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The adiabatic theory of strong-field ionization of molecules with internuclear motion included into consid-
eration is developed. Two adiabatic regimes in terms of the electronic, nuclear, and laser field timescales are
considered. In the first regime, field is the slowest; that is, its timescale is much larger than the electronic and
nuclear timescales. The corresponding theory generalizes the adiabatic theory of strong-field ionization of atoms
and molecules with frozen nuclei [Phys. Rev. A 86, 043417 (2012)] by treating the internuclear motion on
equal footing with the electronic motion. In the second regime, the active electron is the fastest; that is, its
timescale is much smaller than that of the nuclei and laser field. The corresponding theory naturally involves
the Born-Oppenheimer approximation. The two versions of the adiabatic theory are validated by comparing
their predictions with accurate numerical results obtained by solving the time-dependent Schrödinger equation
(TDSE) for a model diatomic molecule with one electronic and one internuclear degree of freedom. The adiabatic
results are shown to converge to the TDSE results uniformly with respect to the laser field amplitude both in
tunneling and over-the-barrier ionization regimes. Two applications of the theory to the analysis of strong-field
effects associated with the internuclear motion are discussed.
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I. INTRODUCTION

Nuclear motion in molecules interacting with intense laser
pulses affects electronic dynamics, which is reflected in
strong-field ionization observables—photoelectron momen-
tum distributions (PEMDs) and high-order harmonic genera-
tion (HHG) spectra—and can be used for ultrafast imaging of
molecular structure. Furthermore, resolving the observables
with respect to the final state of the molecular ion or its
dissociated fragments may provide access to more detailed in-
formation on the correlated electron-nuclear dynamics. Thus,
the inclusion of the nuclear motion into consideration suggests
a natural direction for expanding the research area in strong-
field physics [1].

The numerical solution of the time-dependent Schrödinger
equation (TDSE) has proven to be a powerful tool for studying
highly nonperturbative strong-field processes. In the early
theoretical papers where the internuclear motion was treated
on an equal footing with the electronic motion [2–7], the
TDSE was solved for different reduced dimensionality models
describing the ionization and dissociation of H2

+ in a strong
laser field. In Refs. [2,3,5,6], the initial condition for the
TDSE was specified in the Born-Oppenheimer approximation
(BOA), while in Refs. [4,7] an exact three-body initial state
was used. These studies focused primarily on the analysis of
the nuclear wave-packet dynamics visualizing the dissociation
process. In addition, in Ref. [5] populations of the different
bound electronic and vibrational states of H2

+ were calculated
by projecting the time-dependent wave function onto the
corresponding states in the BOA, and in Ref. [6] separate elec-
tronic and nuclear kinetic energy spectra were evaluated by
Fourier transforming the wave function at the end of the pulse
in the corresponding coordinate. The early studies were fol-

lowed by numerous applications of the TDSE supplemented
with other theoretical techniques to the prediction and analysis
of various strong-field effects associated with the internuclear
motion. This includes discussions of the Coulomb explosion
imaging [8], carrier-envelope-phase-induced asymmetry in
the dissociation products [9,10], isotope effect in HHG spectra
[11], dynamic interference in the Coulomb explosion [12],
vibrational excitation [13], field-driven electronic dynamics
during dissociation [14], the joint energy spectrum of the elec-
tronic and nuclear fragments [15] and its dependence on the
laser intensity [16], the appearance of even-order harmonics in
HHG radiation from homonuclear diatomic molecules [17],
the effect of exceptional points of molecules in an electric
field on the dissociation dynamics [18], post-laser-pulse oscil-
lations induced by excitation above the dissociation threshold
[19], etc. The effects discussed in Refs. [9,10], [11], [12], and
[15,16] were also investigated experimentally in Refs. [20],
[21], [22], and [23–25], respectively. Note that in most of the
TDSE studies to date observables are calculated by projecting
onto final molecular states in the BOA. This approximation
greatly facilitates calculations, especially for the dissocia-
tive ionization process involving double continua [15], since
constructing exact molecular scattering states is a nontrivial
problem in itself, but also introduces an uncontrollable error.
In this respect, calculations including internuclear motion
have not yet advanced to the stage of TDSE calculations
for one-electron atoms [26–30] and molecules with frozen
nuclei [31,32] and two-electron atoms [33,34] in which exact
scattering states are used to extract observables.

Tunneling ionization deserves special mention as the first
step for all strong-field phenomena. In the adiabatic regime,
tunneling proceeds as if the ionizing field were static and
equal to the instantaneous laser field; this enables one to
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treat this step within a time-independent framework separately
from the rest of the process. Studies of the effect of the
internuclear motion on tunneling ionization of molecules were
initiated in Ref. [35], where the relative populations of the
vibrational states of H2

+ resulting from tunneling ionization
of H2 were measured experimentally and calculated theoret-
ically. Later, the isotope effect on the total ionization rate
of molecules was predicted theoretically [36] and confirmed
experimentally [37]. The analysis in Refs. [35,36] was based
on the BOA. The applicability of this approximation in the
theory of tunneling ionization was revisited in Ref. [38]. It
was shown that the BOA breaks down at sufficiently weak
fields, while the weak-field asymptotic theory (WFAT) [39],
on the contrary, works well in this case. The complementarity
of the WFAT and BOA in the theory of tunneling ionization
of molecules was analyzed and illustrated by calculations in
Refs. [40–43].

Typical lasers used in strong-field experiments operate
in the near-infrared range at frequencies ω ∼ 0.057 a.u.
(wavelengths ∼800 nm). The corresponding laser period
2π/ω ∼ 110 a.u. by far exceeds the characteristic time
2π/Ip ∼ 12.6 a.u. of the electronic motion in atoms,
where Ip ∼ 0.5 a.u. is the ionization potential. In Ref. [44],
the adiabatic theory of strong-field ionization based on the
asymptotic expansion in a small parameter given by the ratio
of electronic and field timescales was developed. The power
of this theory was demonstrated by predicting a shift of
the maximum of PEMDs generated by circularly polarized
pulses [30], which has been observed experimentally [45],
unraveling target structure information from the strong-field
photoelectron holography pattern [46], developing a theory of
rescattering [32,47] which has been confirmed by experiments
with atoms [48] and molecules [49,50], and suggesting a
method for molecular orbital imaging [51]. Recent devel-
opments in generating intense few-cycle pulses are heading
toward the midinfrared [52] and even the terahertz [53] range.
Solving the TDSE for such pulses becomes prohibitively
difficult, even for atomic targets. Meanwhile, the adiabatic
theory can be implemented with the same ease and its
predictions become more accurate as the laser wavelength
grows.

The goal of this paper is to generalize the adiabatic theory
[44] by including the internuclear motion into consideration.
In general, the adiabatic approximation relies on the presence
of different timescales in the system. The theory developed in
Ref. [44] relies on the small ratio of electronic and laser field
timescales, which enables one to treat strong-field ionization
of atoms and molecules with frozen nuclei. In molecules
with moving nuclei, additional timescales characterizing the
nuclear motion appear. In this paper, we include only the inter-
nuclear motion, as was also done in all the TDSE calculations
mentioned above, leaving rotations to future studies. Thus, we
deal with a system having three timescales. The structure of
the theory depends on the relation between these timescales.
We develop two versions of the theory applicable in regimes
which seem to be most relevant for applications in strong-
field physics. We also validate the theories and illustrate
their quantitative performance by comparing their predictions
with the results of TDSE calculations for a model diatomic
molecule with one electronic and one internuclear degree of

freedom treated previously within a time-independent frame-
work [38,40–42].

The paper is organized as follows. In Sec. II, we describe
the model and define observables in terms of the solution
to the TDSE. We use exact three-body states for both the
initial condition for the TDSE and observables, which is a
strong point of the present TDSE calculations. In Sec. III, the
TDSE is reformulated in an integral form more convenient
for deriving the adiabatic asymptotics of the wave function.
In Sec. IV, a flux formula for the ionization amplitude is
obtained, which is more convenient for deriving the adiabatic
asymptotics of the ionization observables. The two versions of
the adiabatic theory mentioned above are developed in Sec. V.
In Sec. VI, they are validated by comparison with the TDSE
calculations. In Sec. VII, two applications illustrating the
usefulness of the adiabatic theory are discussed. Section VIII
concludes the paper. The numerical techniques used in the
calculations are described in the Appendix.

II. BASIC EQUATIONS

A. Model

Following Refs. [38,40–42], we consider a model one-
dimensional (1D) molecule consisting of two identical nuclei
with masses m1 = m2 = M and charges q1 = q2 = 1/2 and
one active electron with mass m3 = 1 and charge q3 = −1
(atomic units are used throughout the paper). The molecule
is treated in its center-of-mass frame, so the nuclear x1 and x2

and electronic x3 coordinates satisfy M(x1 + x2) + x3 = 0. Its
Hamiltonian is given by

H0 = − 1

2μ

∂2

∂R2
− 1

2m

∂2

∂x2
+ Uion(R) + V (x; R), (1)

where R = x2 − x1 and x = x3 − (x1 + x2)/2 = x3/m are Ja-
cobi coordinates and μ = M/2 and m = 2M/(2M + 1) are
the corresponding reduced masses. The potential Uion(R)
models the internuclear interaction in the molecular ion. We
assume that the nuclei cannot pass through each other, so the
system is considered in the region R � 0 with zero boundary
condition at R = 0. In addition, in this paper we assume that
the molecular ion has a purely discrete spectrum of eigenstates
defined by [

− 1

2μ

d2

dR2
+ Uion(R) − εv

]
χv (R) = 0, (2a)

χv (0) = χv (R → ∞) = 0, (2b)

where v = 0, 1, . . . is the vibrational quantum number, and
we impose zero boundary condition also at R → ∞. This
means that the molecule cannot dissociate. Our previous
studies [38,40] showed that even without dissociation the
system described by Eq. (1) provides an instructive model for
investigating effects of internuclear motion on the dynamics
of ionization in an external electric field. The dissociation
channel can be included into the present theory later, as was
done in the stationary case in Refs. [41,42]. The potential
V (x; R) describes the interaction of the active electron with
the molecular ion. It is considered as a function of the Jacobi
coordinate x which parametrically depends on the internuclear
distance R. In the present homonuclear case, this potential
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is symmetric, V (x; R) = V (−x; R). We assume that it has a
finite range or vanishes sufficiently rapidly as |x| grows at a
given R, which is required for the applicability of the approach
developed in Ref. [44]. In the illustrative calculations reported
below, the functions Uion(R) and V (x; R) are chosen to model
the Born-Oppenheimer (BO) potentials of H2

+ and H2; their
explicit forms are given in Sec. VI A.

To define observables, we need to introduce a complete
set of eigenstates of H0. All molecular wave functions con-
sidered below satisfy zero boundary conditions at R = 0
and R → ∞, so we indicate explicitly only the asymp-
totic boundary conditions at |x| → ∞. The bound states are
defined by

(H0 − En)�n(x, R) = 0, (3a)

�n(x, R)||x|→∞ = 0, (3b)

where n = 0, 1, . . . enumerates the states in increasing order
of their energy En. The eigenfunctions �n(x, R) are assumed
to be real. These states lie below the boundary of the electronic
continuum ε0. The in (+) and out (−) scattering states having
an incident wave with momentum k in the entrance vibrational
channel v satisfy

[H0 − Ev (k)]�(±)
v (x, R; k) = 0, (4)

where

Ev (k) = k2

2m
+ εv. (5)

We consider these states in the whole range of the incident
momentum, −∞ < k < ∞, with positive and negative k cor-
responding to electrons impinging on the molecular ion from
the negative and positive ends of the x axis, respectively. The
boundary conditions for the in states are specified by

�(+)
v (x, R; k > 0) =

⎧⎨
⎩

∑
v′

√
k

kv′ eikv′ xχv′ (R)S+
v′v (k), x → +∞,

eikxχv (R) − ∑
v′

√
k

kv′ e−ikv′ xχv′ (R)S−
v′v (k), x → −∞,

(6a)

and

�(+)
v (x, R; k < 0) =

⎧⎨
⎩

eikxχv (R) − ∑
v′

√
|k|
kv′ e

ikv′ xχv′ (R)S+
v′v (k), x → +∞,∑

v′

√
|k|
kv′ e−ikv′ xχv′ (R)S−

v′v (k), x → −∞,
(6b)

where kv′ =
√

k2 + 2m(εv − εv′ ) � 0, S±
v′v (k) is the scattering

matrix, its superscript indicates the direction of propagation of
the outgoing wave in the exit channel v′, and the summations
run over all open exit channels with εv′ < Ev (k). In the present
homonuclear case, the scattering matrix satisfies S−

v′v (−k) =
S+

v′v (k). The out states are given in terms of the corresponding
in states by [54]

�(−)
v (x, R; k) = [�(+)

v (x, R; −k)]∗. (7)

Note that k is the momentum conjugate to the Jacobi coordi-
nate x. For a given k, the momentum of the electron conjugate
to its coordinate x3 = mx is k3 = k/m. It is convenient to
consider the scattering states and the PEMDs defined below as
functions of the Jacobi momentum k instead of the electronic
momentum k3. In the BO limit M → ∞ we have m → 1, so
the two momenta coincide. We construct molecular eigen-
states by solving Eqs. (3) and (4) numerically without any
approximations using a procedure described in the Appendix.

B. Time-dependent Schrödinger equation and observables

The molecule interacts with an external time-dependent
electric field F (t ) representing a laser pulse. Its dipole mo-
ment in the center-of-mass frame is (x1 + x2)/2 − x3 = −x.
Thus, the TDSE describing the system in the dipole approxi-
mation and length gauge reads

i
∂

∂t
�(x, R, t ) = [H0 + F (t )x]�(x, R, t ). (8)

Note that the nuclei do not interact with the field in the
homonuclear case. The field satisfies F (t → ±∞) = 0, and

hence the initial condition for Eq. (8) and observables can
be expressed in terms of the eigenstates of H0. We assume
that the molecule is initially in the ground state, so the initial
condition is

�(x, R, t → −∞) = �0(x, R)e−iE0t . (9)

Observables can be extracted from the solution to Eqs. (8) and
(9) at t → ∞, after the pulse is over. The probability for the
molecule to remain in a bound state is given by

Pn =
∣∣∣∣
∫ ∞

0
dR

∫ ∞

−∞
dx �n(x, R)�(x, R, t )

∣∣∣∣
2

t→∞
. (10)

All the other observables can be expressed in terms of the
ionization amplitude

Iv (k) = eiEv (k)t
∫ ∞

0
dR

∫ ∞

−∞
dx �(−)∗

v (x, R; k)�(x, R, t )

∣∣∣∣
t→∞

.

(11)

The partial PEMD describing the process in which an electron
is released with momentum k/m while the molecular ion is left
in a vibrational state v is given by

Pv (k) = |Iv (k)|2. (12)

This is the most detailed characteristic of ionization. Us-
ing it, we can define appropriate integral characteris-
tics. The probability of ionization into a given vibrational
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channel is

Pion
v =

∫ ∞

−∞
Pv (k)

dk

2π
. (13)

The total PEMD describing the release of an electron with
momentum k/m, irrespective of the final state of the molecular
ion, is

P(k) =
∑

v

Pv (k). (14)

Finally, the total ionization probability can be calculated using
either of

Pion =
∑

v

Pion
v =

∫ ∞

−∞
P(k)

dk

2π
. (15)

The unitarity of the evolution described by Eq. (8) ensures that
∑

n

Pn + Pion = 1. (16)

We solve Eqs. (8) and (9) and calculate the observables
numerically without any approximations, as described in the
Appendix. This provides exact (within the numerical accu-
racy) results used for validating the adiabatic theory.

III. INTEGRAL FORM OF THE TIME-DEPENDENT
SCHRÖDINGER EQUATION

For developing the theory, it is convenient to rewrite the
TDSE (8) in an integral form [44]. Let us introduce a retarded
Green’s function defined by[

i
∂

∂t
+ 1

2μ

∂2

∂R2
+ 1

2m

∂2

∂x2
− Uion(R) − F (t )x

]

× G(x, R, t ; x′, R′, t ′)

= δ(t − t ′)δ(x − x′)δ(R − R′), (17a)

G(x, R, t ; x′, R′, t ′)|t<t ′ = 0. (17b)

Here, we have retained the internuclear and electron-field
interactions, which allow separation of the variables x and R,
but omitted the potential V (x; R), which couples the electronic
and nuclear degrees of freedom. The solution to Eq. (17) can
be expressed as a product of retarded Green’s functions for the
electronic and nuclear subsystems,

G(x, R, t ; x′, R′, t ′) = iGx(x, t ; x′, t ′)GR(R, R′, t − t ′). (18)

The electronic Green’s function satisfies[
i
∂

∂t
+ 1

2m

∂2

∂x2
− F (t )x

]
Gx(x, t ; x′, t ′) = δ(t − t ′)δ(x − x′)

(19)
and is given by [55]

Gx(x, t ; x′, t ′) = e−3iπ/4θ (t − t ′)
√

m

2π (t − t ′)
eiS(x,t ;x′,t ′ ),

(20)

where S (x, t ; x′, t ′) is the classical action accumulated along a
trajectory connecting the space-time points (x′, t ′) and (x, t ).

Let us introduce a reference trajectory with the velocity v(t )
and coordinate x(t ) defined by

mv̇(t ) = −F (t ), ẋ(t ) = v(t ), (21a)

v(t → −∞) = x(t → −∞) = 0. (21b)

In terms of this trajectory, the action in Eq. (20) is given by
[44,56]

1

m
S (x, t ; x′, t ′) = v(t )x − v(t ′)x′ + [x(t ) − x(t ′) − (x − x′)]2

2(t − t ′)

− 1

2

∫ t

t ′
v2(t ′′)dt ′′. (22)

Alternatively, the function (20) can be expanded in Volkov
states,

Gx(x, t ; x′, t ′) = −iθ (t − t ′)
∫ ∞

−∞
eiS(x,t ;k)−iS(x′,t ′;k) dk

2π
. (23)

Here S (x, t ; k) is the classical action for a trajectory passing
through the point (x, t ) and having the asymptotic momentum
k [44],

S (x, t ; k) = mui(t, k)x − S (t ; k), (24a)

S (t ; k) = k2t

2m
− m

2

∫ ∞

t

[
u2

i (t ′, k) − (k/m)2
]
dt ′, (24b)

where ui(t, k) is the initial velocity of the trajectory at time t ,

ui(t, k) = k/m − v∞ + v(t ), (25)

and v∞ = v(t → ∞). We mention that to extend the present
theory to potentials V (x; R) with a Coulomb tail, the approach
developed in Ref. [57] may prove useful. The nuclear Green’s
function satisfies[

i
∂

∂t
+ 1

2μ

∂2

∂R2
− Uion(R)

]
GR(R, R′, t ) = δ(t )δ(R − R′).

(26)

It can be expanded in terms of the solutions to Eq. (2),

GR(R, R′, t ) = −iθ (t )
∑

v

e−iεvtχv (R)χv (R′). (27)

Having thus constructed the solution to Eq. (17), we can
rewrite Eq. (8) as

�(x, R, t ) =
∫ t

−∞
dt ′

∫ ∞

0
dR′

∫ ∞

−∞
dx′ G(x, R, t ; x′, R′, t ′)

× V (x′; R′)�(x′, R′, t ′). (28)

This is the integral form of Eq. (8) we need. The absence of
an inhomogeneous term in this equation is a consequence of
the initial condition (9).

IV. ALTERNATIVE EXPRESSIONS FOR THE
IONIZATION AMPLITUDE

In the following analysis, we focus on ionization processes
described by the ionization amplitude (11). This amplitude
can be expressed in different forms [44]. We can rewrite
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Eq. (11) as

Iv (k) = eiEv (k)t
∫ ∞

0
dR

∫ ∞

−∞
dx e−ikxχv (R)

× (1 − P̂b)�(x, R, t )

∣∣∣∣
t→∞

, (29)

where P̂b is the projector onto the subspace of bound states
of the unperturbed molecule. If we insert Eq. (28) with the
electronic Green’s function given by Eq. (23) into the first
term on the right-hand side of Eq. (29), this term takes the
form

− i
∫ t

−∞
dt ′

∫ ∞

0
dR

∫ ∞

−∞
dx eiεvt ′−iS(x,t ′;k)χv (R)

× V (x; R)�(x, R, t ′)
∣∣∣∣
t→∞

. (30)

The part of �(x, R, t ) belonging to the continuous spectrum
of H0 represents electrons liberated from the molecule. Such
electrons fly away from the parent molecular ion after the laser
pulse is over, so

V (x; R)(1 − P̂b)�(x, R, t )
∣∣
t→∞ = 0. (31)

Using this, the second term in Eq. (29) can be rewritten as

− i
∫ ∞

t
dt ′

∫ ∞

0
dR

∫ ∞

−∞
dx eiεvt ′−iS(x,t ′;k)χv (R)

× V (x; R)�(x, R, t ′)
∣∣∣∣
t→∞

. (32)

Combining Eqs. (30) and (32) gives

Iv (k) = − i
∫ ∞

−∞
dt

∫ ∞

0
dR

∫ ∞

−∞
dx eiεvt−iS(x,t ;k)χv (R)

× V (x; R)�(x, R, t ). (33)

Inserting here Eq. (8) and integrating by parts, we obtain yet
another expression,

Iv (k) =
∫ ∞

−∞
dt

∫ ∞

0
dR eiεvtχv (R)[ j(x → ∞, R, t )

− j(x → −∞, R, t )], (34)

where

j(x, R, t ) = − i

2m

[
e−iS(x,t ;k) ∂

∂x
�(x, R, t )

−�(x, R, t )
∂

∂x
e−iS(x,t ;k)

]
(35)

is the ionization flux. Equations (11), (29), (33), and (34) give
different exact representations for the ionization amplitude.
While Eq. (11) is more suitable for numerical calculations, for
deriving adiabatic asymptotics of Iv (k) it is more convenient
to use Eq. (34); see Ref. [44].

V. ADIABATIC APPROXIMATIONS

The system under consideration has three different
timescales. The first timescale Te characterizes the electronic
motion. We assume that Te ∼ 1 (in atomic units), which is the

FIG. 1. Illustration of the regions of applicability of AAf
[Eq. (36), the wedge-shaped (red) shaded region] and AAnf
[Eq. (58), the rectangular (blue) shaded region] in the plane of
timescale ratios Tf /Te and Tn/Te. In this figure, the electronic
timescale is chosen as Te = 2π/Ip = 12.6, where Ip = 0.5. The nu-
clear timescale is defined by Tn = 2π/�En, where �En is the energy
difference between the ground and first exited vibrational states of
the molecule. We have Tn = 331 and 461 for H2 and D2, respectively
[58]; the corresponding ratios Tn/Te are shown by dashed lines. The
field timescale is Tf = 2π/ω, where ω is the laser frequency; the
ratios Tf /Te for several characteristic wavelengths from near-infrared
(NIR) to terahertz range are indicated.

case for molecules in the ground electronic state. The second
timescale Tn characterizes the internuclear vibrational motion.
It depends on the nuclear mass M and for large M grows
as Tn ∼ M1/2. In this paper, we consider nuclear masses in
a wide range from M ∼ 1 to M � 1, so Tn varies from Tn ∼ 1
to Tn � 1. Finally, the third timescale Tf characterizes the
laser field. It is externally controllable and can be varied by
varying the laser wavelength. We assume that Tf � 1, which
is of main interest for applications in strong-field physics. In
summary, we consider the situation in which Te � Tf and the
relation between Te and Tn varies from Te ∼ Tn to Te � Tn.
Note that this does not fix the relation between Tn and Tf .
The relation between all three timescales is determined by any
two of their ratios, e.g., Tf /Te and Tn/Te. In this section, we
develop two adiabatic approximations (AA) which apply in
the different regions of the plane of these ratios (see Fig. 1)
and then discuss their compatibility.

A. Field is the slowest

We first consider the limit in which the field varies slowly
on timescales of electronic and nuclear motions, that is,

max(Te, Tn) � Tf . (36)

This condition holds in the wedge-shaped (red) shaded re-
gion in Fig. 1. Let us introduce the corresponding adiabatic
parameter

εf = max

(
Te

Tf
,

Tn

Tf

)
. (37)

The adiabatic approximation in the region (36) amounts to
the asymptotics for εf → 0. This version of the adiabatic
theory for the present three-timescale molecular system will
be referred to as AAf. It generalizes the adiabatic theory
for two-timescale atomic systems developed in Ref. [44] by

053422-5



SVENSMARK, TOLSTIKHIN, AND MORISHITA PHYSICAL REVIEW A 101, 053422 (2020)

including the internuclear motion on an equal footing with
the electronic motion. In the derivation below, we follow
Ref. [44].

1. Molecular Siegert states

In the limit εf → 0, the solution to the TDSE (8) and the
observables can be expressed in terms of a Siegert state (SS)
of the molecule in a static electric field [44]. The SS is the
solution to

[H0 + Fx − E0(F )]�0(x, R; F ) = 0, (38)

satisfying the outgoing-wave boundary conditions

�0(x, R; F )

=
{∑

v fv (F )e(x, E (F ) − εv )χv (R), x → −s∞,

0, x → +s∞,

(39)

where s = sgn(F ) and

e(x, E ) = m1/4

(2|Fx|)1/4

× exp

[
i
(2m)1/2

|F |
(

2

3
|Fx|3/2 + E |Fx|1/2

)]
. (40)

Equations (38) and (39) constitute an eigenvalue problem. The
subscript 0 indicates the solution which originates from the
initial ground state of the molecule as the electric field F is
turned on, that is, the one satisfying

E0(F )|F→0 = E0, �0(x, R; F )|F→0 = �0(x, R). (41)

For F 	= 0, the SS eigenvalue is complex,

E0(F ) = E0(F ) − i
20(F ), (42)

and defines the Stark-shifted energy E0(F ) and the rate
of tunneling or over-the-barrier static-field ionization 0(F )
of the state. The SS eigenfunction is also complex and
normalized by∫ ∞

0
dR

∫ ∞

−∞
dx �2

0(x, R; F ) = 1. (43)

Note that there is no complex conjugation in this equation,
which is a general property of the theory of SSs [59–61]. The
coefficients fv (F ) in Eq. (39) are the channel ionization am-
plitudes. The normalization coefficient in Eq. (40) is chosen
such that in the weak-field limit the ionization rate is given by

0(F )||F |→0 =
∑

v

| fv (F )|2. (44)

Let a denote the range of the potential V (x; R) in x for the
interval of R where the eigenfunction �0(x, R; F ) is localized.
Then we can specify the boundary condition (39) as

�0(x, R; F )|x�−a = e−iπ/122π1/2m1/3(2F )−1/6

×
∑

v

fv (F ) Ai(ζ )χv (R), (45a)

ζ = e−iπ/3(2m)1/3F−2/3[E0(F ) − εv − Fx], (45b)

where Ai(z) is the Airy function and, for definiteness, we have
assumed that F > 0. In the region x � min(−a, xv ), where
xv = −|E0(F ) − εv|/F is the turning point for the motion in
x in channel v, Eq. (45a) reduces to Eq. (39).

Molecular SSs in the present model were studied in
Refs. [38,40–42]. Here we solve Eqs. (38) and (39) using
numerical techniques developed therein. This yields functions
E0(F ) and fv (F ) needed to implement AAf.

2. Wave function

The asymptotics of the solution to Eq. (8) for εf → 0 is
given by a sum of adiabatic and rescattering parts [44],

�(x, R, t ) = �a(x, R, t ) + �r (x, R, t ). (46)

The adiabatic part �a(x, R, t ) describes a state in which the
electron remains quasibound. This state adjusts itself to the
instantaneous value of the laser field F (t ) and adiabatically
follows its variation in time. The leakage of electrons in this
state is the source of electrons liberated from the molecule.
The rescattering part �r (x, R, t ) describes recollision of such
electrons with the molecular ion as they return to it being
driven by the field. Equation (46) holds inside a quasista-
tionary zone |x| � X (t ), where X (t ) = |F (t )|T 2

f = O(ε−2
f )

[44]. In this zone, �a = O(ε0
f ) and for the present 1D case

�r = O(ε1/2
f ), which enables one to distinguish the two terms

in Eq (46). We mention that in the 3D case �r = O(ε3/2
f ) [44],

which means that the 1D model exaggerates the relative role
of rescattering. Thus, in the limit εf → 0, the adiabatic part is
the leading-order term in Eq. (46). In this paper, we restrict
our treatment to the leading-order approximation within AAf
described by the adiabatic part of the wave function. Effects
of rescattering can be included following [44]; we leave this
to future studies.

The function �a(x, R, t ) is sought in the form [44]

�a(x, R, t ) = �0(x, R; t )e−is0 (t ), (47)

where

s0(t ) = E0t +
∫ t

−∞
[E0(t ′) − E0] dt ′. (48)

The functions E0(t ) and �0(x, R; t ) introduced here are as-
sumed to be slow functions of time in the sense that their
derivatives in t are O(ε1

f ). To find them, we substitute Eq. (47)
for the wave function in Eq. (28). All factors in the integrand
as functions of t ′ are expanded in δ = t − t ′ in the region
δ � Tf = O(ε−1

f ) retaining terms of order O(ε0
f ). We have

�0(x′, R′; t ′) = �0(x′, R′; t ) + O
(
ε1

f

)
, (49a)

s0(t ′) = s0(t ) − E0(t )δ + O
(
ε1

f

)
. (49b)

The action (22) is expanded using dnF (t )/dtn = O(εn
f ),

S (x, t ; x′, t ′) = m(x − x′)2

2δ
− 1

2
F (t )(x + x′)δ

− 1

24m
F 2(t )δ3 + O

(
ε1

f

)
. (50)

Substituting this into Eq. (28), we obtain an integral equation
for �0(x, R; t ) as a function of spatial coordinates x and R,
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where the kernel is given by an integral over δ. It can be shown
that this equation coincides with the integral form of Eq. (38),
where F is substituted by F (t ) [44]. We thus obtain

E0(t ) = E0(F (t )), �0(x, R; t ) = �0(x, R; F (t )). (51)

Omitting further details, we mention that to derive the second
of these equations, including the normalization coefficient
defined by Eq. (43), the above expansions should be extended
to terms of order O(ε1

f ) [44]. Equations (47), (48), and (51)
define the leading-order term in the asymptotics of the solu-
tion to Eq. (28) for εf → 0. It can be seen from Eqs. (41) that
the function (47) satisfies the initial condition (9).

3. Observables

Within AAf, the observables should be calculated using
Eq. (47). Substituting this function into Eq. (10), we obtain
the survival probability

Pf
0 = exp

[
−

∫ ∞

−∞
0(t ) dt

]
, (52)

where 0(t ) = 0(F (t )). Probabilities of transitions to ex-
cited states with n > 0 in this approximation are equal to
zero. Such transitions are exponentially suppressed in the limit
εf → 0 and not accounted for by Eq. (47).

We now evaluate the ionization amplitude using Eq. (34).
Substituting Eq. (47) into Eq. (35), the integrand in Eq. (34)
contains a factor eiSa (x,t ;k) with the adiabatic action

Sa(x, t ; k) = −S (x, t ; k) + εvt − s0(t ). (53)

In the limit εf → 0, the first term here defined by the classical
action (24) is O(ε−3

f ), while the other two terms having
quantum origin are O(ε−1

f ). Since eiSa (x,t ;k) oscillates rapidly,
and the other factors in the integrand in Eq. (34) are slow
functions of t , the integral over t can be evaluated using the
steepest descent method. The saddle points are defined by

∂Sa

∂t
= m

2
u2

i (t, k) + F (t )x + εv − E0(t ) = 0. (54)

We evaluate the right-hand side of Eq. (34) at |x| � a, where
the potential V (x; R) can be neglected and Eq. (45a) holds. Let
us recall that Eq. (47) holds at |x| � X (t ). Since a = O(ε0

f )
and X (t ) = O(ε−2

f ), in the limit εf → 0 there exists a region
a � |x| � X (t ) where both conditions are satisfied. We apply
Eq. (34) at x = O(ε0

f ) inside this region. Then the first term in
Eq. (54) is O(ε−2

f ), while the other terms are O(ε0
f ). It can

be seen that the saddle points appear in pairs located near the
corresponding solution to [44]

ui(t, k) = 0 → t = ti(k). (55)

We use ti(k) as a reference point and expand the action (54) in
δ = t − ti(k),

Sa(x, t ; k) =S (ti; k) + εvti − s0(ti) + [F (ti )x + εv − E0(ti )]δ

+ 1

6m
F 2(ti)δ

3 + O
(
ε1

f

)
, (56)

where S (t ; k) is defined by Eq. (24b) and we have omitted
the argument of ti(k). The following derivation parallels that
in Ref. [44]. When we substitute Eq. (56) into Eq. (34), the

integral over t can be calculated analytically and the result
is given in terms of an Airy function. On the other hand,
the integral

∫ ∞
0 χv (R)�0(x, R; ti ) dR appearing in Eq. (34) at

|x| � a can be also expressed in terms of an Airy function
using Eq. (45a). The ionization flux (35) reduces to the
Wronskian of the two Airy functions; it does not depend on x,
which eliminates the dependence on x of the right-hand side
of Eq. (34). We thus obtain

I f
v (k) = eiπ/4(2π )1/2

∑
i

fv (ti )

|F (ti )|1/2

× exp[iS (ti, k) + iεvti − is0(ti )]. (57)

Here fv (t ) = fv (F (t )), where fv (F ) is defined by Eq. (39),
and the summation runs over the different solutions to
Eq. (55). Equation (57) gives the leading-order term in the
asymptotics of the ionization amplitude for εf → 0. Using
Eq. (57), we obtain all the ionization observables defined in
Sec. II B within AAf.

B. Electron is the fastest

We now consider the limit in which the electronic motion
is faster compared to the nuclear motion and to how the field
varies with time, that is

Te � min(Tn, Tf ). (58)

This condition holds in the rectangular (blue) shaded region
in Fig. 1. The corresponding adiabatic parameter is

εnf = max

(
Te

Tn
,

Te

Tf

)
. (59)

The adiabatic approximation in the region (58) is the asymp-
totics for εnf → 0. Note, importantly, that this asymptotics
implies the BO limit M → ∞, which is used below. Being
interested only in the leading-order approximation for εnf →
0, in this subsection we set m = 1. We will refer to this version
of the adiabatic theory for the present three-timescale system
as AAnf.

1. Electronic Siegert states

In the limit M → ∞ the BOA applies. This suggests that
in the limit εnf → 0 the solution to the TDSE (8) and the
observables can be expressed in terms of an electronic SS in
a static electric field defined by [compare with the molecular
SS defined by Eq. (38)][

−1

2

d2

dx2
+ V (x; R) + Fx − Ee(R, F )

]
ψe(x; R, F ) = 0,

(60)
subject to the outgoing-wave boundary conditions

ψe(x; R, F ) =
{

f (R, F )em=1(x, E (R, F )), x → −s∞,

0, x → +s∞,

(61)

where s = sgn(F ) and em=1(x, E ) is given by Eq. (40) with
m = 1. This is an eigenvalue problem. Its solutions depend on
R as a parameter. We need the solution which originates from
the ground electronic state as the electric field F is turned on.
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For F 	= 0, the SS eigenvalue is complex and can be presented
in the form

Ee(R, F ) = Ee(R, F ) − i
2e(R, F ), (62)

which defines the energy Ee(R, F ) and ionization rate
e(R, F ) of the state at a given R. The SS eigenfunction is
also complex and normalized by∫ ∞

−∞
ψ2

e (x; R, F ) dx = 1, (63)

again without complex conjugation, as in Eq. (43). The coeffi-
cient f (R, F ) in Eq. (61) is the ionization amplitude at a given
R. Similar to Eq. (44), in the weak-field limit it is related to
the ionization rate by

e(R, F )|F |→0 = | f (R, F )|2. (64)

We solve Eqs. (60) and (61) and calculate functions Ee(R, F )
and f (R, F ) needed to implement AAnf numerically, as de-
scribed in the Appendix.

2. Wave function

The asymptotics of the solution to Eq. (8) for εnf → 0 can
be sought in the form

�(x, R, t ) = �(R, t )ψe(x; R, F (t )). (65)

This should be viewed as an expansion in electronic SSs
[18], where only one term is retained. The electronic factor
ψe(x; R, F (t )) is a slow function of both R and t , while the
nuclear factor �(R, t ) is assumed to incorporate the main
dependence of the molecular wave function on these variables.
This justifies Eq. (65) in the spirit of the BOA. We substitute
this ansatz into Eq. (8) and neglect all terms containing
derivatives of ψe(x; R, F (t )) in R (BOA, Te � Tn) and t (AA,
Te � Tf ). Projecting the resulting equation on ψe(x; R, F (t )),
we obtain a TDSE defining the nuclear factor in Eq. (65),

i
∂

∂t
�(R, t ) =

[
− 1

2μ

∂2

∂R2
+ Umol(R, F (t ))

]
�(R, t ), (66)

where

Umol(R, F ) = Uion(R) + Ee(R, F ) (67)

is the molecular BO potential in a static field F . To specify the
initial condition for Eq. (66), we note that in the limit M →
∞ bound states of the unperturbed molecule [see Eq. (3)] are
given by the BOA

En = EBO
n , �n(x, R) = �n(R)ψe(x; R, 0). (68)

Here the energy EBO
n of the state and the nuclear wave function

�n(R) are defined by[
− 1

2μ

d2

dR2
+ Umol(R) − EBO

n

]
�n(R) = 0, (69)

where Umol(R) = Umol(R, 0) is the field-free molecular BO
potential. These equations only describe states in which the
electron is in the ground state; other molecular bound states
can be obtained similarly using excited-bound-state solutions
to Eq. (60) for F = 0. Taking into account Eq. (9), the initial

condition for Eq. (66) is

�(R, t → −∞) = �0(R)e−iEBO
0 t . (70)

Equation (65), where the nuclear factor is defined by Eqs. (66)
and (70), gives the leading-order approximation to the solu-
tion to Eq. (8) for εnf → 0. Note that for F 	= 0 the potential
(67) is complex, so the norm of �(R, t ) is not conserved. We
solve the nuclear TDSE (66) numerically, as described in the
Appendix. The solution �(R, t ) is also needed to implement
AAnf.

3. Observables

Within AAnf, the observables should be calculated using
Eqs. (65) and (68). Substituting these functions into Eq. (10),
we obtain probabilities of transitions to the different bound
molecular states in which the electron is in the ground state,

Pnf
n =

∣∣∣∣
∫ ∞

0
�n(R)�(R, t ) dR

∣∣∣∣
2

t→∞
. (71)

Probabilities of transitions to electronically excited states in
this approximation are equal to zero. Such transitions are
caused by non-BO and nonadiabatic couplings not accounted
for by Eqs. (65) and (68).

We now evaluate the ionization amplitude, again using
Eq. (34). To this end, we need to discuss the dependence of
the nuclear wave function �(R, t ) on time. This function can
be expanded in terms of the solutions to Eq. (69). Because the
molecular BO potential in Eq. (66) depends on t , excited states
appear in the expansion during the evolution. The number
of states which are efficiently populated does not depend on
M, because couplings to higher states decay independently
of M as the degree of excitation grows. For such states
EBO

n − EBO
0 = O(M−1/2). Furthermore, the coefficients in the

expansion depend on time with a timescale Tf . Let us present
�(R, t ) in the form

�(R, t ) = �̃(R, t )e−iEBO
0 t . (72)

The above argumentation shows that �̃(R, t ) is a slow func-
tion of t in the sense that its derivative in t is O(ε1

nf). In other
words, the exponential factor in Eq. (72) incorporates the main
dependence of �(R, t ) on t in the limit εnf → 0.

The rest of the derivation proceeds similarly to that in
Sec. V A 3. We substitute Eqs. (65) and (72) into Eq. (35).
The integral over t in Eq. (34) is calculated using the steepest
descent method, with �̃(R, t ) and ψe(x; R, F (t )) treated as
slow functions of t . The result is expressed in terms of an
Airy function. The electronic SS is represented by another
Airy function which solves Eq. (60) at |x| � a and whose
asymptotics at x → −s∞ reduces to Eq. (61). The Wronskian
of the two Airy functions does not depend on x, provided that
EBO

0 − εv = Ee(R, F ). This equality holds under the sign of
the integral in Eq. (34) in the limit M → ∞ [43]. Indeed,
the nuclear wave function �(R, t ) is localized in the region
R = Rmol + O(M−1/4), where Rmol is the equilibrium inter-
nuclear distance giving the position of the minimum of the
unperturbed molecular potential Umol(R). On the other hand,
the integral over R in Eq. (34) is accumulated in an interval
of width O(M−1/2) near a turning point Rv of χv (R) defined
by Uion(Rv ) = εv; this fact underlies the well-known reflection
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approximation used to calculate Franck-Condon factors [64].
Thus, the integral is negligibly small unless Rv − Rmol =
O(M−1/4). In this case, in the region R = Rv + O(M−1/2)
we have Umol(R) = Umol(Rmol) + O(M−1/2) and Ee(R, F ) =
Ee(Rv, F ) + O(M−1/2) = Umol(Rmol) − εv + O(M−1/2). Tak-
ing into account that EBO

0 = Umol(Rmol) + O(M−1/2), we
obtain EBO

0 − εv − Ee(R, F ) = O(M−1/2), which proves the
above statement. Omitting further details, the final result is

Inf
v (k) = eiπ/4(2π )1/2

∑
i

gv (ti )

|F (ti )|1/2 exp [iSm=1(ti, k) + iεvti],

(73)
where

gv (t ) =
∫ ∞

0
χv (R) f (R, F (t ))�(R, t ) dR. (74)

Here Sm=1(t, k) is given by Eq. (24b) with m = 1, ti is
defined by Eq. (55), and the summation runs over the different
solutions to this equation, as in Eq. (57). Equation (73) gives
the leading-order term in the asymptotics of the ionization
amplitude for εnf → 0. Using it, we obtain all the ionization
observables introduced in Sec. II B within AAnf.

C. Compatibility of the two approximations

The two adiabatic approximations considered above apply
simultaneously if the timescales satisfy

Te � Tn � Tf . (75)

This condition is fulfilled in the region where the shaded
areas in Fig. 1 overlap. Here we show that the AAf and
AAnf ionization amplitudes given by Eqs. (57) and (73),
respectively, coincide in this region. This is needed to confirm
the consistency of the theory.

On the one hand, for Te � Tn (that is, M � 1), the molec-
ular SS introduced in Sec. V A 1 can be constructed using the
BOA. In the limit M → ∞, the solution to Eq. (38) is given
by [40–42]

E0(F ) = EBO
0 (F ), �0(x, R; F ) = �0(R; F )ψe(x; R, F ),

(76)

where the SS energy EBO
0 (F ) and the nuclear wave function

�0(R; F ) are defined by the solution to[
− 1

2μ

d2

dR2
+ Umol(R, F ) − EBO

0 (F )

]
�0(R; F ) = 0, (77)

which originates from the ground-state solution to Eq. (69) as
the field F is turned on and ψe(x; R, F ) is the electronic SS
defined by Eq. (60). In addition, in this limit the channel ion-
ization amplitudes characterizing the molecular SS are given
in terms of the ionization amplitude at a given R characterizing
the electronic SS by (see Eq. (40a) in Ref. [42] and Eq. (49)
in Ref. [43])

fv (F ) =
∫ ∞

0
χv (R) f (R, F )�0(R, F ) dR. (78)

On the other hand, for Tn � Tf , the solution to Eq. (66) can
be obtained using the adiabatic approximation in the form

�(R, t ) = �0(R, F (t ))e−isBO
0 (t ), (79)

where

sBO
0 = EBO

0 t +
∫ t

−∞

[
EBO

0 (F (t ′)) − EBO
0

]
dt ′. (80)

Substituting Eq. (79) into Eq. (74) and comparing with
Eq. (78), we obtain

fv (t )e−is0 (t ) = gv (t ). (81)

This proves that Eqs. (57) and (73) coincide in the region (75).
We conclude this theory section by the following remark.

Equations (57) and (73) have been obtained as the leading-
order terms in the asymptotics for εf → 0 and εnf → 0, re-
spectively. It should be noted that the regions of validity of
these results depend on the field strength. Let F0 denote the
characteristic amplitude of F (t ). Then Eq. (57) holds under
the condition εf � min(1, ξ 2), where ξ = F0/κ

3, κ = √
2Ip,

and Ip is the ionization potential of the molecule [44], and the
validity of Eq. (73) requires F0 � FBO, where FBO = κe/Tn

and κe = √−2Ee(Rmol, 0) [38]. For fixed timescales, these
conditions are violated at sufficiently weak fields. While the
former condition can be fulfilled by increasing Tf , indepen-
dently of the value of F0, the latter condition indicating the
breakdown of the BOA in the theory of tunneling ionization
[38] cannot be fulfilled by varying only the timescales. In
Fig. 1, we assumed that F0 is sufficiently large, so that both
these conditions are satisfied.

VI. ILLUSTRATIVE CALCULATIONS:
VALIDATION OF THE THEORY

In this section, we present illustrative numerical results
validating the adiabatic approximations developed above and
clarifying the regions of their applicability. All the calcula-
tions are performed for pulses with the Gaussian envelope,

F (t ) = F0e−τ 2
f (τ ), τ = 2t/T, (82)

where F0 is the pulse amplitude, T is the pulse duration, and
the function f (τ ) describes the internal shape of the pulse. We
will consider half-cycle pulses with

f (τ ) = 1 (83)

and few-cycle pulses with

f (τ ) = cos nocπτ = cos ωt, (84)

where ω = noc2π/T and noc is the number of optical cycles
in the pulse. The field timescale Tf for these pulses estimated
as the duration of a half-cycle is T and T/2noc, respectively.
In the calculations, it is varied by varying the pulse duration
T while preserving the pulse shape determined by f (τ ). The
nuclear timescale Tn is varied by varying the nuclear mass M.
We present results in a wide range of the parameters M, T ,
and F0. The TDSE results are obtained by solving Eq. (8) and
calculating the observables using equations given in Sec. II B.
The AAf and AAnf results are obtained as discussed in
Secs. V A and V B, respectively. The numerical procedures
used in the calculations are described in the Appendix.
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A. Model potentials

Here we define the potentials in Eq. (1). The internuclear
interaction in the molecular ion is modeled by

Uion(R) = A

R2 + D
+ B + CR2, (85)

where the term CR2 prevents the molecule from dissociating.
The parameters in Eq. (85) are chosen to reproduce the
electronic ground-state BO potential of H2

+ near its minimum
located at Rion = 2. The electron-nuclear interaction is mod-
eled by

V (x; R) = V (x + R/2) + V (x − R/2), (86)

where

V (x) = − a

cosh2(bx)
. (87)

This function rapidly decays at large |x|, which complies
with the assumption that V (x; R) has a finite range in x. The
parameters in Eq. (87) are chosen such that the field-free
molecular BO potential Umol(R) reproduces the ground-state
BO potential of H2 near its minimum at the equilibrium
internuclear distance Rmol = 1.4.

In this section, we consider two values of the nuclear mass:
light nuclei with M = 3 and heavy nuclei with M = 1836. The
model system corresponding to the light nuclei case may seem
to be rather artificial. However, it is worthwhile to consider
this case for validating AAf; moreover, it may be relevant for
expanding strong-field physics to exotic three-body Coulomb
systems such as eee+ and ppμ; see Ref. [13]. In this case,
we use the parameters A = 0.236, B = −0.713, C = 0.0135,
D = 0.195, a = 0.53622, and b = 0.667. The more realistic
heavy nuclei case models the hydrogen molecule H2. In this
case, we use the same parameters as in Ref. [38], namely, A =
0.26, B = −0.732635, C = 0.01625, D = 0, a = 0.62772,
and b = 0.857. The difference between the two sets of param-
eters is caused by a nonzero value of D in the light nuclei case
which is introduced to simplify the numerical procedure (see
the Appendix).

The BO potentials for M = 3 and 1836 in the present
model are shown in Figs. 2 and 3, respectively. The top
(red) line shows the ionic potential Uion(R). The bottom
(black) line shows the molecular potential Umol(R) in the
ground electronic state. The intermediate (blue) line shows
the molecular potential in the first excited electronic state.
In Fig. 3, for comparison, we have additionally plotted the
electronic ground-state BO potentials for real H2

+ and H2.
Several of the lowest ionic energies εv defined by Eq. (2)
are shown in the ionic potentials. The solutions to Eqs. (3)
and (60) with F = 0 are either even or odd with respect to
the reflection x → −x. Furthermore, in the present model the
potential (86) supports only two bound electronic states, one
even ground state and one odd excited state. This enables us to
unambiguously assign exact three-body bound states defined
by Eq. (3) to BO potentials by their symmetry in x. All bound-
state energies of the molecule En < ε0 in the ground and
first excited electronic states are shown in the corresponding
molecular potentials. The horizontal dotted line indicates the
boundary of the electronic continuum ε0.

FIG. 2. BO potentials in the present model for light nuclei with
M = 3. The top (red) line shows the ionic potential Uion(R) with
several of the lowest vibrational energies εv . The bottom (black) and
intermediate (blue) lines show the molecular BO potential Umol(R)
for the ground (even in x) and first excited (odd in x) electronic
states with all corresponding bound-state molecular energies En.
The horizontal dotted line indicates the boundary of the electronic
continuum ε0.

SSs are essential building blocks needed to implement the
adiabatic approximations. The two-dimensional (2D) molec-
ular SS defined by Eq. (38) provides all the information
needed to implement AAf. The energies E0(F ) and ioniza-
tion rates 0(F ) [see Eq. (42)] of this SS in the present
model with M = 3 and 1836 as functions of field strength

FIG. 3. Similar to Fig. 2, but for heavy nuclei with M = 1836.
The top (red) and bottom (black) dashed lines show BO potentials
for real H2

+ [62] and H2 [63].
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FIG. 4. Solid lines in the top and bottom panels show energies
E0(F ) and ionization rates 0(F ), respectively, of molecular (2D)
SSs in the present model with M = 3 (upper red lines) and M =
1836 (lower black lines). Dashed (blue) lines in the top and bottom
panels show the function Uion(Rmol) + Ee(Rmol, F ) defined by the
energy of the electronic (1D) SS and the corresponding ionization
rate e(Rmol, F ), respectively, calculated in the present model with
M = 1836 at the equilibrium internuclear distance Rmol = 1.4.

are shown by the upper (red) and lower (black) solid lines
in Fig. 4, respectively. As M grows, the energy of the SS
shifts downward. The ionization potential increases, and the
ionization rate therefore decreases, as seen in the figure.
The critical field strengths indicating the boundary between
tunneling and over-the-barrier ionization regimes estimated
from the condition 0(Fc) = 0.03 (below this value 0(F )
begins to decrease rapidly, see Fig. 4, which is characteristic
of tunneling) are Fc = 0.11 and 0.17 for M = 3 and 1836, re-
spectively. The 1D electronic SS defined by Eq. (60) is needed
to implement AAnf. The energy Ee(R, F ) and ionization rate
e(R, F ) [see Eq. (62)] of this SS calculated using the poten-
tial (86) with the parameters for M = 1836 at the equilibrium
internuclear distance R = Rmol as functions of F are also
shown in the figure. To facilitate comparison with the molec-
ular SS results, the dashed (blue) lines in the top and bot-
tom panels show functions Re[Umol(Rmol, F )] = Uion(Rmol) +
Ee(Rmol, F ) and −2 Im[Umol(Rmol, F )] = e(Rmol, F ), respec-
tively. In the limit M → ∞, for not too strong fields, the
molecular SS eigenfunction becomes localized near the min-
imum of the real part of the BO potential Umol(R, F ) and the
eigenvalue E0(F ) converges to the value of the potential at
this point. The minimum is located close to Rmol, so E0(F )
is close to Umol(Rmol, F ). This explains why the molecular
and electronic SS results for M = 1836 are so close to each
other. All the SS energies shown in the top panel of Fig. 4
have zero slope at F = 0. This reflects the fact that we
consider a homonuclear molecule, which does not have a
permanent dipole moment, and therefore there is no linear
Stark shift. The ionization rates decay exponentially as F → 0
and can in this limit be described by the WFAT, as detailed in
Refs. [38,40].

FIG. 5. Partial PEMDs Pv (k) for the light nuclei model (M = 3)
generated by half-cycle pulses with amplitudes F0 and durations T
indicated in the figure. The TDSE results (darker lines) are obtained
from Eq. (12) and the AAf results (lighter lines) are calculated using
Eq. (57). The top TDSE and AAf lines in each panel correspond to
v = 0; the others follow downward in increasing order of v.

B. Light nuclei: AAf

Our first goal is to validate AAf by demonstrating how its
results converge to TDSE results as εf → 0. Since Tn grows as
O(M1/2) for large M and the calculation time for solving the
TDSE grows rapidly with Tf , from a computational standpoint
it is easier to satisfy the condition (36) for light nuclei; solving
the TDSE for heavy nuclei in the region (36) is not feasible
with our computational resources. Thus, in this subsection we
consider the light nuclei model with M = 3. In this model, the
electronic timescale is estimated as Te = 2π/Ip = 13.6, where
Ip = ε0 − E0 = 0.464 is the ionization potential. The nuclear
timescale is Tn = 2π/�En = 19.4, where �En = E1 − E0 =
0.324. These timescales are comparable, which facilitates the
calculations. We wish to demonstrate the convergence as Tf

grows, that is, by moving to the right slightly above the lower
boundary of the wedge-shaped (red) shaded region in Fig. 1.

1. Half-cycle pulses

The present version of AAf does not account for rescatter-
ing. It is possible to extend the theory to include rescattering
(see Ref. [44]), but that is beyond the scope of this work.
We begin with demonstrating the performance of AAf for
half-cycle pulses defined by Eqs. (82) and (83). There is no
rescattering in this case [44,56], so the TDSE and AAf results
are expected to converge faster as Tf = T grows.

The convergence is illustrated in Fig. 5. This figure shows
partial PEMDs Pv (k) generated by four representative half-
cycle pulses. The duration of the shorter pulses T = 30 only
slightly exceeds the nuclear timescale Tn, corresponding to the
onset of the adiabatic regime (36), while that of the longer
pulses T = 150 essentially exceeds it. The field amplitude
of the weaker pulses F0 = 0.1 < Fc is just below the critical
field, while that of the stronger pulses F0 = 0.2 > Fc is deep
in the over-the-barrier regime of ionization. One can see
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that for the shorter pulses AAf approximately describes only
the partial PEMD with v = 0 (top lines in each panel), and
in this case it works better for the stronger pulse. On the
other hand, for the longer pulses the agreement between AAf
and TDSE becomes quantitative for all v considered. The
main conclusion to be drawn from the figure is that the AAf
results converge to the TDSE results as Tf grows inside the
region (36), and this holds uniformly in F for both tunneling
and over-the-barrier regimes. Similar conclusions were drawn
from previous applications of the adiabatic theory to atomic
systems [30,44,47,51,56].

Let us discuss some additional general features of the
TDSE and AAf results illustrated by Fig. 5. We begin by
noting that in the simple asymptotics for εf → 0 developed
in Sec. V A only real solutions to Eq. (55) are taken into
account. Such solutions exist only in a finite interval of k
defining the classical support of the PEMD [44]. For example,
for the present half-cycle pulses, Eq. (55) has only one real
solution in the interval mv∞ < k < 0, where v∞ = −

√
π

2 F0T .
The AAf results for Pv (k) obtained from Eq. (57) turn to
zero outside this interval. The TDSE results extend beyond
this interval, but the degree of the extent is seen to decrease
as Tf grows. We mention that it is possible to account for
the tails of Pv (k) extending beyond its classical support by
developing a uniform asymptotics for εf → 0, as was done
for atomic systems in Refs. [44,56]. However, the tails be-
come negligible for sufficiently large Tf , so even within the
simple asymptotics the AAf results converge to the TDSE
results.

The good performance of AAf enables us to explain some
features of the TDSE results by means of Eq. (57). For
example, the magnitude of the partial PEMDs Pv (k) is seen
to rapidly decrease as the vibrational quantum number v in
the final state of the molecular ion grows. This behavior is
determined by the dependence on v of the channel ionization
amplitudes fv (F ) defined by Eq. (39). The amplitudes de-
scribe static-field ionization of the molecule into the different
vibrational channels. Their magnitude depends exponentially
on the energy difference εv − E0, as can be seen from the field
factor in the WFAT [38,39,42]. For the present case of light
nuclei, this difference grows rapidly with v, which explains
the rapid decrease of fv (F ), and hence Pv (k). Another no-
table feature in Fig. 5 is the asymmetry of the distributions
Pv (k). The right shoulders of the distributions are suppressed
compared to their left shoulders, and this becomes more
pronounced for stronger and longer pulses. This is caused by
depletion described by the imaginary part of the term s0(ti )
in the exponent in Eq. (57). Indeed, Eq. (55) establishes a
mapping between ionization time ti and momentum k. For
half-cycle pulses, smaller |k| correspond to larger ti. The
imaginary part of s0(ti ) is negative and grows with ti, see
Eqs. (42) and (48), which causes the suppression of Pv (k) at
smaller |k|.

To quantify the depletion, we consider the probability for
the molecule to remain in the initial ground state after the
end of the pulse. The results calculated for the same pulses
as in Fig. 5 are presented in Table I. Only a tiny fraction of
the initial state survives the interaction with the longest and
strongest pulse, and this is reflected in the strong asymmetry
of the PEMDs in the bottom right panel in Fig. 5. The AAf

TABLE I. Probabilities for the molecule to survive in the initial
ground state for the same model and pulses as in Fig. 5. The TDSE
results P0 are obtained from Eq. (10) and the AAf results Pf

0 are
obtained from Eq. (52).

T = 30 T = 150

F0 = 0.1 F0 = 0.2 F0 = 0.1 F0 = 0.2

P0 0.630 0.00492 0.309 1.43×10−8

Pf
0 0.796 0.02803 0.320 1.73×10−8

results are again seen to converge to the TDSE results as Tf

grows, which supports the above conclusion.
One more feature worth mentioning here is the series of

sharp peaks seen in Fig. 5 in the TDSE results for the shorter
pulses around k = 0. These peaks originate from Feshbach
resonances in electron scattering by the molecular ion; they
are also seen in the scattering matrix defined by Eqs. (6).
Similar peaks originating from shape resonances in electron-
ion scattering were seen in PEMDs for atomic systems [44].
They are caused by direct excitation of resonance states of the
target system by the laser pulse. Such nonadiabatic transitions
are not accounted for by the present theory, because their
probability exponentially decays as Tf grows.

2. Few-cycle pulses

We next illustrate the performance of AAf for more realis-
tic few-cycle pulses defined by Eqs. (82) and (84). The main
novel feature in this case is the appearance of rescattering
[44,56]. We consider two-cycle pulses with noc = 2, so the
field timescale is Tf = T/4. Figure 6 shows partial PEMDs
Pv (k) generated by two such pulses with the amplitude F0 =
0.1 in the tunneling regime of ionization and durations T =
250 and 500. Figure 7 presents similar results for pulses
with the over-the-barrier amplitude F0 = 0.2 and durations
T = 150 and 300.

Let us first consider the results for the weaker pulses shown
in Fig. 6. The agreement between AAf and TDSE results for
the partial PEMD with v = 0 essentially improves as T is
increased. Note that for the longer pulse Tf = 125, which is
slightly smaller than the value of Tf in the top right panel
in Fig. 5. The remaining difference between the results is
localized at large |k|, where the TDSE results extend beyond
the classical support of the PEMD, and small |k|, which is
caused by rescattering. The agreement is expected to further
improve at larger T ; however, solving the TDSE for larger T is
not feasible with our computational resources. The difference
between AAf and TDSE results for partial PEMDs with v > 0
is more significant. This is explained as follows. The present
version of AAf without rescattering accounts only for the
direct strong-field ionization of the initial bound state. The de-
pendence of the magnitudes of Pv (k) on v in this approxima-
tion is determined by the channel ionization amplitudes fv (F )
which rapidly decay as v grows, as explained in the previous
subsection. This decay is seen in the AAf results. Meanwhile,
inelastic rescattering processes change the vibrational state of
the parent molecular ion, which results in populating states
with larger v. This modifies the distribution of partial PEMDs
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FIG. 6. Partial PEMDs Pv (k) for the light nuclei model (M = 3)
generated by two-cycle (noc = 2) pulses with the amplitude F0 = 0.1
and durations T indicated in the figure. The TDSE results (darker
lines) are obtained from Eq. (12) and the AAf results (lighter lines)
are calculated using Eq. (57).

over v, leading to an increase of Pv (k) for larger v. Indeed, the
TDSE results in Fig. 6 decay much more slowly in v than in
the case of half-cycle pulses; compare with Fig. 5. We note
that even for PEMDs with v > 0 the difference between AAf
and TDSE results decreases as T is increased. This is because
the second term in Eq. (46) is O(ε1/2

f ), so the relative role
of rescattering processes decreases as εf → 0. Thus, the AAf
and TDSE results for v > 0 should also converge as T grows,
although we cannot illustrate this numerically.

The situation with the results for the stronger pulses shown
in Fig. 7 is similar. All the above arguments apply in this
case as well. An interesting feature to be noted is that the
convergence of the AAf and TDSE results for v > 0 as T
grows is faster. This observation suggests that for stronger
fields the relative role of rescattering decreases. Summarizing,
we conclude that for few-cycle pulses the AAf results also
converge to the TDSE results in the region (36), both in the
tunneling and over-the-barrier regimes of ionization, although
the convergence is slower than for half-cycle pulses because of

FIG. 7. Same as in Fig. 6, but for the pulse amplitude F0 = 0.2.

rescattering processes not accounted for by the present version
of AAf.

The main visible difference of the PEMDs shown in Figs. 6
and 7 from those in Fig. 5 is the appearance of a prominent
oscillatory structure. This structure can be explained within
AAf. For few-cycle pulses, Eq. (55) has several solutions
contributing to the ionization amplitude (57). The oscillations
of Pv (k) result from the interference of the different terms in
Eq. (57). For half-cycle pulses, there is only one term, so there
is no interference. From a careful inspection of Figs. 6 and
7, one can observe that the interference structure of the AAf
results also appears in the TDSE results, but in addition the
TDSE results contain a more rapidly oscillating substructure
not reproduced by AAf. This substructure originates from
the interference of the direct and rescattering contributions
to the PEMD. Its contrast thus reflects the relative role of
the contributions. For example, in the top panel of Fig. 6,
rescattering is weak for v = 0, so the oscillations in the TDSE
results follow that in the AAf results and the more rapidly
oscillating substructure has a small amplitude. On the other
hand, for v = 1 in the region −1.5 < k < 0, direct and rescat-
tering contributions are comparable, so the amplitude of the
substructure is larger. For v = 2 in the same panel, the direct
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FIG. 8. Total PEMD P(k) for the heavy nuclei model (M =
1836) generated by half-cycle pulses with amplitudes F0 and du-
rations T indicated in the figure. The TDSE results (darker lines)
are obtained from Eq. (14) and the AAf results (lighter lines) are
calculated using Eq. (57).

contribution represented by the AAf results is very weak, so
the substructure is probably caused by the interference of the
different rescattering trajectories [44,56].

C. Heavy nuclei: AAnf

The goal of this subsection is to validate AAnf. TDSE
calculations in the region (58) are feasible in a wide range
of the nuclear mass. We therefore consider here the more
realistic heavy nuclei model with M = 1836. In this model,
the electronic and nuclear timescales estimated as above are
Te = 11.1 and Tn = 288, so the condition Te � Tn is well sat-
isfied. We validate AAnf by demonstrating the convergence of
its results to the TDSE results as Tf grows. This corresponds
to moving to the right along the lower dashed line indicated
by H2 in Fig. 1 deeper inside the rectangular (blue) shaded
region.

1. Half-cycle pulses

To exclude rescattering, we again begin with half-cycle
pulses defined by Eqs. (82) and (83), as in Sec. VI B 1. We
consider pulses with two amplitudes, weaker pulses with
F0 = 0.1 < Fc in the tunneling regime and stronger pulses
with F0 = 0.2 > Fc in the over-the-barrier regime. For each
amplitude, we have performed calculations for two pulse
durations T = 50 and 150. Although our main goal here is
to demonstrate the convergence of AAnf, it is also instructive
to see the breakdown of AAf outside the region (36). In this
subsection, we compare the performance of AAf and AAnf
for the same half-cycle pulses.

The comparison of the AAf and AAnf results with the
TDSE results is presented in Figs. 8 and 9, respectively. For
the present heavy nuclei model, the energy spacing between
vibrational states of the molecular ion becomes quite small
(compare Figs. 2 and 3), so many different v channels con-

FIG. 9. Same as in Fig. 8, but with the AAf results replaced by
the AAnf results calculated using Eq. (73).

tribute comparably to the total ionization yield. Since it is
not practical to plot many partial PEMDs, in Figs. 8 and 9
we show only the total PEMD P(k) defined by Eq. (14). For
the weaker pulses in Fig. 8, the AAf results seem to give a
reasonable approximation to the TDSE results. However, for
the stronger pulses, the agreement clearly becomes worse.
This is not surprising, because in the present case Tn > Tf

even for the longest pulses considered. The condition (36)
does not hold and hence AAf fails. On the other hand, Fig. 9
shows that the AAnf results converge to the TDSE results as
T grows, and the convergence for the stronger pulses is faster.
For the longer pulses, the agreement is almost perfect, and
this holds in both tunneling and over-the-barrier regimes of
ionization.

We continue the comparison by looking at the distribution
of channel ionization probabilities Pion

v defined by Eq. (13).
The results for the same pulses as in Figs. 8 and 9 are shown
in Fig. 10. The TDSE results confirm the above assertion
that many different vibrational channels contribute to the total
ionization yield in the heavy nuclei case. Moreover, in contrast
to the light nuclei case, the channel with v = 0 is now not even
the dominant one; the distributions are seen to peak around
v = 2. The AAf results demonstrate some improvement as T
grows for the weaker pulses, but are rather far from the TDSE
results for the stronger pulses. On the other hand, the AAnf
results converge to the TDSE results for both field strengths
considered, and for the stronger pulses the convergence is
faster.

Let us now briefly look at partial PEMDs. We consider only
one pulse with T = 150 and F0 = 0.2, for which the AAnf
results in Figs. 9 and 10 almost perfectly agree with the TDSE
results. The different results for a few partial PEMDs Pv (k)
generated by this pulse are compared in Fig. 11. The figure
shows that even this fully differential ionization observable is
very well reproduced by AAnf, while AAf fails similarly to
how it fails for the total PEMD in the bottom right panel in
Fig. 8.
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FIG. 10. Channel ionization probabilities Pion
v for the same

model and pulses as in Figs. 8 and 9. The TDSE results (circles)
are obtained from Eq. (13), the AAf results (triangles) are calculated
using Eq. (57), and the AAnf (crosses) results are calculated using
Eq. (73).

The last feature we wish to discuss for half-cycle pulses is
the distribution of probabilities Pn that the molecule survives
in a bound state after the end of the pulse. The results for the
same four pulses as in Figs. 8, 9, and 10 are shown in Fig. 12.
Here we show only the TDSE and AAnf results, because AAf
does not account for transitions to excited states with n > 0.
In the TDSE results, a distinction is made between bound
states that are even and odd in x. As mentioned above, in
the BOA even and odd molecular states correspond to the

FIG. 11. Partial PEMDs Pv (k) for the same model and pulse as
in the bottom right panel in Figs. 8, 9, and 10. The TDSE results
(darker lines in both left and right panels) are obtained from Eq. (12),
the AAf results (lighter lines in the left panels) are calculated using
Eq. (57), and the AAnf results (lighter lines in the right panels,
almost indistinguishable from the TDSE results) are calculated using
Eq. (73).

FIG. 12. Probabilities Pn that the molecule survives in a bound
state as functions of the energy En of the state for the same model
and pulses as in Figs. 8, 9, and 10. The solid (open) circles show
the TDSE results obtained from Eq. (10) for bound states with even
(odd) symmetry in x, corresponding to the ground (first excited)
electronic state within the BOA. In the right panels, the TDSE results
for the odd states are multiplied by a factor indicated in the figure.
The crosses show the AAnf results for the even states obtained from
Eq. (71).

ground and first exited electronic states and are supported
by the lowest (black) and intermediate (blue) BO potentials
in Fig. 3, respectively. One can see that the population of
the even states monotonically decays as the energy of the
state grows, while that of the odd states has a peak at some
intermediate vibrational state in the electronically excited po-
tential. Furthermore, probabilities of transitions to odd states
rapidly decay as T grows (notice the factors multiplying the
probabilities in the right panels), because such transitions
involve excitation of the electron and are suppressed for Te �
Tf . The present AAnf only describes transitions to even states.
For all pulses considered, the AAnf results are on top of the
TDSE results for the even states, which additionally confirms
the good performance of AAnf.

Summarizing, we have shown that for a realistic nuclear
mass the AAnf results converge to the TDSE results as Tf

grows. This validates AAnf in the region (58). For the heavy
nuclei model and pulses considered here, we have Tf < Tn, so
the condition (36) is not satisfied, which explains the failure
of AAf.

2. Compatibility of AAf and AAnf

As Tf is further increased for the same model, which
corresponds to moving to the right along the dashed line
indicated by H2 in Fig. 1, we eventually enter the region (36).
In this region, AAf is expected to work well. It is, however,
not possible for us to check this directly by performing TDSE
calculations for heavy nuclei at Tf � Tn. Meanwhile, AAf
and AAnf can be easily implemented at any Tf . Since we
have already seen that the AAnf results converge to the TDSE
results, we can validate AAf for heavy nuclei indirectly by
demonstrating the convergence of its results to the AAnf
results. For completeness of the presentation, we believe it is
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FIG. 13. Total PEMD P(k) for the heavy nuclei model (M =
1836) generated by half-cycle pulses with amplitudes F0 and dura-
tions T indicated in the figure. The AAf (lower lines in the left panels
and upper lines in the right panels) and AAnf results are calculated
using Eqs. (57) and (73), respectively.

instructive to demonstrate compatibility of the two adiabatic
approximations at very large Tf , in the region where they both
apply.

We again consider half-cycle pulses with two amplitudes
and growing durations. The stronger pulses have the same

amplitude F0 = 0.2 as in the previous subsection, but the
amplitude of the weaker pulses F0 = 0.025 is chosen four
times smaller than that in the previous subsection. The com-
parison of the AAf and AAnf results is presented in Fig. 13.
One can see that for the stronger pulses the AAf and AAnf
results indeed converge as T grows. However, this is not
the case for the weaker pulses. The reason for this is the
breakdown of the BOA, on which AAnf is based, in describing
tunneling ionization at sufficiently weak fields [38]. As was
mentioned in the end of Sec. V C, the breakdown occurs at
fields F0 � FBO, where for the present system FBO = 0.048.
Thus, the BO approximation breaks down, and hence AAnf
is not applicable, for the weaker pulses. Note, importantly,
that the situation cannot be improved by increasing Tf . On
the other hand, the convergence of AAf is uniform in F0, that
is, it can be achieved for any F0 at sufficiently large Tf . We
conclude that the AAf results for the weaker and longer pulses
in Fig. 13 are expected to be more accurate than AAnf.

3. Few-cycle pulses

We complete the validation of AAnf by considering few-
cycle pulses defined by Eqs. (82) and (84) with noc = 2, as
in Sec. VI B 2. We have performed calculations for pulses
with the amplitudes F0 = 0.1 and 0.2 and durations T =
200 and 320 corresponding to Tf = 50 and 80, respectively.
Figure 14 compares the TDSE and AAnf results for the total
PEMD P(k). The results converge as T grows and for the
longer pulses a good agreement over a wide interval of k
is achieved. Notice that there remains some disagreement at
small |k|, which is caused by rescattering, and at large |k|,
where the TDSE results extend beyond the classical support
of the PEMD. The origin of this disagreement was discussed
in Sec. VI B 2.

Figure 15 presents the corresponding results for the dis-
tribution of channel ionization probabilities Pion

v defined by
Eq. (13). The agreement between the AAnf and TDSE results

FIG. 14. Total PEMD P(k) for the heavy nuclei model (M = 1836) generated by two-cycle (noc = 2) pulses with the amplitudes and
durations indicated in the figure. The TDSE results (darker lines) are obtained from Eq. (14) and the AAnf results (lighter lines) are calculated
using Eq. (73).
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FIG. 15. Channel ionization probabilities Pion
v for the same

model and pulses as in Fig. 14. The TDSE results (circles) are
obtained from Eq. (13) and the AAnf results (crosses) are calculated
using Eq. (73).

is seen to be quite good and improves for the longer pulses.
In addition, the convergence for the stronger pulses is faster,
which is also the case for the results shown in Fig. 14.

Figure 16 compares the TDSE and AAnf results for partial
PEMDs Pv (k) generated by the pulse with T = 320 and F0 =
0.2. Similar to Fig. 14, we see good agreement over a wide
interval of k. Note that the agreement is good also for the
higher v channels considered, which is in contrast to the
situation with AAf illustrated in Figs. 6 and 7. This suggests
that rescattering plays a smaller role for heavy nuclei. One
more feature to be observed in Fig. 16 is that the interference

FIG. 16. Partial PEMDs Pv (k) for the same model and pulse as in
the bottom right panel in Figs. 14 and 15. The TDSE results (darker
lines) are obtained from Eq. (12) and the AAnf results (lighter lines)
are calculated using Eq. (73).

FIG. 17. Probabilities Pn that the molecule survives in a bound
state as functions of the energy En of the state for the same model and
pulses as in Figs. 14 and 15. The solid (open) circles show the TDSE
results obtained from Eq. (10) for states with even (odd) symmetry
in x. The crosses show the AAnf results for the even states obtained
from Eq. (71).

structure in all the partial PEMDs has the same phase. This
structure is mainly determined by the difference between
classical actions in the exponent for the different terms in
the sum over i in Eq. (73). This action depends only on the
final momentum k and not on the vibrational channel index v,
which explains the observation. The same applies to AAf, as
can be seen from Eq. (57).

Finally, we show in Fig. 17 the distribution of probabilities
Pn for the molecule to survive in a bound state. These results
should be compared to Fig. 12. AAnf is seen to work well
for several lowest even states. However, it fails for the higher
even states. The drastic change in the behavior of the TDSE
results in this case is probably caused by excitation processes
not accounted for by AAnf, which become more efficient and
selective for few-cycle pulses. The excitation of even states
occurs through an intermediate odd state. Indeed, we see that
the final populations of odd states have grown considerably
compared to that for half-cycle pulses. We note that rescatter-
ing may also play a role in the failure of AAnf for the higher
states.

VII. ILLUSTRATIVE CALCULATIONS: APPLICATIONS

In this section, we present two examples illustrating the
usefulness of the adiabatic theory for applications in strong-
field physics. To stay closer to reality, here we consider
molecules with heavy nuclei and pulses with the frequency
ω = 0.057 corresponding to the wavelength 800 nm. The
corresponding timescales belong to the region (58), but are
outside the region (36). We therefore base our analysis on
AAnf. The first example shows how AAnf can be used to
treat pulses for which solving the TDSE is not feasible. The
second example illustrates how AAnf can help in explaining
differences in observables for molecules consisting of differ-
ent isotopes.
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A. Interference structures in partial photoelectron
momentum distributions

Here we discuss interference structures in the partial
PEMDs Pv (k) generated by multicycle almost monochromatic
pulses described by Eqs. (82) and (84) with fixed ω and noc →
∞. The computational time required to solve the TDSE with
our program grows rapidly with noc (see the Appendix). We
mention that it grows even faster as ω is decreased while
keeping noc fixed. In such situations, especially for strong
fields, solving the TDSE quickly becomes unfeasible. At the
same time, AAnf can be implemented almost with the same
ease for any noc and ω.

For monochromatic pulses, Eq. (55) has two solutions
within each optical cycle. All the solutions to Eq. (55) can
be presented in the form t1 j = t1 + jTω or t2 j = t2 + jTω,
where j is an integer, Tω = 2π/ω is the laser period, and
t1 < t2 denote two solutions in the interval 0 < t < Tω. We
can rearrange the sum over i in Eq. (73) by first summing
the contributions from t1 and t2, and then summing the result
over j enumerating optical cycles. Consider the dependence
of the different terms on ti. The solution to Eq. (66) in
the monochromatic case has the Floquet form �(R, t ) =
�(R, t )e−iEBO(F0,ω)t , where �(R, t ) is a periodic function of
t and EBO(F0, ω) is the Floquet energy of the molecule in
the BOA. Then one can see that the contributions from ti
and ti + Tω differ by a factor ei�φinter , with the intercycle
interference phase given by

�φinter = �ETω, (88)

where

�E = k2

2
+ Up + εv − EBO(F0, ω) (89)

and Up = F 2
0 /4ω2 is the ponderomotive energy. On the other

hand, the phase difference between the contributions from t1
and t2, defining the intracycle interference phase, is

�φintra = �E�t − 3|k|
2ω

√
4Up − k2 + δ, (90)

where �t = t2 − t1 = (π − 2 arcsin ω|k|
F0

)/ω and the term
δ originates from the phase of the ionization amplitude
f (R, F (t )) and Floquet eigenfunction �(R, t ) in Eq. (74).
Thus, we expect the appearance of two interference structures
in the partial PEMDs, intercycle and intracycle, defined by the
phases (88) and (90), respectively.

To demonstrate this, we have performed AAnf calculations
for the heavy nuclei model with M = 1836 for a multicycle
pulse with noc = 19. The calculation of the Floquet energy
EBO(F0, ω) and eigenfunction �(R, t ) is a separate issue
which goes beyond the scope of this paper. For the present
illustrative purposes, we consider a rather weak pulse with
F0 = 0.05, for which they can be approximated by the un-
perturbed energy EBO

0 of the molecule and the nuclear wave
function �0(R) in the BOA. The phase of f (R, F ) in this case
does not depend on F , as follows from the WFAT [39], so
we set δ = 0. The results are presented in Fig. 18. The solid
(blue) lines in the top panel show the partial PEMDs Pnf

v (k)
for the first three vibrational states as functions of the total
energy k2/2 + εv of the ionized molecule. The vertical (gray)

FIG. 18. Partial AAnf PEMDs for the heavy nuclei model with
M = 1836 generated by a pulse with ω = 0.057, noc = 19, and F0 =
0.05 calculated using Eq. (73). In the top panel, the solid (blue) lines
show the PEMDs Pnf

v (k) as functions of k2/2 + εv . The dashed lines
show the corresponding averaged PEMDs defined by Eq. (92). The
vertical (gray) lines indicate the energies where the condition (91) is
fulfilled. The bottom panel shows the ratio (93) in the plane of the
electronic k2/2 and molecular ion εv energies. The conditions (91)
and (94) are fulfilled along the solid (gray) lines and dashed (red)
lines in this panel, respectively. The results include only electrons
ejected in the positive direction k > 0. For multicycle pulses, the k <

0 results are practically identical.

lines indicate the energies where the following condition for
constructive intercycle interference is fulfilled:

�φinter = 2πn, n = 0,±1, . . . . (91)

Indeed, these lines are located near the maxima of Pnf
v (k).

Such maxima are counterparts of above-thresholds ionization
peaks for atomic targets [65]. The intercycle interference in
the joint electronic and nuclear energy spectrum for molec-
ular targets was discussed in Ref. [15]. The corresponding
interference phase given there coincides with Eq. (88) with
the Floquet energy in Eq. (89) substituted by the unperturbed
molecular energy. In the top panel in Fig. 18, we have
additionally plotted by dashed (blue) lines averaged partial
PEMDs obtained from Eq. (73) as the incoherent sum

P̄nf
v (k) = 2π

∑
i

|gv (ti )|2
|F (ti )| . (92)
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The bottom panel shows the ratios

P̃nf
v (k) = Pnf

v (k)

P̄nf
v (k)

, (93)

which emphasize the interference structures. The solid (gray)
lines connect points in the plane of the electronic k2/2 and
molecular ion εv energies where the condition (91) is fulfilled.
The fact that these lines pass through the maxima of the
Pnf

v (k) is more clearly seen now. The dashed (red) lines
indicate points where the condition for destructive intracycle
interference is fulfilled

�φintra = π (2n + 1), n = 0,±1, . . . . (94)

These lines closely reproduce minima of Pnf
v (k) extending in

a direction almost perpendicular to the intercycle maximum
lines. The intracycle interference in dissociative ionization
of molecules was discussed in Ref. [66]. The correspond-
ing interference phase given there coincides with Eq. (90),
with the Floquet energy in Eq. (89) again substituted by
the unperturbed molecular energy, as in Ref. [15], and the
term δ omitted. Note that although we have also used these
approximations in the present illustrative calculations, the
exact intercycle (88) and intracycle (90) interference phases
obtained within AAnf differ from that in Refs. [15] and [66].

B. Isotope effect

We now use AAnf to discuss the isotope effect in molecular
strong-field observables. Here, we consider channel ionization
probabilities Pion

v . We have performed TDSE calculations for
the heavy nuclei model (see Sec. VI A) with nuclear masses
M = mp, 2mp, and 4mp, where mp = 1836 is the proton mass,
for a few-cycle pulse with noc = 2 and F0 = 0.15. The results
are presented by solid circles in Fig. 19. One can see a strong
isotope effect in the distribution of Pion

v as a function of the
ionic energy εv: As the nuclear mass grows, the distribution
becomes narrower. We mention that there is no strong mass
dependence in the shape of the partial PEMDs Pv (k) as
functions of k, that is why we consider channel ionization
probabilities [see Eq. (13)]. For the largest nuclear mass
considered, M = 4mp, we also show AAnf results. These are
seen to be quite close to the corresponding TDSE results. This
enables us to explain the isotope effect by means of Eq. (73).

The main dependence of the ionization amplitude (73) on
εv comes from the factor (74). In the limit M → ∞, this factor
can be evaluated using the reflection approximation. This
approximation amounts to replacing the ionic state χv (R) in
the integrand by a function proportional to δ(R − Rv ), where
Rv < Rion is the inner turning point defined by Uion(Rv ) = εv

[64]. Then the result for gv (t ) is proportional to �(Rv, t ). For
fields that are not too strong, this function can be approxi-
mated by the unperturbed solution (70) to Eq. (66), which
gives Pnf

v (k) ∝ |�0(Rv )|2. Since the nuclear wave function
�0(R) for M → ∞ is localized near R = Rmol, we expect
that the probability density |�0(Rv )|2 represents the main
dependence of Pnf

v (k), and hence Pion
v , on εv . This density for

M = 4mp, normalized to the maximum of the corresponding
distribution Pion

v , is plotted by the solid line in Fig. 19. In view
of the approximations made, we did not expect that it would
closely reproduce the TDSE and AAnf results. However, it

FIG. 19. Solid circles show the TDSE results for the channel
ionization probabilities Pion

v for the heavy nuclei model with M =
mp, 2mp, and 4mp (from top to bottom), where mp = 1836, obtained
from Eq. (13) for a few-cycle pulse with ω = 0.057, noc = 2, and
F0 = 0.15. The results are shown as functions of the ionic energy εv .
Crosses show the corresponding AAnf results for the largest nuclear
mass M = 4mp calculated using Eq. (73). The solid line shows the
unperturbed ground-state nuclear probability density |�0(Rv )|2 for
M = 4mp, where the ionic turning point Rv is a function of εv defined
by Uion(Rv ) = εv . The solid line is normalized to the AAnf results at
the maximum.

does approximately reproduce the overall shape of the results.
The agreement could be improved by including the ionization
amplitude f (R, F ) factor from Eq. (74); we do not discuss this
because the AAnf results obtained by implementing Eq. (73)
without any approximations are already shown to agree well
with the TDSE results. The width of |�0(Rv )|2 decreases as
M grows, which explains the decrease of the width of the dis-
tribution of Pion

v seen in Fig. 19. In Ref. [35], distributions of
Pion

v for the real H2 molecule produced by intense laser pulses
were measured experimentally. Our theory and calculations
predict that similar distributions for D2 would be narrower.

In Ref. [36], the dependence of the total ionization rate
in a static electric field on the nuclear mass for isotopes of
molecular hydrogen was predicted based on the WFAT [39].
The rate was shown to decrease as the the nuclear mass grows.
This prediction was confirmed experimentally by measuring
the ratio of total ionization yields for H2 and D2 produced
by circular polarized laser pluses at 800-nm wavelength [37].
Here we can address the question of whether the prediction
of Ref. [36] for ionization rates in a static field holds for
ionization yields in a time-dependent laser field measured in
Ref. [37]. The total ionization probabilities [see Eq. (15)]
in the calculations discussed above are Pion = 0.275, 0.257,
and 0.241 for M = mp, 2mp, and 4mp, respectively. Thus Pion

indeed decreases as M grows, in agreement with Ref. [36].

VIII. CONCLUSIONS AND OUTLOOK

We have developed the adiabatic theory of ionization of
molecules by intense laser pulses with the internuclear motion
taken into account. The structure of the theory depends on
the relation between electronic Te, nuclear Tn, and laser field
Tf timescales. We have considered two regimes that are most
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relevant for applications in strong-field physics: field is the
slowest, Eq. (36), and electron is the fastest, Eq. (58). The
corresponding versions of the adiabatic theory are denoted
by AAf and AAnf, respectively. The adiabatic asymptotics
of the ionization amplitude (11) defining all the ionization
observables within AAf and AAnf are given by Eqs. (57) and
(73), respectively. These formulas present the main results of
this paper. The compatibility of AAf and AAnf in the overlap
region (75) where the two adiabatic approximations apply
simultaneously is shown. The theories are validated by com-
paring their predictions with TDSE calculations for a model
diatomic molecule. The AAf and AAnf results are shown
to converge to the TDSE results as the adiabatic parameters
(37) and (59), respectively, tend to zero. The main difference
between the adiabatic and TDSE results for few-cycle pulses
at finite values of the parameters is caused by rescattering not
accounted for by the present versions of AAf and AAnf. We
mention that the present 1D model exaggerates the relative
role of rescattering effects compared to the 3D case; see
Refs. [44,56]. The usefulness of the theory is illustrated by the
analysis of interference structures in partial PEMDs generated
by almost monochromatic pulses and isotope effect in the
distribution of channel ionization probabilities.

As an outlook, let us indicate three directions of possible
generalizations of the present theory. Rescattering can be
accounted for following the approach developed in Ref. [44];
this will be discussed elsewhere. Two other directions of
interest for applications are the inclusion of the dissociation
channel on the basis of the approach developed in a time-
independent framework [41,42] and the extension of AAnf to
3D electronic motion using a method for calculating molecu-
lar SSs in an electric field developed in Refs. [61,67,68]. The
latter extension will enable one to study the distribution of
photoelectrons in the transverse component of their momen-
tum with respect to the polarization axis not reproduced by the
1D model, which contains additional structural information,
e.g., encoded in the strong-field photoelectron holography
pattern [46]. The thus-generalized theory covering all the
essential aspects of the electronic and nuclear dynamics will
find applications in the analysis of strong-field processes in
midinfrared [52] and terahertz [53] ranges, in which case
solving the TDSE is not feasible.

ACKNOWLEDGMENTS

This work was supported in part by JSPS KAKENHI
Grants No. 17F17901, No. 17K05597, and No. 19H00887.
J.S. was supported as an International Research Fellow by
the JSPS for the majority of this work. O.I.T. acknowledges
support from the Russian Academic Excellence Project “5–
100.”

APPENDIX: NUMERICAL PROCEDURES

In this Appendix, the numerical methods used in this
work are described. The main programs used for TDSE
and SS calculations were implemented in FORTRAN, while
postprocessing of data, plotting, and evaluation of the adia-
batic approximations were done using PYTHON. Interfacing
data between FORTRAN and PYTHON was partly done using

NetCDF. We used the PYTHON libraries f90nml, NumPy,
xarray, HoloViews, and Matplotlib extensively.

In the first section, we describe the programs used for
solving the TDSE and obtaining observables from this solu-
tion. The following section describes how we implemented
the adiabatic approximations. The last section gives numerical
parameters for one of the most demanding calculations in this
work and estimates of the computational time scaling for the
three-body TDSE program.

1. Three-body TDSE

For propagating solutions to the three-body TDSE (8), we
used the split-step Fourier method [69] with the sine discrete
variable representation (sine-DVR) [70,71] functions as a
basis set. In this section, we first describe the sine-DVR and
then the split-step Fourier method. Finally, we describe how
the scattering states were calculated and how the propagated
solutions were projected onto those to obtain the ionization
amplitudes.

a. Sine discrete variable representation

We will start by listing some of the central properties of the
sine-DVR. In this subsection, we consider a 1D problem in a
box zmin � z � zmax of length L = zmax − zmin. The sine-DVR
in this box consists of N functions given by

π j (z) =
N∑

n=1

Tn jφn(z), j = 1, . . . , N, (A1)

where the finite basis set representation (FBR) functions φn(z)
are given by

φn(z) =
√

2

L
sin

(
nπ

z − zmin

L

)
, n = 1, . . . , N, (A2)

and the transformation matrix from the FBR to the DVR
functions is

Tn j =
√

2

N + 1
sin

(
π

n j

N + 1

)
. (A3)

The FBR functions φn(z) are orthonormal with respect to
integration in the box over the interval [zmin, zmax]. The DVR
functions π j (z) are also orthonormal under the same norm.
Integrals in the box can be approximated using the quadrature
rule associated with the DVR for a smooth function g(z) as∫ zmax

zmin

g(z)dz ≈
∑

j

g(z j )w, (A4)

where the quadrature points and weight are given by

z j = zmin + j

N + 1
L, (A5a)

w = L

N + 1
. (A5b)

This leads to∫ zmax

zmin

πi(z) f (z)π j (z)dz ≈ f (z j )δi j, (A6)
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where f (z) is a smooth function and we used the property

πi(z j ) =
√

L

N + 1
δi j . (A7)

The matrix elements of the kinetic energy K = − 1
2m

∂2

∂z2 can be
expressed as

∫ zmax

zmin

πi(z)Kπ j (z)dz = π2

2mL2

N∑
n=1

n2TinTjn. (A8)

A wave function can be expanded in terms of the DVR
functions

ψ (z) =
N∑

j=1

ψ jπ j (z) (A9a)

=
N∑

n=1

φnφn(z), (A9b)

where

φn =
N∑

j=1

Tn jψ j . (A10)

The transformation in Eq. (A10) is up to a constant of the
same form as the type-I discrete sine transform (DST-I) [72].
This allows us to take advantage of optimized DST implemen-
tations for performing this transformation. In our program,
we used the FFTW library [72]. Since Tn j is orthogonal and
symmetric, the inverse transformation is also a DST-I. Note
that all the FBR and DVR functions are zero at zmin and
zmax.

In this work, we found that the expansion by DVR func-
tions converges very slowly to the wave function for light
nuclear masses when using the internuclear potential (85) with
D = 0. This is caused by this potential having a divergence
at R = 0, where the wave function therefore behaves as a
noninteger power of R. Such a wave function is not well
described by the DVR functions, since these functions all go
to zero linearly. For this reason, we used a set of potential
parameters with D > 0 to consider light nuclear masses.

b. Time propagation

Here we describe the split-step Fourier method [69] used
for the time propagation of the wave function. We approx-
imate the time evolution operator U (t + �t, t ) from t to
t + �t by the short-time propagator

U (t + �t, t ) = e−iH (t+�t/2)�t + O(�t3), (A11)

where H (t ) = H0 + F (t )x is the time-dependent Hamilto-
nian (8). We further split the short-time propagator in
purely coordinate-dependent potential V (x, R, t ) = V (x; R) +
Uion(R) + F (t )x and purely momentum-dependent kinetic
K = − 1

2μ
∂2

∂R2 − 1
2m

∂2

∂x2 parts,

U (t + �t, t ) = e−i 1
2 K�t e−iV (x,R,t+�t/2)�t e−i 1

2 K�t + O(�t3).
(A12)

We used a product basis of the DVR functions π j (x)πl (R)
and the corresponding FBR functions φn(x)φm(R). The prod-

uct FBR functions φn(x)φm(R) are eigenfunctions of the ki-
netic energy, meaning that the corresponding matrix is diago-
nal in this representation,

∫ xmax

xmin

∫ Rmax

Rmin

φn(x)φm(R)Kφo(x)φp(R)dRdx

=
(

n2π2

2mL2
x

+ m2π2

2μL2
R

)
δnoδmp, (A13)

where Lx = xmax − xmin and LR = Rmax − Rmin are the sizes
of the box used in the x and R coordinate respectively. Using
Eq. (A6), we see that within the quadrature approximation the
potential matrix is likewise diagonal in the DVR representa-
tion

∫ xmax

xmin

∫ Rmax

Rmin

πi(x)πk (R)V (x, R, t )π j (x)πl (R)dRdx

≈ V (xi, Rk, t )δi jδkl . (A14)

The wave function is propagated in time by first transform-
ing to the FBR using the DST-I, applying the e−i 1

2 K�t operator,
transforming back to the DVR again using DST-I, applying the
e−iV (x,R,t+�t/2)�t operator, then transforming back to the FBR
basis, applying the next operator and so forth.

c. Bound states

In order to find the bound states, we diagonalized the field-
free Hamiltonian matrix in the DVR. The ground state was
used as an initial state for the time propagation, and the full set
of bound states were used to obtain the final bound-state pop-
ulations. We calculated the potential and kinetic energy matri-
ces using Eqs. (A14) and (A8) respectively. Since the kinetic
energy matrix is a full matrix, diagonalizing the Hamiltonian
on the full grid used in the time propagation quickly becomes
unfeasible even for moderate box sizes. However, since we
only consider finite-range potentials here, there are only a
finite number of bound states, and these are confined in a
smaller region. The diagonalization was sped up significantly
by only using grid points in this smaller region containing
all the bound states. The bound-state wave functions were
subsequently extended to the full time propagation grid by
putting them to zero outside this inner region. We used the
FORTRAN library LAPACK to perform the diagonalization.

Imaginary time propagation is an alternative method for
finding the initial bound state when using the split-step Fourier
method. However, it is very difficult to obtain excited states
with this method. Additionally, by using diagonalization there
is no need to worry about convergence with respect to the
imaginary time step size.

d. Scattering states

Three-body scattering states (4) were calculated with a
method similar to that in Ref. [73], although here we used
rectangular coordinates x and R rather than the hyperspherical
coordinates used there.

Because of the mirror symmetry of the system about x =
0, we calculated even and odd states separately on the half-
axis x � 0. We express the asymptotic boundary condition for
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these even-odd scattering states in terms of the K matrix as

� (e,o)
v (x, R; E ) = f (s)(x; kv (E ))χv (R)

+
∑
v′

f (c)(x; kv′ (E ))χv′ (R)K (e,o)
v′v (E ),

(A15)

where

f (s)(x; k) =
√

m

k
sin(kx), (A16a)

f (c)(x; k) =
√

m

k
cos(kx), (A16b)

with the momenta being kv (E ) = √
2m(E − εv ). The even-

odd K matrices are related to the S matrix from Eq. (6) for
k > 0 by

S∓
v′v (−k) = S±

v′v (k) = 1

2

√
k

m

[
S(e)

v′v (Ev (k)) ± S(o)
v′v (Ev (k))

]
,

(A17a)

S(e,o)(E ) = [1 + iK (e,o)(E )][1 − iK (e,o)(E )]−1, (A17b)

where Ev (k) = 1
2m k2 + εv [as in Eq. (5)]. The in- and out-

scattering states can be constructed from the even-odd states,
again for k > 0, by

�(+)
v (x, R; ±k)=−1

2

√
k

m

[
�̃ (e)

v (x, R; Ev (k))

∓ �̃ (o)
v (x, R; Ev (k))

]
, (A18a)

�(−)
v (x, R; ±k)= 1

2

√
k

m

∑
v′

[
�̃

(e)
v′ (x, R; Ev (k))[S(e)(Ev (k))]−1

v′v

± �̃
(o)
v′ (x, R; Ev (k))[S(o)(Ev (k))]−1

v′v

]
,

(A18b)

where

�̃ (e,o)
v (x, R; E ) = 2i

∑
v′

�
(e,o)
v′ (x, R; E )[1 − iK (e,o)(E )]−1

v′v.

(A19)

Here the �
(e,o)
v′ (x, R; E ) functions are extended to the whole x

axis by using the even-odd symmetry about x = 0.
In order to calculate the K matrices and scattering wave

functions, we used the R-matrix propagation method [74]. The
R matrix Rνμ(x) is defined by∫ ∞

0
�ν (x, R)�(x, R; E )dR

=
∑

μ

Rνμ(x)
∫ ∞

0
�μ(x, R)

∂�(x, R; E )

∂x
dR, (A20)

where the adiabatic channel functions �μ(R; x) and the eigen-
values Uμ(x) are solutions to the eigenvalue problem,

[U (x) − Uμ(x)]�μ(R; x) = 0, (A21a)

U (x) = − 1

2μ

∂2

∂R2
+ Uion(R) + V (x; R), (A21b)

for fixed values of x, subject to the boundary conditions
�μ(R = 0; x) = �μ(R = ∞; x) = 0. We solved this equation
by diagonalizing the U (x) operator expressed in the sine-
DVR. The R-matrix propagation was performed by first di-
viding the x coordinate into a number of sectors. The R
matrix was then propagated through each of these sectors
using the slow variable discretization (SVD) [75] method with
the Legendre-DVR functions. Details of the computational
method for the propagation is described in the Appendix of
Ref. [61].

The R matrix for even (odd) states was propagated from
x = 0 with the initial condition R(0) = 0 (R(0) = ∞) to the
matching point xm. This matching point was chosen to be
sufficiently far from the origin such that the potential V (x; R)
and hence any couplings between different adiabatic channels
had vanished. In this region, the adiabatic channel functions
�μ(R; x) coincide with the molecular ionic eigenfunctions
χv (R). The K matrix can be expressed in terms of the R
matrix as

K (e,o)(E ) = − [F (c) − R(e,o)(xm)D(c)]−1

× [F (s) − R(e,o)(xm)D(s)], (A22)

where the components of the F (s,c) and D(s,c) matrices are

F (s,c)
μv = δμv f (s,c)(x; kv (E ))|x=xm , (A23a)

D(s,c)
μv = δμv

∂

∂x
f (s,c)(x; kv (E ))|x=xm . (A23b)

This expression was obtained by matching using the asymp-
totic form of the wave function (A15) and the definition of the
R matrix (A20).

e. Projection of the TDSE wave function onto scattering states

The ionization amplitude (11) is obtained by projection
of the TDSE wave function onto the scattering states. The
integration was done using the quadrature rules associated
with the scattering grid. The TDSE wave function was put on
the scattering grid by evaluating the 2D version of Eq. (A9b),
which gives better accuracy than, e.g., spline interpolation.

2. Adiabatic approximations

SSs are essential components needed for implementing the
AAs. The SSs used in the AAf were calculated using the
R-matrix propagation method in complex variables. Details
of the method are described in Ref. [40]. The electronic SSs
(60) used in AAnf were found with the same method, reduced
to the 1D case. In the following subsection, we mention some
details regarding the evaluation of the ionization amplitude
applicable to both AAf and AAnf. For the AAnf, we addition-
ally need solutions to the nuclear TDSE (66), described in the
subsequent subsection.

a. Evaluation of ionization amplitude expressions

The ionization amplitudes in both AAf and AAnf are
obtained for any given value of k by using the saddle points
that are defined by Eq. (55). The number of saddle points
depends on the pulse shape and k. For the few-cycle pulse
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[Eqs. (82) and (84)], there are infinitely many for k near
zero, but most of the significant contributions to the ionization
amplitude comes from around the peak of pulse. We therefore
only need to use a finite number of saddle points, and we
consider this number as a convergence parameter.

The calculation of the AAs’ ionization amplitudes was
performed in PYTHON, using Brent’s method for finding the
saddle points. For keeping track of all the indices involved,
the PYTHON library xarray was useful.

b. Nuclear TDSE

We expand the nuclear wave function in terms of nuclear
bound states (69) in the interaction picture as

�(R, t ) =
∑

n

cn(t )�n(R)e−iEBO
n t . (A24)

Using this, we express the nuclear TDSE (66) in terms of the
time-dependent coefficients cn(t ) as

i
∂

∂t
cn(t ) =

∑
n′

ei(EBO
n −EBO

n′ )t�Enn′ (F (t ))cn′ (t ), (A25)

where

�Enn′ (F ) =
∫ ∞

0
�n(R)[Ee(R, F ) − Ee(R, 0)]�n′ (R)dR.

(A26)

We prepare the �Enn′ (F ) matrix elements at a number of
fixed values of F by solving Eq. (69) using the sine-DVR, and
then using the associated quadrature to evaluate the integrals
in R. The electronic SS energies Ee(R, F ) that enter in this
integral were calculated using the method referred to above.
We then propagate Eq. (A25) through the pulse using the
fixed-step fourth-order Runge-Kutta algorithm from Ref. [76],
where we used the spline interpolation algorithm from the
same reference to obtain �Enn′ (F ) at any needed values
of F .

3. Numerics

a. Numerical parameters and computational performance

Here we give an example of the parameters used in one of
the most demanding three-body TDSE calculations, namely
for the half-cycle, M = 1836, F0 = 0.2, T = 150 calculation,
shown in the lower right panel of Figs. 8, 9, and 10. The
box size in x was Lx = 13 200 with Nx = 1.5 × 105 points
in x. In R, these parameters were LR = 6.0 and NR = 60.
In total, this calculation used around N = NxNR = 9 × 106

grid points. The time-step size was �t = 0.007 for a total
propagation time of 750, so around Nt = 105 time steps were
taken. With these parameters, the time propagation took about
1 day and 16 h on a 36-core Intel Xeon 6140 machine. Finding
bound states through diagonalization for these parameters
took around 19 min. For finding scattering states, we used
comparable grid spacing and 60 adiabatic channels, and the
execution time for 200 energies was around 3 h. Solving
the nuclear TDSE Eq. (66) took about 1 min for this case,
although finding SS energies that enters that calculation took
about 5 h. It should be noted though that the SS calculation
does not have to be repeated for different field parameters. As

long as the system is the same, the same set of SS energies
can be used, whereas the three-body TDSE calculation has to
be repeated whenever the field is changed.

The convergence of our calculations was tested by varying
all relevant numerical parameters a significant amount and
seeing that such variation did not visibly alter the final physi-
cal observables in the figures.

b. Scaling of parameters

Here we provide estimates for how the computational time
Tcomp of our three-body TDSE program scales with the physi-
cal parameters of the problem, namely the maximal amplitude
F0, the timescale Tf , and the total duration of the laser pulse
Ttot.

As a first step, we examine how the numerical parameters
scale in terms of the physical parameters in the adiabatic
regime. Such estimates are also useful for choosing numerical
parameters when physical parameters are varied. The maximal
momentum of the electrons scales as

kmax ∝ F0Tf . (A27)

Lx is determined by the product of the velocity of the fastest
electron ∼kmax, and the amount of time it has for moving
∼Ttot. Thus, we have

Lx ∝ kmaxTtot ∝ F0Tf Ttot. (A28)

The grid size �x = Lx/Nx should be inversely proportional to
the maximal momentum, so that

�x ∝ k−1
max ∝ F−1

0 T −1
f . (A29)

The time step size �t should scale inversely with the maximal
energy of the electrons, namely

�t ∝ k−2
max ∝ F−2

0 T −2
f . (A30)

For a 1D DST, the computational time scales as N log N ,
where N is the number of points. The evaluations of the po-
tential and exponentials are potentially quite time-consuming,
but they only scale as N . For the following estimate, we will
assume that the DST is the most time-consuming part of our
program. We perform two DSTs for each time step, so the total
computational time should scale linearly with the number of
time steps Nt . Using the scalings

Nx ≈ Lx/�x ∝ F 2
0 T 2

f Ttot, (A31a)

Nt ≈ Ttot/�t ∝ F 2
0 T 2

f Ttot, (A31b)

we arrive at following scaling for the computational time:

Tcomp ∝ Nt Nx log NxNR log NR ∝ F 4
0 T 4

f T 2
tot log

(
F 2

0 T 2
f Ttot

)
,

(A32)

where we assumed that the number of points in the R-
coordinate NR is independent of the physical parameters, since
in the model considered in this work, the wave function is
confined by the potential in this direction.

As an example, let us consider the few-cycle pulse (84)
for which Ttot ∝ T and Tf ∼ π/ω = T/2noc. For a case in
which we increase the duration T while keeping the number of
cycles constant, we see that Ttot ∝ T and Tf ∝ T , so Tcomp ∝
F 4

0 T 6 log(F 2
0 T 3). If we instead increase the duration of the
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pulse while keeping the frequency constant, then Ttot ∝ T , but
Tf will not change. So we have Tcomp ∝ F 4

0 T 2 log(F 2
0 T ). Note

that in physical regimes other than the adiabatic one, there
would most likely be different scalings of computational time.
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C. C. Chirilă, M. Lein, J. W. G. Tisch, and J. P. Marangos,
Probing proton dynamics in molecules on an attosecond time
scale, Science 312, 424 (2006).
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