. In particular, we choose φ0 = π

(middle of the pulse). For this particular value and for the
laser fields considered here, the ponderomotive spiral predicts
large probabilities of electron detection at the azimuthal angle
ϕp = 0 (see the right panel in Fig. 1). Hence, by setting the
symmetry axis of the cone [n‖ in Eq. (49)] pointing at a polar
angle θT = π

2 − βT and azimuthal angle ϕT = 0, we guarantee
that the twisted momentum touches the spiral at ϕ0 = 0. The
magnitude pT is chosen such that |pT(ϕ0)| = |pS(φ0)|. This
geometry is illustrated in Fig. 7 for Nosc = 7.

A. OAM distributions in photodetachment

Now, we proceed with calculations of the probability
distribution of detachment P (pT(ϕ)) [see Eqs. (21) and
(49)] and the corresponding OAM distribution, defined as
|A(p‖, p⊥, M )|2 [see Eq. (52)]. This is done according to the
construction prescribed above, which is based on the concept
of the spiral. For our further calculations, we choose the
touching phase φ0 = π and the cone’s opening half-angle
βT = 0.1π . Under those conditions, its symmetry axis is
defined by the angles θT = 0.4π and ϕT = 0. The magnitude
of the twisted momentum pT is chosen such that the cone
abuts the spiral at ϕT = 0 (modulo 2π ).

In Fig. 8 we show the probability distribution as a func-
tion of the twist angle P (ϕ) ≡ P (pT(ϕ)) (top panel) and
the OAM distribution |A(p‖, p⊥, M )|2 (bottom panel) for
the photodetachment from the 1s state of the H− ion. Both
curves are scaled to their maximum values. The laser field
is as described in Fig. 1; that is, its maximum intensity is
Imax = 5 × 1011 W/cm2 and its carrier frequency is ωL =
0.117 eV. The parallel and perpendicular components of the
twisted momentum [see, Eq. (50)] are chosen such that

FIG. 8. The top panel shows the probability distribution of
photodetachment P (pT(ϕ)) as a function of the twist angle ϕ. In
the bottom panel we present the corresponding OAM distribution
|A(p‖, p⊥, M )|2. Both quantities are scaled to their maximum values.
The geometry in momentum space is described in the text, with the
half-opening angle βT = 0.1π and the cone’s symmetry axis defined
by the polar and azimuthal angles θT = 0.4π and ϕT = 0, respec-
tively. The driving field is shown in Fig. 1 with a maximum intensity
Imax = 5 × 1011 W/cm2 and carrier frequency ωL = 0.117 eV. For
the OAM distribution, the parallel and perpendicular components
of momentum are p‖ = 0.59 a.u. and p⊥ = 0.19 a.u. (Ep = 5.2 eV).
All calculations are performed in the length (solid blue line) and
velocity (dotted red line) gauges, leading to the exact same results. In
absolute values maxP (ϕ) = 2.5 (a.u.), and max|A(p‖, p⊥, M )|2 =
30.8 (a.u.).

|pT(ϕ = 0)| = |pS(φ = π )|, as illustrated in Fig. 7. For the
parameters considered here we have p‖ = 0.59 a.u. and p⊥ =
0.19 a.u., which correspond to an electron of energy Ep =
(p2

‖ + p2
⊥)/(2me ) = 5.2 eV. This value, as predicted by the

spiral, ensures that the probability of photodetachment is very
close to its maximum (see also the top panel in Fig. 2). As
before, we perform the calculations in the length (solid blue
line) and velocity (dotted red line) gauges. Both gauges lead
to the exact same results.

From the top panel of Fig. 8 we see that the probability of
detachment is small for twist angles ϕ < −π/2 and ϕ > π/2.
This is expected, as the circulating momentum approaches
the spiral in the interval ϕ ∈ [−π/2, π/2]. The actual max-
imum of the distribution is achieved at ϕ = 0, when the cone
touches the two-dimensional spiral. The OAM distribution
(bottom panel) shows that EVSs with topological charges up
to M ≈ 28 units of h̄ (maximum probability) can be generated
efficiently. Note that this OAM distribution decreases fast
after the maximum is reached.

In Fig. 9 we present the probability distribution as a
function of the twist angle (top panel) and the OAM distri-
bution (bottom panel) for Imax = 1 × 1011 W/cm2 and ωL =
0.01 eV. While the opening half-angle is still βT = 0.1π ,
the parallel and perpendicular components of the twisted
momentum are p‖ = 3.09 a.u. and p⊥ = 1.0 a.u., respectively.
The energy of photoelectrons is Ep ≈ 143.5 eV, which is close
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FIG. 9. The same as in Fig. 8, but for the THz driving field (in-
tensity Imax = 1 × 1011 W/cm2 and frequency ωL = 0.01 eV). This
time, while the half-opening angle remains the same, the parallel
and perpendicular components of electron momentum are p‖ = 3.09
a.u. and p⊥ = 1.0 a.u. (Ep ≈ 143.5 eV). Only the results obtained
in the length gauge are shown, as the velocity gauge leads to the
exact same dependence. In absolute values maxP (ϕ) = 0.1 (a.u.),
and max|A(p‖, p⊥, M )|2 = 0.03 (a.u.).

to the maximum of the probability distribution shown in the
bottom panel of Fig. 2. As before, we chose the momentum
geometry such that the cone touches the spiral at the laser
phase φ0 = π and twist angle ϕ0 = 0. We present only the
calculations in the length gauge, as the velocity gauge gives
the exact same results. From the top panel of Fig. 9 we see
that the probability distribution as a function of the twist angle
P (ϕ) acquires its maximum values for ϕ around zero, i.e.,
when the cone approaches the spiral. For ϕ < −π/4 or ϕ >

π/4 this distribution is very small, which again corroborates
that the probability of photodetachment is substantial only in
the vicinity of the spiral. With respect to the OAM distribution
(bottom panel of Fig. 9) we observe an oscillating behavior
before the maximum is reached. For this particular intensity,
it is expected to observe EVSs with angular momentum close
to M ≈ 840 in units of h̄. Hence, by comparing the bottom
panels of Figs. 8 and 9 we conclude that EVSs with large
topological charges are obtained for smaller driving field
frequencies (lower photon energy). This is actually expected,
as the electron absorbs a larger number of photons during the
ATD process, hence leading to a significantly higher transfer
of angular momentum.

An inspection of Figs. 8 and 9 indicates that the OAM
distributions have a universal structure: for small values of the
topological charge M they oscillate (or show a typical interfer-
ence pattern), reach the maximum value for a particular M0,
and drop suddenly to zero. In order to explain this behavior,
let us go back to the definition (52) and put it in the form

AG(p‖, p⊥, M ) = 1

2π

∫ 2π

0
dϕe−iMϕ+i�(ϕ)|AG(pT(ϕ))|,

(53)

where �(ϕ) = argAG(pT(ϕ)). Now, we can analyze this inte-
gral by applying the saddle-point approximation. For a given
M the main contributions here come from such angles ϕM that
satisfy the equation

M = �′(ϕM ), (54)

where the prime means the derivative over ϕ. Since the phase
�(ϕ) is defined in the compact interval [0, 2π ], it has to
be bounded. Analysis of the amplitude AG(pT(ϕ)) shows
(cf., [5]) that, for the considered pulse shape, �′(ϕ) has the
maximum for ϕ = 0; therefore, M0 = �′(0). For M > M0

the saddle-point equation does not have real solutions, which
leads to the exponential decrease of the OAM distribution. On
the other hand, for M < M0, the saddle-point equation has
at least two real solutions, which causes the interference of
amplitudes calculated for these angles.

V. CONCLUSIONS

Similar to the authors of Ref. [23], we have derived an SFA
analytical expression for the laser-induced photodetachment
from negative ions with an s valence electron. However, in-
stead of using the saddle-point approximation, we performed
numerically the time integrals defining the probability ampli-
tude of detachment. We have centered our attention on the
analysis of photodetachment driven by few-cycle laser fields
and the generation of EVSs with high topological charges.
Note that the SFA is particularly suitable for our calculations,
as the photoelectron does not experience the Coulomb tail
after it is transferred to the continuum. By making use of the
concept of a cone of twisted momentum and extrapolating the
idea of an ionization spiral, we have determined the optimal
conditions for obtaining EVSs with large probability and
topological charges (see also Ref. [5]). The CGPDs allowed us
to find the regions in momentum space where the probability
of photodetachment is maximal. It is worth mentioning that
our theoretical framework is valid provided that the driving
field intensity is not too large and the probabilities of detach-
ment per a few field cycles are smaller than 1.

By calculating the energy spectra of photoelectrons for
different intensities and frequencies, we have found the ap-
pearance of large supercontinua (interference-free structures)
which span several tens (or hundreds) of a single-photon
energies. The position of such a structure coincides with the
predictions arising from the momentum spiral of ionization.
Hence, we have shown that such a two-dimensional structure
is useful not only in the description of high-energy ionization
but also in photodetachment processes for energies larger than
the electron affinity.

Our numerical calculations were carried out in the velocity
and length gauges independently. For the photodetachment
from the 1s bound state of the ZRP we have seen that both
gauges give identical results, despite the differences in the
analytical expressions of the integrands leading to the proba-
bility amplitudes [see Eqs. (15) and (19)]. Thus, in accordance
with the observations of Gribakin and Kuchiev in [23], we
showed that the probability amplitude of detachment is, in
fact, gauge invariant. This is not necessarily true for other
bound states.
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Finally, we have calculated the OAM distribution for pho-
todetachment driven by a circularly polarized, three-cycle
laser pulse. For the parameters used in this paper, we have
shown that it is possible to obtain EVSs in photodetachment
with orbital angular momentum as large as M ≈ 840 in units
of h̄ for Imax = 1 × 1011 W/cm2 and THz fields. A lower
frequency of the driving field leads, in general, to higher
topological charges.

In closing, we would like to note that generation of prop-
agating EVSs in solid-state materials can open the door to
a new type of electronics where, in addition to the electron
charge and spin, angular momentum can be transported. It
is, in principle, possible to generate EVSs by irradiating

negatively doped solids or surfaces by ultrashort THz laser
fields of moderate intensity. Additionally, the OAM properties
of the resulting vortices can be dynamically controlled by
modifying the intensity or frequency of the driving pulse. This
could lead, in principle, to investigations of a new type of
electron transport in solids or nanostructures, and it is still
awaiting deeper exploration.
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