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Enhanced absorption of weak ultrashort light pulses by a narrowband atomic medium
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The storage of broadband single photons from a parametric-down-conversion source is a capability
with the potential to foster significant development in the field of quantum information. A particular challenge
to this problem, however, is the mismatch between the short-lived photon and the long-lived memories, which
translates into quite different frequency bands for the two systems. Ultimately, this difficulty can be mapped into
the problem of how a narrowband medium can efficiently absorb a broadband pulse of light. Here we present
a detailed approach to this problem focusing on the absorption of photons at 800 nm, a common choice for
parametric-down-conversion sources, by hot vapors of rubidium atoms. For this, we employ a stronger control
field to drive a sequential two-photon transition on the atoms, which is intrinsically broadband, together with a
weak signal field consisting of a femtosecond pulse of light. We describe then how to measure small absorptions
of the signal pulse and how to improve this absorption through the various parameters of the problem. Our results
are modeled by a perturbative theory suitable to our present weak-absorption regime. Finally, we provide a road
map with different strategies to achieve larger absorptions.
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I. INTRODUCTION

The generation of photon pairs from spontaneous para-
metric down conversion (SPDC) is a cornerstone technique
in the field of quantum optics [1], directly responsible for
great progress in fundamental physics and diverse applica-
tions [2], particularly in the field of quantum information
[3]. The probabilistic nature of SPDC, however, prevents its
application to more complex problems that demand scala-
bility, since the probability to generate many photon pairs
simultaneously decreases exponentially with the number of
pairs. A possible way to circumvent this problem is to store
the photon in a memory for later use, relaxing then the
requirement of simultaneous generation. Significant advances
have been made in recent years in the development of quantum
memories for various applications [4,5]. However, the ultra-
broadband nature of the SPDC photon, with bandwidths in
excess of 10 THz, introduces a number of extra difficulties
in the development of a compatible memory. At the heart of
the problem is the fact that memories typically have small
bandwidths, associated with their long coherence times, and
the ultrafast SPDC photons maximize all issues arising from
this mismatch. On the other hand, in 2016, Costanzo et al.
demonstrated the coherent propagation of ultrashort single-
photon pulses through an atomic medium, by measuring its
strong deformation by the narrowband atomic medium [6].
At the time, it was suggested this observation could pave the
way to new quantum memories for ultrashort single photons.
Here we detail this proposal and report the first steps, both
theoretically and experimentally, for its implementation.

The process of storing information of a short pulse of light
into a long-lived memory, with bandwidth much smaller than
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that of the flying photons, is the starting point of any quantum
memory for light. The most common approach to this task is
to use a two-photon � transition between two ground states,
which is intrinsically broadband, with all spectral components
of the light pulse participating in the process. This configura-
tion may involve a resonant excited state, through the effects
of electromagnetically induced transparency [7,8] and Autler-
Townes splitting [9], or pure Raman transitions [10,11]. When
using ensembles of alkali atoms for storage, this approach will
be typically limited in bandwidth to a few GHz, determined
by the splitting between the two ground states. In order to
use memories of this kind with the SPDC photons, the most
common approach is to substantially decrease the photonic
bandwidth by placing the parametric-down-conversion source
inside a narrowband optical cavity [12–15]. The bandwidth
narrowing of photons from SPDC to the GHz range, by band-
pass filters, is also employed in solid-state memories based
on excited states with a combination of large inhomogeneous
broadening and narrow homogeneous bandwidth [16,17].

There are, however, interesting aspects to explore in mem-
ories that could bridge directly from an ultrashort photon to
a long-lived atomic state. First, it opens the possibility to ex-
plore the femtosecond pulse duration to enhance the speed of
various tasks. Second, such pulse durations are usually much
shorter than any decoherence time of atomic systems, leading
to the possibility of incorporating coherent control techniques
to write and manipulate the stored information [18]. The
first experimental approach to store femtosecond photons in
long-lived memories explore Raman transitions in atomic or
solid-state systems with large ground-state separations, on the
THz range. So far, implementations along this line have been
reported in molecular hydrogen [19,20], diamond [21], and
barium atoms [22].

Here we propose a different pathway for the storage of ul-
trashort photons in atomic ensembles, employing two-photon
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cascade transitions to long-lived excited states. This approach
is considerably less restricted in terms of atomic species
for the memory than the present alternatives relying on Ra-
man transitions between ground states with THz frequency
separations. There are many more options of suitable state
separations among excited states of basically any atom. To
illustrate this fact, we conduct our study with one of the
most common atomic systems for various applications, a hot
ensemble of rubidium atoms, excited by light around 800 nm,
also a common choice coming from femtosecond Ti:sapphire
lasers. Even though the final excited state of our choice, 5D3/2,
has a lifetime of only 240 ns, this is already 106 times the
excitation-pulse durations, around 100 fs. Longer lifetimes,
when required, could be achieved through a second excitation
stage by longer pulses, which would transfer the atoms at
5D3/2 to a final ground state.

The importance of coherent control techniques for such
two-photon transitions to excited states is well established
[23], with observed enhancements of up to a factor of 10
for suitable phase masks applied to the excitation pulses
[24]. A resonant dense atomic medium itself acts as a phase
mask for the ultrashort photonic wave packet, inducing strong
distortions and leading to a shape known as zero-area pulse
[25,26]. The observation of such zero-area pulse formation
in an atomic medium for single photons from SPDC was
actually the main motivation for the present work [6], since
it demonstrates that these photons may be produced in a
way to follow the dynamics of weak laser pulses coherently
propagating in an atomic sample. A systematic investigation
of absorption and storage of weak ultrashort laser pulses in
atomic media becomes then an important step in the devel-
opment of memory protocols for ultrashort single photons.
Here we present our first results in this direction, quantifying
and optimizing the absorption of a weak ultrashort laser pulse
(signal) by a dense atomic ensemble. The pulse acts on the
795-nm D1 line of rubidium. Its absorption is enhanced by
a stronger control pulse at 762 nm that transfers to level
5D3/2 any transient population induced by the weak pulse
at level 5P1/2. This scheme, acting on different transitions,
was introduced in 2002 to study the dynamics of transient
populations induced by zero-area pulses acting on atomic
ensembles [27]. Here we use this effect to enhance the transfer
of energy from the weak light pulse to the material medium.

In the following, in Sec. II we introduce in more detail our
scheme to enhance the absorption of ultra-broadband photons
by a narrowband atomic medium. We include in this section
a theory for the process still in the weak absorption regime,
the relevant limit for the present stage of our experiments. In
Sec. III, we describe the experimental setup for the absorption
of the weak laser pulse and our characterization procedures.
Section IV presents our results combining measurements and
theory. Particularly, we focus on three optimization parame-
ters: atomic density, power of control pulse, and delay be-
tween signal and control pulses. The pulses are shaped to
be transform limited. We observe a maximum enhancement
of absorption of 0.3%, but no strong saturation with atomic
density or control power, which indicates a clear pathway to
improve the system to attain high absorptions. We also did not
explore here any spectral masks to improve absorption, being
this the subject of a second stage of our experiment currently

under way. Finally, in Sec. V we offer our conclusions on the
subject so far.

II. ENHANCED ABSORPTION IN
THE ULTRA-BROADBAND REGIME

The resonant excitation of a two-level atom by a light pulse
is commonly described in terms of the pulse area θ defined as

θ =
∫ +∞

−∞

μ E (t )

h̄
dt ,

with μ being the transition dipole moment, E (t ) being the
pulse’s electric-field temporal envelope at the position of the
atom, and h̄ being Planck’s constant [28]. For an ultrashort
pulse, we can neglect any decoherence process during excita-
tion, and the population of the excited state would be given by
ρe = sin2(θ/2). A π pulse, for example, would then lead to a
total inversion of the atomic population.

We can estimate the area of an ultrashort single photon
(temporal width T ≈ 100 fs) acting on an atomic ensemble in
common experimental situations. A single photon at 800 nm
carries an energy of hc/λ = 2.5×10−19 J, with c being the
velocity of light. If the photon propagates in a Gaussian
mode focused to a transversal waist of w = 50 μm, its volume
will be approximately V = πw2×cT ≈ 2.4×105 μm3. The
energy density of a photon on this light mode will be then u =
(hc/λ)/V ≈ 10−6 J/m3. The electric field associated with this
energy density would be |E | ≈ 500 V/m. Approximating μ ≈
ea0 for a typical dipole moment, with e being the electron’s
charge and a0 being Bohr’s radius, the single-photon pulse
area would be around θ = μ|E |T/h̄ = 4×10−6, leading to
ρe ≈ 4×10−12 = p11.

This number for the probability p11 to excite an atom by
a single photon seems quite small at first sight. However,
in hot atomic vapors it is straightforward to obtain atom
numbers N � 1012 in the photonic spatial mode assumed
above. According to this simple analysis, we should be able
to observe large absorptions of ultrashort single photons
in common experimental conditions. The problem with this
analysis so far is that it does not take into account the back
action of such large atomic ensembles on the photonic mode,
which leads, during propagation through the medium, to the
formation of a zero-area pulse [25], a pulse with an area
much smaller than the one in the entrance of the sample. Such
zero-area pulses keep their energy throughout propagation,
but become increasingly unable to leave any final excitation
on the atoms. The zero-area pulse shape comes primarily
from the dispersive part of the atom-light interaction, which
becomes rapidly dominant over the absorptive part as the
atomic density of the medium increases [29]. This process
makes the direct single-photon absorption by the resonant
sample of two-level atoms effectively unattainable, since the
pulse area rapidly decreases as the number of atoms increases
[6].

On the other hand, cascaded two-photon transitions to
higher excited states induced by weak ultrashort pulses are
commonly observed [30,31], with the connection to transient
population excitation in the lower transition, in which the
zero-area pulse in formed, clearly established in Ref. [27].
Such transient excitations are much larger than the final area
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FIG. 1. Schematic of the two-photon combinations for cascaded
excitations in rubidium atoms. The 5P state enables the occurrence
of stepwise two-photon excitations, involving the 5S → 5P (795 nm)
and 5P → 5D (762 nm) transitions. The pulses acting on each
transition arrive in the sample with a controllable relative delay τ .

of the pulse. In order to keep the total energy of the pulse
(∝ |E |2) roughly constant while decreasing the pulse area
(∝ E), the pulse’s electric field develops a tail that periodically
inverts its sign to cancel the excitation generated by its previ-
ous portions. In this way, the zero area is established through
a series of relatively strong transient excitations of different
signs. These previous observations suggest then an alternative
approach for the absorption of a single photon by an atomic
medium, in which a control pulse of similar bandwidth would
excite the atom to a higher state at a transient peak of excita-
tion in the lower transition, in order to maximize the transfer
of energy to the atomic medium [27]. In frequency space, the
feasibility of this approach comes from the fact that such two-
photon transitions are intrinsically broadband. As illustrated
in Fig. 1 for the cascade 5S → 5P1/2 → 5D transition in
rubidium, if the central frequencies of the signal and control
pulses are resonant, respectively, with each of the transitions
on the cascade, then any other frequency on the weak-pulse
spectrum will find another frequency on the control field to
close the two-photon transition. In the following, we develop
a detailed model of this process to compare later with our
experimental data at the low excitation regime.

A. Theory

In order to understand the absorption process described
above, we introduce a theory for the propagation of the signal
pulse through the dense atomic medium in the condition
illustrated in Fig. 1, i.e., of a two-photon cascaded excita-
tion induced by a control pulse. Signal and control pulses
propagate on the same z direction, and the control pulse has
a delay τ with respect to the signal at the entrance of the
medium. We approximate the atomic structure by a three-level
system of the relevant hyperfine levels involved on the cascade
transition, labeling the states |0〉 = |5S1/2〉, |1〉 = |5P1/2〉, and
|2〉 = |5D3/2〉, respectively.

For very weak signal pulses, the population on level |1〉
is negligible, and the stronger control pulses pass through
the ensemble without being affected by the atoms. At
a position z, considering the pulses enter the ensemble

at z = 0, the electric field of the control pulse can be
written then as Ec(z, t ) = Ec(0, t − τ − z/c) = Ec(t − τ −
z/c) cos[ωc(t − τ − z/c)], with Ec(t − τ ) being the slow
pulse envelop at z = 0 and ωc being the center frequency of
the control field. For the signal pulse, on the other hand, we
have to consider its full propagation throughout the dense en-
semble. This is modeled by the respective Maxwell equation
for the signal pulse electric field Es(z, t ) [25]:

∂
s

∂z
+ 1

c

∂
s

∂t
= iα0�10

∫ ∞

−∞
dσ10() fd (), (1)

with 
s(z, t ) = μ01Es(z, t )/h̄ being the respective instanta-
neous Rabi frequency, μ01 being the electric dipole mo-
ment for the transition 0 → 1, Es(z, t ) the signal-pulse slow
envelop, α0 being the medium absorption coefficient, �10

being the population decay rate from |1〉 to |0〉, fd () be-
ing the Doppler distribution of atomic detunings  relative
to the center frequency ωs of the signal field, and σ01 being
the slowly varying atomic coherence between levels |1〉 and
|0〉. At the medium entrance, the electric field is Es(0, t ) =
Es(0, t ) cos(ωst ).

In order to calculate σ01, we start with the Bloch equation
for the coherence ρ01:

∂ρ01

∂t
= i

h̄
〈0|[ρ, H]|1〉 − �10

2
ρ01, (2)

coming from the Hamiltonian

H = H0 + V (	r, t ), (3)

with

H0 = E0|0〉〈0| + E1|1〉〈1| + E2|2〉〈2|
being the free-atom Hamiltonian for the three levels with
energies E0, E1, and E2, respectively, and

V (z, t ) = −μ01Es(z, t )|0〉〈1| − μ12Ec(z, t )|1〉〈2| + c.c.

being the interaction potential in the electric-dipole approx-
imation, with μ12 being the electric dipole moment for the
transition 1 → 2. It is straightforward to obtain an integral
solution for σ01 in lowest order of the signal field amplitude,
since strong approximations apply quite well in the limit
of very weak signal fields, the relevant regime for single-
photon storage. We may safely suppose the populations are
unaffected by the excitation pulses, i.e., ρ00 ≈ 1 and ρ11 ≈
ρ22 ≈ 0. As a result, we have

σ01(z, t ) 

∫ t

−∞
dt ′e−(�10/2+i)(t−t ′ )

[
i

s(z, t ′)

2

−
∗
c (z, t ′)

2

∫ t ′

−∞
dt ′′ 
c(z, t ′′)

2
σ01(z, t ′′)

]
, (4)

with 
c(z, t ) = μ12Ec(z, t )/h̄ being the instantaneous Rabi
frequency for the control field. We extended the time origin
to −∞, since both pulses are zero in this limit. Note that we
kept the factor e−(�10/2+i)(t−t ′ ) on the first integral over t ′,
but neglected the similar factors on other integrals involving
its multiplication by the signal or control pulses, since these
are much shorter than any time for which these factors would
deviate significantly from one [32].
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The lowest order solution of Eq. (4) in both 
s and 
c is
then

σ01(z, t ) 
 i
∫ t

−∞
dt ′e−(�10/2+i)(t−t ′ )

[

s(z, t ′)

2

− 
∗
c (z, t ′)

2

∫ t ′

−∞
dt ′′ 
c(z, t ′′)

2

∫ t ′′

−∞
dt ′′′ 
s(z, t ′′)

2

]
.

(5)

At this point, it is important to define two auxiliary function:

θs(z, t ) =
∫ t

−∞
dt ′
s(z, t ′) , (6a)

θc(z, t ) =
∫ t

−∞
dt ′
c(z, t ′) , (6b)

which represent the area of each pulse at position z of the
ensemble, up to a time t . These are slowly varying functions
compared to the respective pulses, being close to a step
function for a short well-behaved pulse. Since they are slow,
they can be approximated by constant values, inside the higher
order integrals on the right hand side of Eq. (5), on the instant
the control pulse reaches the position z. Equation (5) then
becomes

σ01(z, t ) 
 i
∫ t

−∞
dt ′e−(�10/2+i)(t−t ′ )

[

s(z, t ′)

2

− 1

8

∗

c (z, t ′)θs(z, τ + z/c)
�c

2

]
, (7)

with �c = θc(0, t → ∞) being the control pulse area at z =
0. Note that we assume a well-behaved control pulse on the
beginning of the ensemble that remains unchanged during its
propagation. The evaluation of this pulse area exactly on the
instant of its action on the ensemble can be approximated,
then, by half of its total area, as for a well-behaved step
function exactly on the position of the step. The function
θs(z, τ + z/c), however, is much more delicate, since the
signal pulse may be strongly distorted during its propagation
up to z and is acted upon by the unperturbed control pulse
traveling at essentially vacuum speed up to the same point.
Thus, some degree of temporal walk-off may occur in the
process.

This equation can finally be substituted on Eq. (1), result-
ing in

∂
s

∂z
+ 1

c

∂
s

∂t
= −α0

∫ t

−∞
dt ′G(t − t ′)

[

s(z, t ′)

−
∗
c (z, t ′)θs(z, τ + z/c)

�c

8

]
, (8)

with

G(t − t ′) = �10

2

∫ ∞

−∞
d fd ()e−(�10/2+i)(t−t ′ ) . (9)

Taking the Fourier transform of both sides of Eq. (8), we
finally obtain[

∂

∂z
− iω

c
+ α0A(ω)

]

̃s(z, ω)

= α0A(ω)
̃∗
c (z,−ω)θs(z, τ + z/c)

�c

8
, (10)

with

A(ω) = �10

2

∫ ∞

−∞
d

fd ()

�10/2 − i(ω − )
, (11)

and 
̃s and 
̃c being the Fourier transforms for the respective
instantaneous Rabi frequencies, and ω being the frequency
components defined in relation to the pulse’s central fre-
quency. From Eq. (10), one verifies that each signal-pulse fre-
quency component ω is affected by the frequency component
of the control pulse on the other side of its spectrum (−ω),
as depicted in Fig. 1. Besides that, the overall action of the
control pulse depends on multiple aspects of the problem.
The factor θs(z, τ + z/c) represents the excitation of atoms
by the signal pulse to level |1〉 up to the instant the control
field acts on that position of the ensemble [27]. The transfer
of excitation from |1〉 to |2〉 is governed by the total area �c

of the control pulse.
If there is no control field, 
c = 0, the solution to Eq. (10)

at high densities develops the well-known zero-area pulse
shape [6,25,30]. In frequency space, it is given by


̃(0)
s (z, ω) = 
̃s(0, ω)e[ iω

c −α0A(ω)]z . (12)

The total pulse energy would be then

U (0)(z) = ε

∫ ∞

−∞
dω|
̃(0)

s (z, ω)|2

= ε

∫ ∞

−∞
dω|
̃s(0, ω)e−α0ReA(ω)|2 , (13)

with ε being a proportionality constant. Mathematically, the
low absorption of the ultra-broadband photon, when propa-
gating through a resonant atomic medium, comes from the
fact that ReA(ω) is a very narrow function when compared
to 
̃s(0, ω), decaying with ω2 from resonance [see Eq. (11)].
The absorption represented by e−α0ReA(ω) thus affects only a
small portion of the pulse energy. The strong, fast distortions
of the zero-area pulse comes from the dispersive action of the
medium, proportional to ImA(ω), which is a much broader
function decaying only with ω away from resonance. On the
other hand, the right side of Eq. (10) involves a multiplication
of A(ω) by the complex function θs, which then maps the dis-
persive part of A(ω) into the medium’s absorption coefficient,
leading to an overall larger absorption.

In order to proceed with the treatment for the action of the
control pulse, note first that Eq. (10) can be written as

∂

∂z
f (z, ω) = α0A(ω)e[− iω

c +α0A(ω)]z
̃∗
c (z,−ω)

× θs(z, τ + z/c)
�c

8
, (14)

with

f (z, ω) = e[− iω
c +α0A(ω)]z
̃s(z, ω) . (15)
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In terms of the control field spectrum in the beginning of the
sample 
̃c(0, ω), we have


̃∗
c (z,−ω) = 
̃∗

c (0,−ω)eiω(τ+z/c) . (16)

On the other hand, the signal pulse area in Eq. (14) can be
written as

θs(z, τ + z/c) =
∫ τ+z/c

−∞
dt
s(z, t )

= 1√
2π

∫ τ

−∞
dt

∫ ∞

−∞
dω′e−iω′z/c 
̃s(z, ω

′)e−iω′t

= 1√
2π

∫ τ

−∞
dt

∫ ∞

−∞
dω′e−α0A(ω′ )z f (z, ω′)e−iω′t .

(17)

Substituting Eqs. (16) and (17) into Eq. (14) and defining β =
α0�c

8 , we have

∂

∂z
f (z, ω) = βA(ω)√

2π
eiωτ+α0A(ω)z
̃∗

c (0,−ω)

×
∫ τ

−∞
dt

∫ ∞

−∞
dω′e−α0A(ω′ )z f (z, ω′)e−iω′t .

(18)

By integrating Eq. (18) from 0 to z on both sides, the differen-
tial equation turns into an integral equation, more suitable to
a perturbative analysis:

f (z, ω) = f (0, ω) +
∫ z

0
dz′ βA(ω)√

2π
eiωτ+α0A(ω)z′


̃∗
c (0,−ω)

×
∫ τ

−∞
dt

∫ ∞

−∞
dω′e−α0A(ω′ )z′

f (z′, ω′)e−iω′t . (19)

Lowest order solution in �c

Expanding Eq. (19) to the lowest order in �c, we obtain

f (1)(z, ω)

= f (0, ω) +
∫ z

0
dz′ α0�cA(ω)

8
√

2π
eiωτ+α0A(ω)z′

× 
̃∗
c (0,−ω)

∫ τ

−∞
dt

∫ ∞

−∞
dω′e−α0A(ω′ )z′


̃s(0, ω′)e−iω′t .

(20)

Equation (20) may be evaluated and gives directly the signal
pulse at the end of the sample, z = l , with l being the sample
length and D = α0l being the total optical depth of the sample.
However, in order to compare with the experimental data in
Sec. III, Eq. (20) must be modified to account for the fact that
the control pulse is focused at the center of the sample and that
its waist varies along z. Also, one must note that the signal
in Eq. (20) depends on 
c squared. Effectively, the relevant
interaction between signal and control pulses will occur only
around the focus in a smaller region with length lc given by
twice the Rayleigh length of the control field spatial mode.
In this region, the control pulse area can be approximated
roughly as a constant with a value close to its maximum at the
focus, as assumed by the theory. In Eq. (20), this modification
is easily introduced by considered �c constant but different
from zero only in a region of ±lc/2 around l/2, the center

of the vapor cell. A second optical depth needs then to be
introduced: Dc = α0lc, the optical depth of the interaction
region.

With these considerations in mind, we can finally define
the function

F (ω, t ) = 1√
2π

∫ ∞

−∞
dω′e−iω′t 
̃s(0, ω′)
̃∗

c (0,−ω)T (ω,ω′),

(21)
with

T (ω,ω′) = A(ω)e−D[A(ω)+A(ω′ )]/2

[A(ω) − A(ω′)]

× {
eDc[A(ω)−A(ω′ )]/2 − e−Dc[A(ω)−A(ω′ )]/2

}
, (22)

and write


̃(1)
s (l, ω) =
̃(0)

s (l, ω) + �c

8
eiω(τ+ l

c )
∫ τ

−∞
dtF (ω, t ) , (23)

providing directly the modification of Eq. (12) by the control
pulse in first order.

In the following, we will also approximate the general
Voigt profile of Eq. (11), by the considerably simpler function

A(ω) = 1

1 − iωT2
, (24)

which captures the essential physical aspects of the problem
[6,33] by approximating the line shape to a Lorentzian profile
with width given by the inverse of the inhomogeneous decay
time T2 of the atomic coherence. This form for A(ω) also
allows us to write

A(ω)

[A(ω) − A(ω′)]
= − (ω′T2 + i)

(ω − ω′)T2
. (25)

With this result, note that the integrand in Eq. (21) is pro-
portional to 
̃s(0, ω′)
̃∗

c (0,−ω)/(ω − ω′), which implies in
a contribution for the atomic excitation in the form expected
from Fig. 1, i.e., a two-photon resonance when a particular
frequency of the signal pulse acts with the corresponding
complementary frequency of the control pulse.

III. EXPERIMENT

Our experimental setup to implement the process depicted
in Fig. 1 is shown in Fig. 2. Note that we assumed a stronger
control pulse at 762 nm, on the 5P1/2 → 5D transition of Rb,
acting on the sample together with a weak signal pulse at
795 nm, on the 5S → 5P1/2 transition. Both pulses should be
ultrashort, in the fs regime. This is achieved first by tuning
a mode-locked titanium-sapphire laser to 762 nm. In this
condition, it delivers 650 mW of output power, with pulse
widths of about 90 fs and repetition rate of 82 MHz. The pulse
durations at all stages of our experiment were measured by
an autocorrelation setup using a noncollinear second-order-
harmonic generation geometry [34]. The laser output is then
split into two beams by a half-wave plate (HWP) and a
polarizing beam splitter (PBS), with 85% of its power moving
forward to provide the control field and the remaining 15%
being deflected to generate the signal field.

The weaker signal beam passes through a Faraday isolator
(FI) before being coupled into a photonic crystal fiber (PCF),
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FIG. 2. Schematic view of the experimental setup. A Ti:Sapphire laser beam is split into signal and control beams. The first is coupled into
a photonic crystal fiber (PCF) to generate a supercontinuum beam. Part of its spectrum is employed as the signal beam. The second beam is
used as the control field. A linear translation stage in the control beam permits us to observe a time-resolved signal. The two-photon transition
is realized with nearly transform limited pulses. SCG, supercontinuum beam; FI, faraday isolator; IF, interference filters; PBS, polarizing beam
splitter; HWP, half-wave plate; attenuator, combination of HWP and PBS; M, mirrors; and L, lens.

FemtoWhite 800-NKT Photonics, using a Newport M-40×
objective lens. After the PCF, we have a supercontinuum
(SCG) beam with significant spectral power extending from
600 to 850 nm. The FI is fundamental in this setup, since
it eliminates feedback to the laser oscillator. Furthermore,
it increases the pulse chirp and optimizes supercontinuum
generation in the PCF. The SCG beam is filtered by a tilted
interference filter, centered at 800 nm and with a bandwidth
of 10 nm, resulting in a transmitted beam around 795 nm [35]
(see the Appendix). A pulse compressor, with a diffraction
grating (1200 lines/mm) is used to obtain a nearly transform
limited signal beam, with duration of 120 fs and bandwidth of
7.5 nm FWHM in the Rb cell region.

The control beam is directed to a computer controlled
linear translation stage in order to scan the delay τ between
control and signal pulses. The translation stage is adjusted
to provide the delay τ at the entrance of the vapor cell.
Dispersion occurs as the ultrashort control beam interacts with
optical elements that directs it to the Rb cell. In order to
obtain a transform-limited pulse in the cell, it is used a prism
pair pulse compressor, as depicted in Fig. 2. The compressor
introduces a negative dispersion that is compensated as the
beam travels, in order to obtain a transform-limited control
pulse in the Rb-cell region, with pulse width of 84 fs.

Before being recombined, the control and signal beams
pass through different attenuators (a combination of HWP

and PBS) in order to obtain an absorption signal that can be
investigated as function of the control and signal intensities,
independently. Both beams are linearly polarized, with or-
thogonal polarizations with respect to each other. The beams
are recombined in a PBS and focused at the center of a 5-cm
Rb cell, each having a spot size of ≈125 μm, and maximum
time-averaged powers of 0.8 mW for the signal and 170 mW
for the control field. The Rb cell is mounted inside an oven,
and its temperature may be varied between 20 and 150◦C,
allowing us to control the atomic density.

After the Rb cell, a PBS reflects the control beam and
transmits the signal beam. A tilted interference filter, centered
at 800 nm and with bandwidth of 10 nm, is placed to block
any reminiscent light from the control beam. The detection
apparatus consists of a photodetector (2307 New Focus), and
a lock-in amplifier, locked to the chopper reference frequency
fref . The chopper is placed in the pathway of the control
field. Thus, the lock-in amplifier outputs the difference in the
signal beam transmission through the cell with and without
control field. In terms of the theoretical quantities calculated
in Sec. II A, the signal would be proportional to

U = U (0)(l ) − U (1)(l ) , (26)

with U (1)(l ) calculated as U (0)(l ), but with the field from
Eq. (23). On the other hand, U (0)(l ) is measured by placing
the chopper on the signal beam and blocking the control beam.
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From these two measurements, we obtain the variation of the
absorption coefficient

α = U

U (0)(l )
, (27)

which is caused by the presence of the control pulse. This is
the quantity which is compared to our theoretical predictions.
More specifically, we are interested in its maximum value
αmax as a function of τ , for a particular set of parameters,
such as atomic density and control power.

For an absorption signal of 135 μV in the lock-in amplifier,
a typical value for our maximum absorption, we would have a
noise floor around 2.3 ± 0.8 μV coming from light at 795 nm.
This was measured by blocking the chopped control beam. At
the same conditions, blocking the signal beam, our noise floor
for the control light at 762 nm was around 1.98 ± 0.09 μV.
The electronic noise floor was around 0.3 ± 0.2 μV.

IV. RESULTS AND DISCUSSION

Figure 3 presents our measurements for α as a function
of τ for various atomic densities η of the medium (black
solid lines). The oven temperature changed from 85 up to
145◦C, with the respective change of η from 1.7×1012 to
6.5×1013 cm−3. For the control and signal average powers of
Sec. III, the experimental estimated pulse areas are �

exp
c ≈

0.36 rad and �
exp
s ≈ 0.06 rad, respectively. When the delay

τ is scanned further, the absorption enhancement presents
oscillations akin to the ones observed for the zero area pulses,
as expected for this low-perturbation regime.

We consider Gaussian shapes for the temporal profile of
both control and signal pulses, with durations Tc = 84 fs and
Ts = 190 fs, respectively. To properly fit the data, Ts must be
increased in relation to the respective experimental value. We
understand this is a consequence of our theory supposing the
control pulse to be much shorter than the signal pulse, Tc �
Ts, which is not the case in the experiment. The larger value of
Ts therefore emulates the convolution between the two pulse
durations. The fitting to the theoretical parameters was done
for the curve with highest D. The others were generated by
tuning D and T2 according to the experimental values for
atomic density and inhomogeneous decay time corresponding
to each temperature.

The comparison to our theoretical model is provided by the
respective dashed red curves on Fig. 3. For these, we changed
the optical depth from D = 19 up to 720. For this interval, the
inhomogeneous broadening varies with the temperature, being
given by the inverse of the full width of the expected Doppler
broadening for the |5S〉 → |5P1/2〉 transition, with T2 going
from 289 ps (for D = 19) down to 267 ps (for D = 720). The
control and signal pulse areas in the beginning of the sample
were assumed �c = 0.20 and �s = 0.001, respectively. As
expected, the normalized α does not depend on �s. The
theoretical values for D and �c are on the order of the ex-
pected experimental parameters, but an exact correspondence
between them is not expected due to the simplicity of our
three-level model. The actual atomic transitions present a
large number of hyperfine and Zeeman sublevels. Also, the
region around the focus which contribute to the signal was
considered through the parameter Dc = D/4. If one assumes
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FIG. 3. Experimental (black solid lines) and theoretical (red
dashed lines) enhanced absorption coefficient (left axis) as a function
of the delay (bottom axis) between control and signal pulses for
various atomic densities η. Corresponding modulus for the instan-
taneous Rabi frequency 
s (right axis, blue dash-dotted lines) of the
signal pulse in the middle of the cell, as a function of time (top axis).
The right axis in each panel was normalized so that 
s is plotted
on the same scale as the corresponding α. From top to bottom,
we have (a) η = 6.5×1013 cm−3 and D = 720, (b) 3.9×1013 cm−3

and 430, (c) 2.2×1013 cm−3 and 240, (d) 1.2×1013 cm−3 and
130, (e) 0.7×1013 cm−3 and 73, (f) 0.34×1013 cm−3 and 38, (g)
0.17×1013 cm−3 and 19. The other parameters are specified in the
text.

longer regions, the theoretical predictions in Fig. 3 would
present a slower decrease after the first maximum, since the
signal would mix contributions from other parts of the ensem-
ble with increasing differences in the oscillatory pattern.

We obtain a reasonable fit of the experimental data to our
simplified model as we change the atomic density by a factor
of 40. Particularly important for the purpose of our work is to
predict the delay and height of the maximum enhancement of
the absorption, and we see that the model captures properly
this aspect of our experimental curves as the parameters
are changed. In order to gain insight into these results, we
also plot in Fig. 3, superposed to the results for α, the
normalized modulus of the unperturbed instantaneous Rabi
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FIG. 4. Instantaneous Rabi frequency of the signal field as a
function of time. The dashed and dotted black lines provide its real
and imaginary parts, respectively. Its modulus is given by the solid
red line. The area below the dashed line is blue for positive values
and red for negative values.

frequency of the signal field, as a function of time, evaluated
at the center of the sample, |
(0)

s (L/2, t )|, which is the region
contributing most to the shape of the measured curve. For
this superposition, we equate the time origin (top scale) with
the delay origin (bottom scale), and normalized |
(0)

s | (right
scale) to fit on the same frame as α (left scale). 
(0)

s (z, t )
was obtained from the inverse Fourier transform of Eq. (12)
and was chosen for comparison because it is a well-known
result and our theory on the regime of very small perturbation
provides pulses with basically the same shape. We define αM

and τM , respectively, as the maximum enhancement and the
pulse delay at which it occurs. Note that in all frames the delay
τM happens where the maximum of the control pulse coincide
with the minimum of |
(0)

s |.
This result, on the other hand, is better understood by

examining Fig. 4, which shows the modulus of 
(0)
s (L/2, t )

together with the real and imaginary parts of the same quantity
for D = 720, corresponding to the parameters of Fig. 3(a).
The minimum in |
(0)

s (L/2, t )| (red solid line) occurs when
Re[
(0)

s (L/2, t)] changes sign. This is a typical situation for
zero area pulses: The first part of the pulse transfers popu-
lation to the excited state transiently, which is then removed
by a second part of the pulse of inverted sign. This process
is repeated over time throughout the whole pulse profile until
no excitation is left on the medium. In our system, there is
an imaginary portion of 
(0)

s (L/2, t ) coming from a small
experimental detuning of the signal field with respect to res-
onance, which prevents maximum transfer of population for
a fixed initial pulse area. This process of transient excitation
by zero area pulses was first discussed in Ref. [27], which
largely inspired the present work, and it is a temporal analog
to the process described in Fig. 1 in frequency space. In Fig. 4,
the maximum transient area �tr

s for that particular physical
situation is indicated by the region in blue for positive values
of Re[
(0)

s (L/2, t)], resulting in �tr
s ≈ 7.3×10−4 rad. The

final area �
f
s beyond 600 ps is below 10−5 rad. As expected

from a zero area pulse leaving no significant population on
the excited state, � f

s � �s. However, the crucial point for the
objectives of the present work is that we have �tr

s ≈ �s, with
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FIG. 5. Maximum enhancement of absorption αM (a) and the
delay τM (b) for which it happens as a function of the atomic density
η. Solid circles and open squares are the experimental results (for
different days) and the solid lines are the prediction from the theory.
Parameters were the same as for Fig. 3.

a decrease in �tr
s of only 27% with respect to the pulse area at

the entrance of the medium.
The maximum enhancement αM and its respective delay

τM as a function of η are plotted on Fig. 5, together with the
expected variation from the theory. For the purpose of photon
storage, these two quantities are the central results of our
experimental approach. The solid circles are the experimental
values for these quantities obtained directly from the panels
of Fig. 3 and the solid lines provide the theoretical results
for the same parameters of Fig. 3. The error bars are quite
small for αM . To evaluate systematic variations on the
determination of the experimental conditions, we plot as open
squares the results of a run of the same experiment on a
different day under the same conditions. Note from Fig. 5(b)
that a relatively strong walk-off between the two pulses should
be observed for the largest atomic densities, with τM changing
by about 200 fs from the beginning to the end of the sample.
This is not critical for our present low-excitation regime, but
may be an important issue once higher excitation probabilities
are achieved and the system requires a fine optimization.

The same quantities as a function of the control-field
average power Pc are plotted in Fig. 6. For the whole curve,
η was kept at its maximum, 6.5×1013 atoms/cm3. The point
of highest Pc in Fig. 6 is then taken at the same experimental
conditions as the point of highest η in Fig. 5. The solid circles
show the results of an experimental run turning Pc down, while
the open square and diamond are different measurements at
maximum Pc and η. We observe then an increase of αM

with Pc, while τM is kept almost constant. The theory follows
qualitatively this overall behavior, but with worst comparison
than for the variation with η. This could be expected from
the various approximations in the theory related to the control
power. First, in our final expression we considered only the
lowest order solution on the control power from Eq. (19).
Second, we neglected any intensity variation as the control
field focus in the middle of the vapor cell, approximating the
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FIG. 6. Maximum enhancement of absorption αM (a) and the
delay τM (b) for which it happens as a function of the control power
Pc. Solid circles are the experimental results and the solid lines
the prediction from the theory. The open square and diamond are
experimental points obtained at maximum Pc on different days. In the
theory, the control electric field amplitude was scaled proportional to√

Pc/Pmax
c , with Pmax

c being the maximum power. Other parameters
were the same as for the maximum density in Fig. 3.

result for a constant intensity in a region of lc = l/4 around
its focus.

Finally, Fig. 7 plots the variation of both αM and τM as
a function of the signal-field power. There is no theoretical
prediction for this variation. In Sec. II A, we employ a linear
theory for the problem that results in no dependence with the
initial signal power, as long as it is sufficiently small. Figure 7
was obtained for the maximum η and Pc of Figs. 5 and 6,
and we observe that all measurements on Fig. 7 are consistent
with the maximum values of these previous figures. This is
crucial, since we aim at using the present investigation as a
guide for future experiments with single photons, at much
lower powers.
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FIG. 7. Maximum absorption enhancement αM (a) and the
delay τM (b) for which it happens as a function of the signal power
Ps. Other parameters are the same as for panel (a) of Fig. 3.
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FIG. 8. Maximum transient signal pulse area �tr
s (dashed black

line) and final signal pulse area � f
s (dash-dotted black line) as a

function of the atomic density, normalized by the initial pulse area
�s. The colored area indicates the experimental range of our present
investigation. A0 is the expected absorption of a zero-area pulse
(dotted black line) and AT is the total absorption resulting from the
action of the control pulse (solid black line). The blue line plots our
estimation for the maximum transient probability of absorption for
the total volume of the Gaussian beams inside the vapor cell. All
other theoretical parameters were the same as for Fig. 3.

A. Pathway to high absorption

Up to now, we have developed the basic theory and experi-
mental tools to enhance and characterize small absorptions of
a weak ultrashort pulse by an atomic vapor. The enhancements
observed so far were quite modest. However, these develop-
ments allow us to devise concrete strategies to proceed from
here to the desired high absorption of a weak ultrashort pulse.
The starting point is the discussion around Fig. 4 highlighting
the role of the transient area �tr

s of a zero area pulse to transfer
a significant population in the beginning of its action in any
particular portion of the atomic ensemble. Since the system is
in the linear regime with respect to the signal pulse, when we
normalize �tr

s by the initial pulse area �s, we have a function
that describes the system’s behavior down to the single-photon
regime [6]. The same is valid for the normalization of the
final area �

f
s by �s. These two normalized quantities as a

function of the atomic density are plotted in Fig. 8, with
the dashed black line for �tr

s /�s and the dash-dotted black
line for �

f
s /�s. The dependence with η is obtained from the

dependence with the optical depth D, as parametrized from
Fig. 3. The atomic density variation of Fig. 8 corresponds to a
temperature variation on the vapor cell from 22◦ up to 155◦C,
with the colored area indicating the atomic density span of
the present investigation. Figure 8 quantifies then our previous
observation that �tr

s decreases much slower with η than �
f
s .

It shows the fast decrease of the final pulse area in this low
excitation regime, with a robust preservation of the initial area
in the excitation transient.

Starting from the estimation, introduced in Sec. II, for the
probability p1,1 to excite a single atom by a single photon,
we can estimate from Fig. 8 the maximum probability ptr

N,1 =
N ftr p1,1 to excite one of N atoms by a single photon tran-
siently, where ftr = (�tr

s /�s)2 and N = ηVL is the number
of atoms in the vapor-cell volume VL interacting with the
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optical beams. We estimate VL ≈ 14×10−3 cm3. The curve
for ptr

N,1 as a function of η is given by the solid blue line
in Fig. 8. It predicts a maximum probability of about 17%
for the maximum density of the present work. In order to
compare with our present situation, it is crucial to estimate,
using the theory for zero-area pulses, the total attenuation A0

of the signal pulse predicted for our experimental conditions
without the action of the control pulse. This quantity is plotted
as a dotted black curve in Fig. 8. �

f
s may be extremely small,

resulting in a pulse that does not leave any excitation in the
atomic ensemble. However, energy is lost in the evolution
from �s to �

f
s due to the strong absorption of the pulse

spectral components around the atomic line. This absorption
slowly increases with η as the absorbed region of the spectrum
increases. A0 is small, around 2.9% for our maximum density,
but for our present small excitation regime it is quite signif-
icant. The curve for the total absorption AT enhanced by the
control pulse in our present investigation is plotted as the solid
black curve in Fig. 8, where we observe the slight increase
by α ≈ 0.3% for our maximum density, already shown in
Figs. 3 to 7. Note that α is the most directly accessible
experimental quantity to characterize the absorption of the
signal beam induced by the control field, but in the low
excitation regime it is really just a small enhancement over the
regular absorption present even for zero area pulses. On the
other hand, α may be considered a total absorption if a high
absorption regime is achieved and A0 becomes negligible.

The maximum transient absorption given by ptr
N,1, consid-

ering the volume VL of the present experiment, is still not
very large when compared to A0, just a factor of 6. However,
it reveals the most significant improvements to be pursued
for the system. First, it becomes clear that there is no large
gain in increasing η. The slight saturation appearing in the
experimental data of Fig. 5 is probably a direct consequence
of the decrease in �tr

s for our highest atomic densities, which
ends up canceling the gains in atomic number for higher den-
sities. The difference between ptr

N,1 and AT , on the other hand,
indicates that there are large gains to be expected in increasing
the area of the control pulse. There are two main approaches
that we envision to increase �c. The first one is to move to a
light source with higher pulse energies, either by introducing
an amplifier to the present system or changing to a new laser.
The second one is to devise a scheme of optical pumping to
transitions with higher dipole moments, which may imply in
changing the presently used transitions in rubidium or even
the atomic species to better adapt to our light source. We
expect the control power to enhance the absorption linearly,
while the dipole moment should enhance it quadratically. Of
course, exact numerical estimations have limited validity once
the absorption increases more significantly, since the present
low-excitation investigation serves only as an indication on
how to improve the system. Once higher absorptions are
achieved, the excitation dynamics should change considerably
and we might witness even the suppression of the formation
of the zero-area pulse.

At this point, it is essential to remember also that our
approach employs so far the simplest possible pulse shapes:
transform-limited Gaussian pulses. Our goal in using such
simple pulse shape was to develop physical intuition on the

problem by keeping a close comparison between theory and
experiment. This strategy has been successful up to this point,
but limited us in terms of parameters to optimize the system. It
is well known, for example, that transform-limited pulses are
not the best choice to excite sequential two-photon transitions,
with enhancements by a factor of 10 being observed for
pulses deviating from this condition [24]. We are presently
experimentally investigating the effects of such spectral masks
in our system.

V. CONCLUSION

In the present work, we provided a detailed analysis of a
process to enhance the absorption of a weak ultrashort pulse
by a narrowband atomic medium. This proposal elaborates
on ideas introduced in 2016, when a single-photon zero-area
pulse was first observed and characterized [6]. This observa-
tion pointed to the possibility of employing well-known tech-
niques for coherent control of atomic transitions by ultrashort
pulses to the problem of devising a long-lived memory to
a flying ultrashort single photon, such as the ones emitted
in the process of parametric-down conversion. Particularly,
our goal was to use the transient excitation of atoms by a
zero-area pulse [27] to drain energy from the weak pulse,
by means of a stronger ultrashort control pulse driving the
transient excitation to a different atomic level not interacting
with the weak pulse. We derived a propagation theory for
this process, describing how the control pulse would affect,
to lowest order, the final absorption of the weak pulse. We
then compared this theory to experimental results and were
able to corroborate the success of the original idea: to enhance
absorption by the transient transfer of energy out of the transi-
tion interacting with the weak pulse. However, the maximum
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FIG. 9. Solid blue line is the spectrum for the laser at 762 nm.
Dashed black line plots the supercontinuum generation (SCG) spec-
trum optimized for its spectral density around 800 nm. Dotted red
line plots the spectrum of the SCG light after passing through the
interference filter, which gives then our signal beam. Black and red
lines are plotted to scale. The blue line is obtained from a small
portion of the 762-nm light.
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observed enhancement so far was quite modest, an increase
of 0.3% on a pulse that should be already absorbed by 2.9%
without the control pulse. Despite this fact, the complete set
of observations and particularly the corroboration of our phys-
ical picture of the problem, by comparison with the theory,
allowed us to devise different strategies to further advance
the problem. We are now confident that our original goal is
feasible. It should be possible to directly absorb, with high
probability, an ultra-broadband single photon by a long-lived
atomic memory.
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APPENDIX: SPECTRA FOR SIGNAL-BEAM
GENERATION

Figure 9 presents the relevant spectra of the fields involved
in the generation of the signal beam at 795 nm. The solid blue
line is the input spectrum from the laser, centered in 762 nm.
The SCG spectrum for the light coming out of the PCF is
given by the dashed black line. It typically spans from 600 up
to 850 nm. However, its particular distribution in this region
can be shaped by the alignment, power, and polarization of the
input beam. We used 60 mW of 762-nm light at the entrance
of the PCF. In Fig. 9, we show a typical SCG spectrum
used in our experiment, which was then optimized to enhance
its components around 800 nm. This SCG spectrum passes
finally through the tilted interference filter, whose tilt angle
is adjusted so that its center frequency is at 795 nm. For
the SCG spectrum of Fig. 9, the corresponding signal-beam
spectrum after the interference filter is given by the dotted red
line. These two spectra are plotted with the same vertical scale
in Fig. 9. The reduction in amplitude of the filtered spectrum
comes from losses in the interference filter.
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