
PHYSICAL REVIEW A 101, 053418 (2020)

Oscillation of channel branching ratios and g-u-symmetry state mixing
in the direct photodissociation of HD

Jie Wang * and Yuxiang Mo †

Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084, China

(Received 30 December 2019; revised manuscript received 13 March 2020; accepted 6 April 2020;
published 11 May 2020)

For the direct photodissociation of HD in the second threshold, there are four open channels H(2s) +
D(1s), H(2p) + D(1s), D(2s) + H(1s), and D(2p) + H(1s). We measured the channel branching ratios and
found that the ratios oscillate with the wave vectors of the photofragments. However, the population ratios
[H(2s)]/[H(2s) + D(2s)] and [H(2p)]/[H(2p) + D(2p)] are nearly constant ∼0.6. The results can be explained
by assuming that the photodissociation in the Franck-Condon region follows mechanisms similar to those of
H2 and D2, i.e., the excitations are to the 3pσB′ 1�u

+ and 2pσB 1�u
+ states that are interfered with due to

the phase differences between the two states. For HD, near the dissociation limits, the g-u pair states that
are valid in the Born-Oppenheimer approximation are mixed almost completely in the corrected adiabatic
approximation. A diabatic approximation would thus predict that the ratios [H(2s)]/[H(2s) + D(2s)] and
[H(2p)]/[H(2p) + D(2p)] are 0.5.

DOI: 10.1103/PhysRevA.101.053418

I. INTRODUCTION

The photodissociation dynamics of small molecules is
important not only in the understanding of the electronic
structure of molecules, but also in practical applications, such
as interstellar chemistry [1–3]. The dissociation features are
closely related to the potential energy curves (PECs) and
the associated scattering wave functions [4,5]. With H2 as
the simplest molecule, its electronic spectra and dissociation
dynamics have drawn a great deal of attention [6–14]. For the
direct dissociation of H2 and D2 near the second dissociation
threshold, Beswick and Glass-Maujean predicted that the
channel branching ratios of 2s + 1s and 2p + 1s oscillate as
a function of the wave vectors of the photofragments [11,12].
Recently, we experimentally verified this prediction in the
case of D2 [15].

For H2, there are three bound u-symmetry states adiabati-
cally correlated with the second dissociation limits, in which
the 3pσB′ 1�u

+ state correlates with the H(2s) + H(1s) chan-
nel and 2pσB 1�u

+ and 2pπC 1�u correlate with H(2p) +
H(1s) (see Fig. 1) [10–14]. The direct photodissociation
occurs mainly via the nuclear vibrational continua of the
3pσB′ 1�u

+ and 2pσB 1�u
+ states; the former is the dominant

process. Due to the vibronic interaction between the two
states, each dissociation limit actually results from the
two states. Therefore, the interference occurring between the
two paths leads to the channel H(2s) + H(1s) or H(2p) +
H(1s). The summations of signal intensities of the two chan-
nels are approximately constant, indicating that the phases of
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the two oscillations are just reversed. The channel branching
ratios depend on both the amplitude and relative phase of the
scattering wave functions [11,12,15]. The phase differences
between the two states are approximately proportional to the
wave vectors of the photofragments. By tuning the excitation
energies, the wave vectors of the photofragments change,
the channel branching ratios thus oscillate due to the phase
differences.

There have been many experimental and theoretical studies
about the fragment spin-orbit branching ratios in the pho-
todissociation, which are found to be dependent on the frag-
ment kinetic energies and the spin-orbit coupling strengths
[16–18]. The relative phases between the dissociation wave
functions are usually not discussed. The phase controlled
channel branching ratios would provide insight into the vi-
bronic couplings in chemical reactions.

The direct dissociation of the HD molecule provides an
interesting example of the state couplings and their relative
phases on the channel branching ratios [19–30]. In contrast
to H2 and D2, there are four open channels D(2s) + H(1s),
D(2p) + H(1s), H(2s) + D(1s), and H(2p) + D(1s) [19–25].
In the Born-Oppenheimer approximation [1], the PECs should
be independent of isotopes, as are the channel branching
ratios. However, because of the isotope effect, the dissociation
limits split into two energy levels D(2s, 2p) + H(1s) and
H(2s, 2p) + D(1s), with a space of ∼22 cm−1. The Born-
Oppenheimer approximation is therefore not valid near the
asymptotes. With a correction of the Born-Oppenheimer ap-
proximation, the mass effect can be taken into account in the
calculation of PECs [19–22]. The channel branching ratios
should thus be dependent on the isotopes. In the following,
we call the PEC including the mass effect a corrected adia-
batic PEC and the one without the mass effect is the Born-
Oppenheimer PEC. Note that the Born-Oppenheimer method
is an adiabatic approximation in principle [1]. Figures 1(a)
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FIG. 1. Potential energy curves of the HD molecule adapted from
Ref. [22]. (a) Born-Oppenheimer PECs. (b) The dotted lines are
the Born-Oppenheimer PECs and the solid lines are the corrected
adiabatic PECs that take account of the atomic masses. The Born-
Oppenheimer PECs in the Franck-Condon region in (a) are similar
to the corrected adiabatic PECs. Note that the threshold for the lower
dissociation limit H(2s) + D(1s) is 118 664.8 cm−1 [10].

and 1(b) show the Born-Oppenheimer PECs and the corrected
adiabatic PECs in the dissociation limits of the HD molecule,
respectively.

For H2 and D2 molecules, the inversion of electronic wave
functions in the center-of-mass coordinates is symmetric or
antisymmetric and is referred to as a g or u symmetry, re-
spectively. For HD, the g-u symmetry states are mixed in the
corrected adiabatic PECs. Nevertheless, the g-u symmetries
are approximately maintained in the Franck-Condon region.
The photodissociation involves a change of dynamics from
that described by the Born-Oppenheimer approximation in
the Franck-Condon region to that described by the corrected
adiabatic approximation near the dissociation limits. Because
the photoexcitation is mainly due to the nuclear vibrational
continua of the 3pσB′ 1�u

+ state [26–30], the main product
channel would be D(2s) + H(1s) for the dissociation along
the corrected adiabatic PEC. However, because of the nona-
diabatic coupling near the dissociation limits, there should be
a population transfer from the D(2s) state to the H(2s) state
depending on the g-u state mixing. Therefore, the channel
branching ratios in the photodissociation of HD should be
dependent not only on the phase of the wave functions but
also on the g-u state mixings.

Previously, there have been studies about the predissoci-
ation dynamics of HD [19–22,25,28]. Durup calculated the
branching ratios between the H(2p) + D(1s) and D(2p) +
H(1s) channels in the predissociation of HD and found that
the former channel is more proportional [19]. Recently, we
studied the predissociation of HD using an XUV laser pump
and UV laser probe method and found large asymmetry be-
tween the H(2s, 2p) and D(2s, 2p) channels [25]. In this work
we apply the same technique to study the direct dissociation
of HD.

II. EXPERIMENTAL METHOD

The experimental setup consists of a tunable XUV laser
pump (∼10 nJ/pulse), a UV laser probe system (365 nm and
∼1 mJ/pulse), and a typical velocity map imaging apparatus
[15,25,31–35]. The XUV laser was generated by resonance
enhanced four-wave sum mixing (2ω1 + ω2) in a pulsed Kr
jet using two laser beams. The first laser beam with fre-
quency ω1 was generated by the tripling of a dye laser and
2ω1 was equal to the resonance frequency of the transition
4p5(2P1/2)5p[1/2]0 ← (4p6) 1S0 (98 855.1 cm−1) of the Kr
atom. The second laser beam (ω2) was tuned from 23 300
to 19 800 cm−1 or from 429 to 505 nm using five different
laser dyes. The two dye lasers were pumped by an Nd:YAG
laser (repetition rate 20 Hz). The two fundamental beams were
merged by a dichroic mirror and focused by an achromatic
lens ( f = 250 nm) into a pulsed Kr jet. The fundamental
beams, four-wave sum frequency and difference frequency
beams were separated by a toroidal grating that was also used
to focus the XUV laser [31]. The probe UV laser ionizing the
photofragments was from the doubling of the third dye laser
pumped by the second Nd:YAG laser. The delay-time scan of
the probe laser pulse relative to the XUV laser pulse was con-
trolled by a personal computer and realized by a digital delay
controller (DG 535). The pulsed HD beam was produced by
a pulsed valve (General Valve Corp.). The stagnation pressure
of the HD gas was about 1500 Torr and the purity of the HD
sample was better than 98%.

The branching ratios [H(2s)]/[H(2s) + H(2p)] and
[D(2s)]/[D(2s) + D(2p)], designated as αH and αD,
respectively, were measured using the so-called delay-time-
curve method. Note that the symbol [x] represents the
population of the X state in this paper. In this method, the
H(2s, 2p) or D(2s, 2p) signals were recorded as a function
of the time delay between the XUV pump laser and the
UV probe laser pulses under the field-free condition. The
extraction electric pulse voltage (2 kV) for the H+ and D+
cations was applied about 200 ns after the XUV laser pulse.
The sensitivities of the microchannel plate detector to the
H+ and D+ ions were assumed to be equal, as previously
illustrated [36]. The branching ratios αH and αD were
determined using a simulation considering the lifetime of
the 2s (0.14 s) and 2p (1.6 ns) states and the temporal pulse
widths of the pump and probe lasers (∼6 ns). The probe laser
was focused with an f = 300 mm lens. Because of the large
ionization cross sections, the ionization rate should be much
larger than the decay rate of the 2p state [25].

The relative ratios [H(2s, 2p)]/[D(2s, 2p)] between the
H(2s, 2p) + D(1s) and the D(2s, 2p) + H(1s) channels were
determined by comparing the maximum of the two delay-time
curves recorded simultaneously. The four-channel branching
ratios can be calculated easily using the measured values of
αH, αD, and [H(2s, 2p)]/[D(2s, 2p)]. We denote the normal-
ized branching ratios for the following four channels as x1, x2,
x3, and x4, respectively:

HD + hv → H(2s) + D(1s), (1)

HD + hv → H(2p) + D(1s), (2)
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FIG. 2. Delay-time curves of the H(2s, 2p) and D(2s, 2p) fragments from the direct photodissociation of HD. The signal intensities are
normalized to the maximum of H(2s, 2p). The relative intensities [D(2s, 2p)]/[H(2s, 2p)] are obtained from the maximum of D(2s, 2p) signals
in the figure. The corresponding excitation energies can be found in the Supplemental Material using the panel numbers [37].

HD + hv → D(2s) + H(1s), (3)

HD + hv → D(2p) + H(1s). (4)

We have the relationships

x1

x1 + x2
= [H(2s)]

[H(2s) + H(2p)]
= αH, (5)

x3

x3 + x4
= [D(2s)]

[D(2s) + D(2p)]
= αD, (6)

x1 + x2

x3 + x4
= [H(2s, 2p)]

[D(2s, 2p)]
, (7)

x1 + x2 + x3 + x4 = 1. (8)

III. RESULTS AND DISCUSSION

Figure 2 shows all the measured delay-time curves for the
branching ratios αH and αD. Figure 3 shows two expanded
figures for them. The numerical values can be found in the
figure and the Supplemental Material [37].

Our supersonic HD beam had a rotational state distribution,
which was approximately 0.80:0.16:0.04 for the J ′′ = 0, 1, 2
states, respectively, estimated from the R(0), R(1), and R(2)
transition intensities of 4pσ 1�u

+ ← X 1�g
+ [25]. The con-

tributions from the rotational states J ′′ � 1 to the branching
ratios αH and αD of the first eight points in Fig. 2 can be
excluded based on the velocity map images measured under
the electric-field and field-free conditions, respectively. The
detailed procedure and the measured velocity map images can
be found in the Supplemental Material [37]. Because of the
limited resolution of the fragment translational energies, we
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FIG. 3. Two expanded curves from Fig. 1. (a) Panel (16) of Fig. 1
with excitation energy 119 600.1 cm−1. (b) Panel (40) of Fig. 1 with
excitation energy 120 960.1 cm−1. The dots show the experimental
data and the solid curves represent the simulations.

could not obtain the branching ratios of the pure J ′′ = 0 state
for the latter points. However, the measured branching ratios
could be regarded as from the J ′′ = 0 state because (a) most
of the rotational states are in the J ′′ = 0 state (∼80%) and (b)
the branching ratios αH and αD are mainly determined by the
available energies of the fragments [11]. For the ninth point in
Fig. 2 (the minimum excitation energy without the correction
of the branching ratio from the J ′′ � 1 states), the fragments
have an available energy of 490 cm−1 that is much larger than
the rotational energy of the J ′′ = 1 state (∼89 cm−1).

Figures 4(a1) and 4(a2) show the normalized
four-channel branching ratios. Figures 4(b1) and 4(b2)
show the relative ratios of [H(2s)]/[H(2s) + D(2s)] and
[H(2p)]/[H(2p) + D(2p)], and [H(2s, 2p)]/[D(2s, 2p)],
respectively. It can be seen in Figs. 4(a1) and 4(a2) that
the branching ratios of the H(2s), D(2s), H(2p), and
D(2p) fragments all oscillate with the excitation energies.
Furthermore, the branching ratios of the H(2s) fragments
oscillate with the same phase as that of the D(2s) fragments,
and the branching ratios of the H(2p) fragments also
oscillate with a phase similar to that of the D(2p) fragments.
By examining Figs. 4(a1) and 4(a2) carefully, it is also
found that the oscillation of the H(2s) fragments is out of
phase with that of the H(2p) fragment, as are the phases
between the D(2s) and D(2p) fragments. For H2 and D2,
the oscillations of the H(2s) and D(2s) fragments are
also out of phase with the H(2p) and D(2p) fragments,

respectively [11,15]. As can be seen in Fig. 4(b1), the ratios
[H(2s)]/[H(2s) + D(2s)] and [H(2p)]/[H(2p) + D(2p)]
are ∼0.60. In the following, we assume that [2s] =
[H(2s) + D(2s)], [2p] = [H(2p) + D(2p)], and [2s + 2p] =
[H(2p) + D(2p) + H(2s) + D(2s)]. A list of branching ratios
can be found in Tables S1 and S2 in [37].

The yield spectra of the H(2s, 2p) and D(2s, 2p) fragments
reported in our previous work are also shown at the bottom
of Figs. 4(a1) and 4(a2), respectively [25]. The sharp peaks
are from the predissociation of HD, and their linewidths are
usually less than 1 cm−1 in the energy range we studied
(except for several weak peaks with linewidths ranging from
3 to 7 cm−1) [25]. We have taken care to avoid measuring the
branching ratios in the neighborhood of the peaks so that the
measured ones were from the dissociation of the continuum
states. In the predissociation of HD, there are generally more
H(2s) or H(2p) fragments produced than D(2s) or D(2p)
fragments, which is also true in the direct dissociation of
HD. However, for the predissociation of HD, the values of
[H(2s, 2p)]/[D(2s, 2p)] range from 1.9 to 4.0, depending on
the predissociated states, which are different from that of ∼1.6
for the direct dissociation of HD [see Fig. 4(b2)]. The reason
for the difference should be studied in future theoretical
studies.

Figures 5(a), 5(b), and 5(c) show the relative branching ra-
tios [H(2s)]/[H(2s) + H(2p)], [D(2s)]/[D(2s) + D(2p)], and
[2s]/[2s + 2p], respectively, as functions of the wave vector
k of the photofragments, k = √

2μEt/h̄, where Et is the
translational energy of the fragments in the center-of-mass
coordinate, μ is the reduced mass of HD, and h̄ is the reduced
Planck constant. All of them oscillate as functions of the wave
vector k and are similar to cosine functions.

Based on the above observations, we propose the following
dissociation mechanism. In the Franck-Condon region, the
photodissociation dynamics of HD is similar to those of H2

and D2, i.e., only the u-symmetry states are excited. The
branching ratios [2s]/[2s + 2p] should be controlled by the
interferences between the 3pσB′ 1�u

+ and 2pσB 1�u
+ states,

similar to those of H2 and D2, but with different reduced
masses. This mechanism is supported by experimental results
shown in Fig. 5(c). Near the dissociation limits, there are
population redistributions of the 2s and 2p states from the H
atom to the D atom and vice versa due to the mixing of g-u
states. The g-u pairwise interaction between the 3pσB′ 1�u

+

and GK 1�g
+ states controls the channel distributions be-

tween D(2s) + H(1s) and H(2s) + D(1s), while the pairwise
interactions between the EF 1�g

+ and 2pσB 1�u
+ states and

between the 2pπC 1�u and II ′ 1�g states control the ratios
between H(2p) + D(1s) and D(2p) + H(1s) [20–22].

Note that the corrected adiabatic electronic wave function
near the dissociation limits can be approximated by

� (±) = 1√
2

[φg(R, r) ± φu(R, r)], (9)

where φg(R, r) and φu(R, r) are the electronic wave functions
of the Born-Oppenheimer approximation. If the fragment ki-
netic energies are much larger than 22 cm−1 [the energy space
between the channels D(2l) + H(1s) and H(2l ) + D(1s)],
50% of the populated u-symmetry states in the Franck-
Condon region should go to the upper and lower adiabatic
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FIG. 4. Branching ratios and relative populations in the direct dissociation of HD + hv → H(2s, 2p) + D(1s) and D(2s, 2p) + H(1s): (a1)
branching ratios of H(2s) and D(2s), (a2) branching ratios of H(2p) and D(2p), (b1) [H(2s)][/D(2s) + H(2s)] and [H(2p)]/[H(2p) + D(2p)],
and (b2) [H(2s, 2p)]/[D(2s, 2p)]. The dots show the experimental data and the solid lines are to guide the eye. The curves shown at the
bottom of (a1) and of (a2) are the H(2s, 2p) and D(2s, 2p) fragment yield spectra, respectively, in which the peaks are from the predissociation
of HD [25].

states, respectively, which is called the diabatic approxima-
tion. In the present case, the PECs calculated using the Born-
Oppenheimer approximation without account of the atomic
masses may be regarded as diabatic PECs, although it is
usually called the adiabatic approximation [1,22].

As mentioned above, the ratio [H(2s)]/[D(2s) + H(2s)] is
∼0.6, which indicate that 60% of the 3pσB′ 1�u

+ states cor-
related with D(2s) + H(1s) have transferred to the EF 1�g

+

states correlated with H(2s) + D(1s) near the dissociation
limits. On the other hand, we also expect that 40% of the
2pσB 1�u

+ states correlated with H(2p) + D(1s) are trans-
ferred to the GK 1�g

+ state correlated with D(2p) + H(1s).
For the relative channel branching ratios between the chan-

nels H(2s) + D(1s) and H(2p) + D(1s) we have

[H(2s)]

[H(2s)] + [H(2p)]
= k1[2s]

k1[2s] + k2[2p]
, (10)

where k1 = [H(2s)]/[2s] and k2 = [H(2p)]/[2p]. For the dia-
batic model discussed above, we should have k1 = k2 = 0.5,
and hence

[H(2s)]

[H(2s)] + [H(2p)]
= [2s]

[2s + 2p]
. (11)

For the D fragments, we have a similar equation. Therefore,
we have

[H(2s)]

[H(2s)] + [H(2p)]
= [D(2s)]

[D(2s)] + [D(2p)]
= [2s]

[2s + 2p]
. (12)

Equation (12) illustrates that the relative branching ratios
of [H(2s)]/[H(2s) + H(2p)], [D(2s)]/[D(2s) + D(2p)], and

[2s]/[2s + 2p] should be similar in the direct dissociation of
HD if the diabatic approximation is valid near the dissociation
limits. The above supposition is supported by Fig. 4(b1). It is
therefore concluded that there is an almost complete mixing
of the g-u states near the dissociation limits. Note that the
experimental results show k1 ≈ k2 ≈ 0.60.

For the direct dissociation of H2 or D2, the branching ratio
of [H(2s)]/[H(2s) + H(2p)] or [D(2s)]/[D(2s) + D(2p)] can
be approximately described by [11,15]

σ̃2s

σ̃ 2s + σ̃2p
= r̃A + r̃B cos

(
δl (2s) − δl (2p)

)
, (13)

where δl (2s) and δl (2p) are the phase shifts of the lth wave
relative to the free spherical waves due to the potential energy
curves of the 3pσB′ 1�u

+ and 2pσB 1�u
+ states, respectively.

In addition, r̃A is the branching ratio when the two scattering
functions are out of phase (π/2) and r̃B may be regarded
as the modulation depth of the branching ratio. As shown
in Eq. (12), the branching ratios [H(2s)]/[H(2s) + H(2p)],
[D(2s)]/[D(2s) + D(2p)], and [2s]/[2s + 2p] of the dissocia-
tion of HD should be described by Eq. (13).

As we have done previously [15], we used an effective
potential model to describe the phase shift, which is similar
to multichannel quantum defect theory [13,14]. In this model,
the diatomic interaction potentials are assumed to be spherical
potential wells, characterized by depth −Ũ and width ã.

For the photoexcitation starting from J ′′ = 0, only the final
state of J ′′ = 1 is possible. We assume that the coupling
between the electronic angular momentum and the nuclear
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FIG. 5. Relative channel branching ratios as functions
of the wave vector k of the photofragments (in a.u.): (a)
[H(2s)]/[H(2s) + H(2p)], (b) [D(2s)]/[(2s) + D(2p)], and (c)
[2s]/[2s + 2p]. In (c), k values are assumed to be the same as those
of the lower-energy threshold channel HD → H(2s) + D(1s). The
closed squares and open circles show the experimental data and the
solid curves are the fits using Eqs. (13) and (15). The first six points
(open circles) near the threshold are not included in the fits.

rotational angular momentum is weak, and therefore only a
p wave (l = 1) is possible. The p-wave phase shift can be
approximated by [15]

δ1 ≈ −kã + cot−1

(
k cot τ ã

τ

)
for τ � k, ãk � 1, (14)

where τ =
√

2μ(Et + Ũ0)/h̄. The phase difference between
the two channels is thus determined by

δ1(2p) − δ1(2s) ≈ −k(ã2p − ã2s) + cot−1

(
k cot τ2pã2p

τ2p

)

− cot−1

(
k cot τ2sã2s

τ2s

)
. (15)

In this equation, the first term is dominant, and thus the phase
difference is determined mainly by the wave vector k. As can
be seen from Eqs. (13) and (15), the branching ratio is a cosine
function of the wave vector of the photofragments [15].

Using Eqs. (13) and (15), we fitted the measured branching
ratios employing the nonlinear least-squares method. The
results are shown in Fig. 5. For Figs. 5(a) and 5(b), the
branching ratios in the lower six points of k values were not
included in the fits, yet the extensions of the fits to the
low-k values are in agreement with the experimental data.
The Ũ and ã values of the two spherical potential wells
were obtained from the fits and are listed in Table I, along
with the parameters r̃A and r̃B in Eq. (13). From Table I
it is known that all the parameters, including r̃A, r̃B and
width and depth of the effective potential wells, are similar
from fitting the branching ratios [H(2s)]/[H(2s) + H(2p)],
[D(2s)]/[D(2s) + D(2p)], and [2s]/[2s + 2p]. The results are
in agreement with Eq. (12). The difference of the r̃A and r̃B

values between HD and D2 may be due to the reduced masses
of the two isotopologues.

To compare the effective spherical potential wells with
those of the ab initio PECs, the effective width ã and depth
Ũ for a theoretical PEC [U(r)] are assumed to be

ã =
∫ ∞

0 r U (r)r2dr∫ ∞
0 U (r)r2dr

, −Ũ =
∫ ∞

0 4πU (r)r2dr
4
3π ã3

. (16)

TABLE I. Parameters obtained from fitting the channel branching ratios [see Eqs. (13), (15), and (16) for the definitions of the parameters.
Here r̃A and r̃B denote the cosine oscillations of the branching ratios and ã and −Ũ represent the widths and depths of the effective potential
wells, respectively, of the 2pσB 1�u

+ and 3pσB′ 1�u
+ states.

HD

ã (2pσ ) −Ũ (2pσ ) ã (3pσ ) −Ũ (3pσ )
Method (a.u.) (103 cm−1) (a.u.) (103 cm−1) r̃A r̃B

PECa 6.46 30.6 1.81 12.0
[H(2s)]/[H(2s) + H(2p)]b 6.5 ± 0.4 31 ± 4 1.7 ± 0.4 11 ± 3 0.59 ± 0.01 0.16 ± 0.01
[D(2s)]/[D(2s) + D(2p)]b 6.4 ± 0.4 32 ± 5 1.6 ± 0.4 13 ± 4 0.57 ± 0.01 0.10 ± 0.01
[2s]/[2s + 2p]b 6.5 ± 0.4 34 ± 6 1.7 ± 0.4 12 ± 3 0.58 ± 0.01 0.14 ± 0.01

D2

Expt.c 6.4 ± 0.4 33 ± 5 1.6 ± 0.4 12 ± 4 0.76 ± 0.01 0.11 ± 0.01

aCalculated from the ab initio PECs using Eq. (16) [15].
bFrom a fit of the corresponding relative branching ratios.
cFrom a fit of the branching ratios [D(2s)]/[D(2s) + D(2p)] in the photodissociation of the D2 molecule [15].
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Note that the starting point of the effective potential r = 0
in this equation corresponds to an internuclear distance of
R = 1.0 a.u., where the potential is very large [15]. The results
are listed in Table I.

It can be seen in Table I that the effective parameters of the
potential wells determined from the fits of the experimental
data of HD are in good agreement with those resulting from
the ab initio PECs [15]. This agreement demonstrates that
oscillations of the branching ratios can be explained by the
interferences of the two pathways between the 3pσB′ 1�u

+

and 2pσB 1�u
+ states, as indicated previously [11,12,15], and

the g-u state mixings near the dissociation limits.

IV. SUMMARY

We have measured the channel branching ratios of H(2s) +
D(1s), H(2p) + D(1s), D(2s) + H(1s), and D(2p) + H(1s) in
the direct dissociation of HD, with all of them oscillating
as functions of wave vectors of the photofragments. The

relative channel branching ratios [H(2s)]/[H(2s) + H(2p)],
[D(2s)]/[D(2s) + D(2p)], and [2s]/[2s + 2p] oscillate with
nearly the same phases and similar amplitudes. The re-
sults can be explained by the following mechanisms: (a)
The photodissociation follows the usual Born-Oppenheimer
approximation in the Franck-Condon region and (b) near
the dissociation limits, the g-u pair states are mixed almost
completely, which controls the relative ratios between the
H(2s) and D(2s) fragments and between the H(2p) and D(2p)
fragments. The results presented in this work provide insight
into the g-u state mixing and in general the adiabatic state
mixing near the dissociation limits in the photodissociation of
molecules.
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