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Effect of spin-dependent interactions on the two-body loss rate in ultracold 85Rb collisions
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The spin-dependent interactions (SDIs), consisted of second-order spin-orbit coupling (SOC) and magnetic
dipole-dipole interactions (MDDI), play an important role in ultracold two-body collisions for heavy atoms. We
survey the inelastic two-body loss induced by SDIs in ultracold collisions of 85Rb in Zeeman sublevel |2, −2〉 by
using time-independent first-order perturbation theory (PT) and close-coupling (CC) approaches. The two-body
loss rates from the lowest channel in MF = −4 to outgoing channel MF = −3 at three typical magnetic field
ranges are discussed. Our calculations show PT can describe the two-body loss process well by considering the
full scattering wave function even though in the region around Feshbach resonances where loss is significantly
enhanced. The second-order SOC, which takes the same angular momentum coupling with MDDI, is shown to
be important to 85Rb two-body loss, while this term was usually omitted in previous PT calculations in some
systems. Besides, our numerical results indicate the pronounced dip of two-body loss rate around 571 G mainly
comes from the superposition of losses from the two lower outgoing channels in MF = −2 with close minima.
We also demonstrated an interesting phenomenon: the interference of two-body loss induced by the second-order
SOC and MDDI. It paves an alternative way to suppress inelastic collisions through the interference between
different loss causes.
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I. INTRODUCTION

The formation and manipulation of molecules at ultralow
temperatures has undergone tremendous progress in the past
years [1]. Feshbach resonance (FR) as a most useful tool has
been widely used to tune interatomic interaction in ultracold
atomic collisions [2–7]. At ultralow temperature, short-range
isotropic interactions have played an important role in the
physics of ground state [8–10]. However, a weaker long-
range anisotropic magnetic dipole-dipole interaction (MDDI)
is ineligible as well and it may induce favorable Frs [11,12].
For heavy diatomic collisions, such as Rb-Cs and K-Cs, the
second-order spin-orbit coupling (SOC) which has the same
angular coupling with MDDI brought anisotropic collisions
to be visible [13,14]. The combination of the second-order
SOC and MDDI named as spin-dependent interactions (SDIs)
attracts a lot of attention. Due to the dipolar coupling between
incoming channel with angular momentum l to other channels
with l ± 2, this anisotropic interactions may have profound
consequences on the properties of ultracold gases [15–18].
SDIs can also greatly modify the stability properties and may
lead to new quantum phases and novel types of superfluidity
[19,20].

In contrast to the beneficial aspects brought by SDIs, it
is worth noting that it can induce an inelastic two-body loss
to lower outgoing channels in case the incoming channel
is not the energetically lowest one [21–23]. The ultracold
atom samples in a magneto-optical trap may release energy
during the transition from the incoming channel to a lower
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outgoing channel. The released energy, which equals to the
corresponding Zeeman energy levels discrepancy, is usually
transferred into kinetic energy of colliding complexes that
makes them “heat” and limits the sample lifetime in the trap.
The two-body loss induced by SDIs has been explored by
several groups. Fedichev et al. calculated the rates of the
dipolar relaxation process for a trapped gas of metastable
4He at ultracold temperature and found the sample lifetime is
determined by dipolar relaxation [24]. Pasquiou et al. studied
dipolar relaxation process in ultracold Cr atom gases and pro-
posed several ways to control dipolar relaxation [25]. In recent
years, Zhan’s group measured loss rate of inelastic relaxation
for higher hyperfine state combination of 85Rb + 87Rb in a
micro-optical trap. It shows the possibility of precise test for
atomic and atom-molecule collision theory [26].

85Rb is a promising species for ultracold atomic gas exper-
iments, though it has often been overlooked due to the chal-
lenges of forming a Bose-Einstein condensate (BEC) [27].
Most of works have been focused on the | f , m f 〉 = |2,−2〉
channel due to wide resonances [28,29], where f and m f are
the total angular momentum of Rb atom and its magnetic
quantum number on space z axis. Yet this channel is not
the lowest one thus SDIs cause loss to three energetically
lower d-wave open channels. Thompson et al. measured the
lifetime of Fr molecules near the resonance at 155 G of
Rb in |2,−2〉 and found the spontaneous dissociation driven
by spin relaxation strongly depends on magnetic field [30].
Then Köhler et al. reproduced the observed lifetime by using
the exact close-coupling (CC) method with good agreements
[31], which implies CC is precise enough to characterize
the loss process observed in experiment. In particular, the
calculated pronounced dip in the SDIs-induced two-body loss
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rate around 571 G in |2,−2〉 calculated captures our attentions
as the favourable ratio between elastic and inelastic collision
cross section [32]. Besides, the real part of scattering length
a in this range is about −450a0, where a0 the Bohr radius. In
the ultracold limit, the three-body recombination coefficient
K3 ∼ a4 is expected to be low and effective evaporative
cooling could be achieved [33]. However, the intuitive insight
on the two-body loss process, such as the cause of minimum
on the loss rate, is not fully understood. Therefore an analytic
method is necessary for understanding it more comprehen-
sively. In the present work, we use an alternative first-order
perturbation theory (PT) to interpret SDIs-induced loss in
ultracold diatomic collisions in the presence of magnetic field.
The first-order PT, also known as Fermi’s golden rule, is
already shown to be an efficient and intuitive tool in a simple
two-channel problem with weak coupling [34–36]. Here we
extend it to multiopen channel scattering problem and apply it
in the ultracold 85Rb collisions.

This paper is organized as follows. In Sec. II, we briefly
introduce two kinds of numerical methods for determine the
SDIs-induced two-body loss parameter, including the CC and
PT approaches. In Sec. III, we discuss the two-body loss in
85Rb |2,−2〉 ultracold collisions at three typical magnetic
fields to verify PT validity. The two-body loss rate dip around
571 G is analyzed as well. Finally, a conclusion is drawn in
Sec. IV.

II. THEORY

The Hamiltonian for the interaction of two alkali-metal
atoms in the presence of a static magnetic field can be written
as

h̄2

2μ

[
−R−1 d2

dR2
R + l (l + 1)

R2

]
+ ĥ1 + ĥ2 + V̂ (R), (1)

where μ is the reduced mass, R is the nuclear separation,
and l is the orbital quantum number between two atoms. The
interenergy Hamiltonian, ĥ1 and ĥ2, are given by

ĥ j = ζ î j · ŝ j + gsμBBmsj + gnμBBmij , (2)

where ζ is the atomic hyperfine constant; ŝ j and msj are the
electron spin and electron spin projection on the quantisation
axis, respectively; î j and mij are the nuclear spin and its
projection, respectively; gs and gn are the electronic and
nuclear g factors, respectively; μB is the Bohr magneton; and
B is the external magnetic field. The interaction between the
two atoms is given by the potential term V̂ (R)

V̂ (R) = V̂c(R) + V̂sd(R), (3)

where V̂c(R) = V0(R)P̂ (0) + V1(R)P̂ (1) is an isotropic poten-
tial operator that depends on the singlet and triplet potential
energy curves V0(R) and V1(R). P̂ (0) and P̂ (1) project onto
singlet and triplet subspaces, respectively.

The spin-dependent interactions V̂sd(R) can be expressed as

V̂sd(R) = λ(R)[ŝ1 · ŝ2 − 3(ŝ1 · �eR)(ŝ2 · �eR)]

= V̂so(R) + V̂dd(R),
(4)

where �eR is a unit vector along the interatomic axis and λ(R)
is an R-dependent coupling constant,

λ(R) = Ehα
2

[
Aso exp(−βso((R − R0)/a0)) + 1

(R/a0)3

]
, (5)

where α ≈ 1/137 is the atomic fine-structure constant and a0

the Bohr radius. βso and R0 of Rb are adopted from theoretical
calculations by Mies et al. [15] and Aso was determined in
Ref. [37]. The two terms inside brakes represent the radial
formulas of the second-order SOC and MDDI, respectively.
Since the radial part of V̂so is exponential decayed with R and
it vanishes quickly when the diatomic distance is beyond the
van der Waals interaction well, it is refereed to the short-range
interaction in our work. Similarly, V̂dd represents the long-
range part of V̂sd and it can be treated as 0 when R > 5000 a0.

A. K2 from CC calculations

Inelastic collisions occur when outgoing channels are
present. The elastic scattering S-matrix element of incoming
channel e can be written in terms of a complex phase shift δe

as

See = eiδe . (6)

For any collision energy E , the two-body loss rate coefficient
is

K2 = π h̄

μk

∑
i

|Sei(E )|2, (7)

where k is the wave vector, E is the collision energy, and Sei

is represents the nondiagonal S-matrix element. The index i
ranges over all open channels other than the incoming channel
e. In the low-energy limit, the complex phase shift translates
into a complex scattering length

a = α − iβ, (8)

where α and β represent the real and imaginary parts of
the scattering length, respectively. Note that in this formula
i represents imaginary unit. We introduce a parameter ares,
which characterizes the strength of the resonance. Across a
Fr α in scattering length displays an oscillation of magnitude
ares/2 and β shows a corresponding peak of height ares. An
alternative way of finding K2 is to extract it from β, using the
following formula:

K2 = 2h

μ
gnβ, (9)

where gn = 2 for a thermal gas of identical bosons, and 1
others.

In the present work, we obtained scattering matrix S and
scattering length principally from CC calculations. We intro-
duce the symmetrized basis set

|s1ms1i1mi1s2ms2i2mi2|lml〉
= 1√

2
(
1 + δms1ms2δmi1mi2

) {|s1ms1i1mi1s2ms2i2mi2〉

+ η|s2ms2i2mi2s1ms1i1mi1〉}|lml〉, (10)
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where ml is the orbital angular momentum projection onto
the quantization axis and η = ±1 which describe the sym-
metrized and antisymmetrized wave functions, respectively.
In our work, only η = 1 is used as we are considering
indistinguishable particles with identical initial states. By
introducing SDIs the total angular momentum projection MF
is a good quantum number, where MF = MF + ml and MF is
the projection of total electronic and nuclear spins. We solved
the coupled Schrödinger equations with full Hamiltonian in
Eq. (1) by using the MOLSCAT package [38], then the S matrix
and two-body loss rate were extracted when the log-derivative
matrix propagation ended in long range.

B. K2 from first-order PT

The first-order PT has been applied to explore the dipolar
relaxation in ultracold Cr and spin-polarized 4He∗ diatomic
collisions [21,24]. By ignoring all effects of the short-range
molecular potentials, Hensler et al. modeled the dipolar loss
well at relative low magnetic fields [21]. However, Pasquiou
et al. proved that at relatively high magnetic fields the molec-
ular potentials have a significant influences [25]. Here we in-
troduce the first-order PT by considering the exact molecular
potentials.

The two-body loss rate in PT can be represented as

K2 = 2π
∑

i

∣∣〈	in|V̂sd

∣∣	 i
out

〉∣∣2
, (11)

where 	in and 	 i
out denote the incoming and ith outgoing

channel wave functions, respectively. It is important to note
that in the presence of magnetic field, 	in(out) no longer ex-
presses the individual open channel wave function of incom-
ing (outgoing) channels. As the internal energy Hamiltonian
couples the open and closed channels, the wave functions
in closed channels may becomes significant when close to
Frs. Therefore we should adopt full-scattering wave functions,
which are the linear combination of channel wave functions in
terms of single MF in calculations. In the spin basis, one can
write the full scattering wave functions as

	
MF
in(out) =

∑
j=1,N

Cjψ
j

in(out)|s1ms1i1mi1s2ms2i2mi2〉|lml〉, (12)

where N is the channel number in incoming or outgoing
MF , ψ

j
in(out) stands for the energy-normalized radial wave

function associated with channel jth, and C j denotes the cor-
responding normalized coefficient in angular basis which is
already symmetrized. Usually we use field dressed hyperfine
state | f1, m f 1; f2, m f 2〉 to label the incoming and outgoing
channels, then Eq. (12) can be rewritten as

	
MF
in(out) =

∑
j′=1,N

C′
j′ψ

j′
in(out)| f1m f 1; f2m f 2〉|lml〉, (13)

where C′
j′ and ψ

j′
in(out) are the angular normalized coefficients

and the wave functions in field dressed hyperfine state basis.
We can go from one basis to another basis using angular
momentum algebra. As full-channel wave functions are con-
sidered here, the two-body loss rate does not rely on the basis
we choose. However, K2 will greatly depend on the basis set
if any approximation on the channels is taken into account.

R

E
K2

-3

K2
-2,2

K2
-2,1

| 2,-2 > + | 2,-2 >

| 2,-2 > + | 2,-1 >

| 2,-2 > + | 2,0 >

| 2,-1 > + | 2,-1 >

elastic collision

inelsatic collision

FIG. 1. Colliding 85Rb atoms interact between incoming (brown)
and outgoing (light-blue and green) channels by considering SDIs
with l up to 2. The 85Rb atoms are prepared in the incoming channel
|2, −2〉 + |2, −2〉, which can be coupled to three lower outgoing
channels. The atoms transited to the lower outgoing channels through
SIDs, which can lead to “hot” atoms and may cause atom loss. The
two-body loss rates to outgoing channels in MF = −2 are labeled
as K−2,1

2 and K−2,2
2 where the superscript −2 means MF and the

following number 1(2) is used to distinguish two different channels.
As there is only one outgoing channel in MF = −3 therefor we take
the notation K−3

2 .

There are several numerical approaches to obtain scatter-
ing wave functions from exact molecular potentials, such as
logarithmic derivatives [39], renormalized Numerov [40], and
Mapper-Fourier-Grid Hamiltonian (MFGH) [41] methods. In
this work, we solve ψin(out) by using the MFGH method which
has been proved to be an efficient and precise method to study
diatomic collisions at ultralow temperature and was widely
used for investigating photoassociation process [42–48]. We
obtain the incoming (outgoing) wave functions in correlated
MF by solving the time-independent Schördinger equations
with the Hamiltonian in Eq. (1) but no SDIs. Then we can
calculate the two-body loss rate by taking V̂sd(R) as the
perturbative interaction in terms of Eq. (11).

III. RESULTS AND DISCUSSIONS

In this work, we investigate two-body loss of 85Rb in
|2,−2〉 channel in s-wave collisions at ultralow limit where
the scattering length and two-body loss rate do not depend the
collision energy. Higher partial waves in incident channel are
neglected since their contributions are negligible compared
to s-wave [25]. The ground singlet and triplet Hund case
a potentials of 87Rb2 come from the analytical expression
produced by Struss et al. based on spectroscopy data [37].
We apply them in 85Rb2 by using mass scaling without any
correction.

Figure 1 depicts the inelastic scattering process in ultracold
Rb atoms colliding in |2,−2〉 channel under the action of
magnetic field. Since MF = −4 is conserved by consider-
ing SDIs, the incoming channel is coupled to three d-wave
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FIG. 2. The calculated s-wave scattering length in |2, −2〉 + |2, −2〉 of ultracold 85Rb collisions with CC method, by including SDI with
l up to 2. In the field range 0 ∼ 1000 G, only three Frs are induced by s-wave bound states of MF = −4 whose resonant positions are labeled
with red lines, while the others appeared only when SDIs are included. It should be noted that some resonances are not evident in α but strongly
decayed in β.

outgoing channels which are |2,−2〉 + |2,−1〉, |2,−2〉 +
|2, 0〉, and |2,−1〉 + |2,−1〉, respectively. The collision hap-
pened with MF = −4 unchanged is usually called elastic col-
lision. While inelastic collisions occur because of the release
of internal energy into the motion when colliding atoms end
up in a lower internal state. The gain in kinetic energy is
on the order of the Zeeman and hyperfine energy, depending
on the inelastic channel, and generally causes “hot” atoms
thus limit the colliding complex lifetime in magnetic-optical
trap. Hence the resonances become decayed and the imagi-
nary part of scattering length is enhanced. Figure 2 shows
the calculated real and imaginary parts of a(B) for s-wave
collisions in |2,−2〉 channel by using CC method. We found
11 resonances with ares > 1.0 a0 from 0 ∼ 1000 G. Two
of them, the resonances at 155 and 532 G, are induced by
s-wave bound states of MF = −4 and exhibit big polelike
feature in α. By contrast, the resonances due to d-wave bound
states show much narrower profiles. The imaginary part β

related to two-body loss rate reveals rapidly increased feature
around resonance as well. Additionally, the remarkable fact
that more evident resonant features in β than α indicates
narrow resonance could be detected through measuring two-
body loss rates in experiment.

By comparing the theoretical resonance positions with
those observed in 85Rb experiment [32], we show CC method
is precise enough to predict resonance features based on exact
molecular potentials. An alternative way for studying mul-
tichannel colliding system is MFGH method. It was widely
used to study the photoassociation process [49,50], then is
developed by Pellegrini et al. to explore Feshbach-optimized
photoassociation [42]. The advantage of MFGH is we are able
to observe the wave functions in every channel directly and
extract the associated scattering parameters. For example, in
low-energy limit, the real part of scattering length α equals
tan(kRn)/k, where k is the wave vector and Rn the position

of the wave function equaling to 0 at a large distance in the
incoming channel. Table I lists the parameters of resonances
induced by MF = −4 s-wave bound states. One can find the
accuracy for MFGH method is surprising and expected to
offer us the precise wave functions.

A. Single outgoing channel case

As mentioned in Sec. II, the PT has been used to esti-
mated the Cr dipolar loss and shows a good agreement with
experimental results at low magnetic fields [25]. However, in
vicinity of Fr, the inelastic loss is dramatically enhanced, thus
it is interesting to test the reliability of PT method at different
fields. At the beginning, we will check the validity of im-
proved PT in three typical regions: low magnetic fields, near
Fr, and high magnetic fields. Noting that near the Frs induced
by SDIs PT never works. Since SDIs is treated perturbatively
and wave functions in incoming and outgoing channels are
calculated separately in PT theory, we cannot observe the
amplification of short-range wave functions in incoming or

TABLE I. Positions and widths of Frs for 85Rb in |2, −2〉 +
|2, −2〉 in the field range 0 ∼ 1000 G. All resonances shown are
induced by s-wave bound states. The experimental values are taken
from Ref. [32]. The Fr positions and widths calculated by MFGH are
fitted from the scattering length extracted from the scattering wave
function in incoming channel.

Incoming s-wave |2, −2〉 + |2, −2〉 state

Experiment CC MFGH

B0 (G) δ (G) B0 (G) � (G) B0 (G) � (G)

156 10.5(5) 155.3 10.90 154.7 10.54
219.58 0.22(9) 219.9 0.0091 219.4 0.0086
532.3 3.2(1) 532.9 2.30 532.2 2.43
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FIG. 3. The calculated two-body loss rate related to outgoing channel MF = −3 at low magnetic fields. The black and blue lines represent
the results by using PT and CC method, respectively.

outgoing channels in this range hence no enhancement feature
in K2(PT). In the next discussions, we will avoid the regions
in connection with SDIs-induced Frs.

For the case illustrated in Fig. 1, there are three outgoing
channels, two of which belong to MF = −2 and another one
in MF = −3. For simplifying the discussion, we only consider
the loss to outgoing channel MF = −3 for examinations. We
expect this simple model of two open channels could give us
a straightforward insight on the loss and we will extended it
to more complicated multioutgoing channels in the following
part.

As V̂sd can be decomposed into V̂so and V̂dd, we can look
into their characters in K2 separately. Since the plotted radial
wave functions are real in our calculations, one can rewrite
two-body loss rate related to outgoing channel MF = −3 as
following:

K−3
2 = 2π

∣∣〈	−4
in

∣∣V̂so + V̂dd

∣∣	−3
out

〉∣∣2

= 2π
∣∣〈	−4

in

∣∣V̂so

∣∣	−3
out

〉∣∣2 + 2π
∣∣〈	−4

in |V̂dd

∣∣	−3
out

〉∣∣2

+ 4π
〈
	−4

in

∣∣V̂so

∣∣	−3
out

〉〈
	−4

in

∣∣V̂dd

∣∣	−3
out

〉
= K−3

2(so) + K−3
2(dd) ± 2

√
K−3

2(dd) ∗ K−3
2(so), (14)

where 	−4
in and 	−3

out represent the full scattering wave func-
tions in MF = −4 and −3, respectively. K−3

2(so) and K−3
2(dd)

describer the loss caused by V̂so and V̂dd, separately. The
term in square root denotes the interference between them
and its sign is the same as the product of 〈	in|V̂so|	out〉 and
〈	in|V̂dd|	out〉.

We plot the calculated two-body loss rate K−3
2 from 1

to 15 G in Fig. 3. One can find the PT results agree with
CC calculations very well. In this range, K−3

2(so) is very small
compared to K−3

2(dd), which is because the amplitudes of the
radial wave functions in short range for both ψout and ψin are
very small. More often than not, neglecting the contribution of
V̂so to K2 will not cause serious problem at low magnetic fields.
The tiny difference between two methods mainly comes from
the precision of wave function obtained by MFGH. For CC
method, the loss rate is calculated with a constant collision
energy. However, for MFGH, the collision energies corre-
sponding to calculated scattering states are associated with the
size of box [41]. In our calculation, we set the max interatomic
distance as 10000 a0 by considering the computation and

precision. If it is large enough, the energy density of scattering
states would be very high and we can obtain the wave func-
tions with an energy much close to that certain one. Then PT
results are believed to be in full accordance with that of CC.

Near a Fr the inelastic loss is strongly enhanced since the
scattering wave functions in short range are amplified. While
the SDIs remain weak and PT is expected to be stood. Here we
checked its validity near the wide resonance at 155 G. Figure 4
displays the calculated two-body loss rates to MF = −3 from
158 to 180 G. One can find the discrepancy between two
methods becomes large when close to Fr. It mainly arises from
the fact: for the Fr at 155 G, the resonance position calculated
by MFGH has a deviation of −0.6 G compared to CC method
which can be seen from Table I. The corresponding dip in
two-body loss rate K−3

2 follows this deviation and large dis-
crepancy occurs. If the resonance position by MFGH is closer
to CC, we hold that the discrepancy of loss minimum position
in two methods will reduce more. Moreover, one can find the
minimum of K−3

2 is different from that of K−3
2(so) and K−3

2(dd),
which can be readily comprehended with PT method. In terms
of Eq. (14), if K−3

2(so) is close to K−3
2(dd) and 〈	in|V̂so|	−3

out 〉 ×
〈	in|V̂dd|	−3

out 〉 is negative, K−3
2 is approaching 0. We are able

to reach a conclusion that the minimum of K−3
2 is determined

by both V̂so and V̂dd. It also implies the interference between
K2(so) and K2(dd) is much interesting and we could estimate
the second-order SOC strength by utilizing the observed two-
body loss rate minimum in experiment.

At last we plot the two-body loss rate related to outgoing
channel MF = −3 at field from 795 to 805 G in Fig. 5.
We look into this field range since the Zeeman sublevel
energy splitting between incoming and outgoing channels is
over 400 MHz which may cause a temperature variation of
ultracold atoms sample up to 20 mK. It is much larger than
the magnetic-optical trap depth, therefor the two-body loss
rate at high fields is more essential than lower field. In the
field range illustrated in Fig. 5, no Fr and α is approximately
the background scattering length. Our calculations on K−3

2
shows a good consistence between two methods. The dif-
ference of magnitude order in Figs. 5(a) and 5(b) indicates
the important role of second-order SOC in two-body loss
in ultracold 85Rb scattering. The degrees of deviations on
K−3

2(so) and K−3
2(dd) are different between two methods, yet they

are eliminated in K−3
2 due to the interference term at these

fields.
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represent the results by using PT and CC methods, respectively. Note that the minims appeared in these lines do not exist if MF = −2
included.

Through the above calculations we demonstrated PT could
give us reliable results on SDIs-induced two-body loss even
though for the fields near Frs in our two open channels model.
We also showed the interference between V̂so and V̂dd could
cause a minimum in inelastic collisions while the elastic
collisions are unaffected. At present, since the techniques
of suppression inelastic collisions are devoted to preventing
atomic or molecular interactions in short range [51,52], our
calculations suggests we may suppress it through introducing
another adjustable loss process in which coupling rules are
similar with that of original loss path in a simple two open-
channel model.

B. Multioutgoing channels case

In the following, we extend the above two open channels
calculations to real case by considering outgoing channels
in MF = −2. We survey the two-body loss rate at the fields
from 565 to 580 G where β exhibits a big deep around the
broad resonance at 532 G. This field range is interesting since
it supplies us a magnetic region for cooling due to more
favorable elastic to inelastic ratio based on CC calculations.

By considering all the channels in MF = −4, the total two-
body loss rate turns into the sum of loss from all outgoing
channels,

K2 = 2π
∣∣〈	−4

in

∣∣V̂sd

∣∣	−3
out

〉∣∣2 + 2π
∣∣〈	−4

in

∣∣V̂sd

∣∣	−2
out

〉∣∣2

= K−3
2 + K−2

2 , (15)

where 	−2
out and K−2

2 represent the scattering wave functions
and two-body loss rate to MF = −2, respectively. Note we
assume no interference between the MF = −3 and −2 open
channels as the coupling between them is very weak and we
are able to sum the loss to different channels together. Due to
two open channels in MF = −2 we can further rewrite K−2

2

as the sum of K−2,1
2 and K−2,2

2 , which describe the losses
to the open channels in MF = −2 as illustrated in Fig. 1.
In this case, we need two sets of d-wave wave functions
to describe different open channel scattering with the same
total energy in MF = −2. MFGH cannot give us two wave
functions with exactly the same scattering energy, yet by using
big box size we can always find twinning scattering states
with similar energy. In the calculation we treat the twinning
states as the sets of ψ−2,1 and ψ−2,2 which specify the
radial wave functions of open channel in |2,−2〉 + |2, 0〉 and
|2,−1〉 + |2,−1〉, respectively. For an instance, in Fig. 6, we
plot the energy-normalized wave functions of open channels
of MF = −2 in short range at 571 G to show the difference
between ψ−2,1 and ψ−2,2. The wave functions in long range
consist very well with energy-normalized bessel functions
and not shown here. For both open channels of MF = −2
in d-wave no shape resonance or Fr near 571 G, we only
exhibit the wave functions in open channels due to relatively
large amplitudes. One can find the profiles of wave function
in two panels are very similar despite of the phase. ψ−2,1

(ψ−2,2) exhibits big amplitude only when |2,−2〉 + |2, 0〉
(|2,−1〉 + |2,−1〉) is the exit channel. Besides, we observed
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FIG. 5. The calculated two-body loss rates relate to outgoing channel MF = −3 in the range from 795 to 805 G. The black and red lines
represent the results by using PT and CC methods, respectively.
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FIG. 6. The energy-normalized wave functions in two outgoing
channels of MF = −2 at 571 G, where ψ−2,1 and ψ−2,2 specify the
wave functions of lower and higher open channels in MF = −2,
respectively. (a) Illustrates the corresponding wave functions when
the lower open channel in MF = −2 as the outgoing channel. Simi-
larly, (b) shows the wave functions when the higher open channel in
MF = −2 as the outgoing channel.

the amplitude of wave functions of ψ−2,1 on left panel and
ψ−2,2 on right one are nearly the same. It indicates the loss to
both two open channels are expected to have close values at
this field. It is worth noting that the subequal K−2,1

2 and K−2,2
2

do not produce minimum in K−2
2 since we do not consider the

interference between the two open channels in MF = −2.
After obtaining the wave functions we calculated the two-

body loss rates to different open channels in MF = −2 from
565 to 580 G displayed in Fig. 7(a). The close minimum
positions in K−2,1

2 and K−2,2
2 shows the properties of two

open channels are very similar since the collision energy in
incoming channel is very high relatively to both open channels
in MF = −2. One can also find the minimum of K−2

2 by PT
method is 10−9 a.u. at 571 G while it is 10−11 a.u. in CC
calculation. This magnitude order difference probably comes
from two aspects. Firstly the hypothesis that no interference
between the open channels in MF = −2 may be not exactly
true as the two open channels are coupled together via Zeeman
and hyperfine interactions. Hence we need to introduce a term
describing the interference between K−2,1

2 and K−2,2
2 in K−2

2
calculations. Secondly as we illustrated in Fig. 6, the wave
functions of two open channels are very similar. However,
we cannot produce ψ−2,1 and ψ−2,2 with exactly the same
total energy due to the limitation of MFGH and thus the loss
rate are not precisely enough. It is an interesting point we
would explore in future. Figure 7(b) presents the calculated
two-body loss rates to open channels in MF = −2 and −3
and total loss rate K2. In this range, K−2

2 is much larger than
K−3

2 which contributes little to total loss rate in terms of PT
calculations. By comparing the two curves of K2(CC) and
K2(PT), we can find their difference is much smaller than the
curves of K−2

2 shown in Fig. 7(a). It is because K−3
2 (CC) is

larger than K−3
2 (PT) and K−2

2 (CC) is smaller than K−2
2 (PT), so

the difference in K2 becomes smaller. Besides, we calculated
the loss to MF = −2 and −3 open channels from 0 to 1000 G
with CC approach and found K−3

2 is always smaller than K−2
2
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FIG. 7. The calculated two-body loss rates in the range from 565
to 580 G to outgoing channel MF = −2 (a) and full loss channels (b).

except for the range near the Frs induced by the d-wave bound
states of MF = −3. It indicates the colliding atoms are more
favourably decayed to open channel with lower energy beyond
Frs.

The calculations with full loss channels show PT method is
still considerable in multiloss channels by excluding interfer-
ence of different open channels. We may ask a question: the
full-channel wave functions in outgoing MF can be replaced
by the one in the exit channel? With this doubt we recalculate
K2(PT) with a single-channel wave function in corresponding
outgoing MF at the fields discussed above. We found the
results only agree with CC at low magnetic fields and they
differ greatly in other regions. This is because the Zeeman and
hyperfine coupling is strong compared to SDIs at high fields
and we cannot take it for granted that the loss to a particular
MF is just the sum of the loss to every channel. Besides, in
the above discussion, we proposed the possibility to produce
a minimum in two-body loss through introducing another
similar adjustable loss process for only one outgoing channel
case. However, the feasibility becomes complicated for more
than one outgoing channel as the inelastic collisions of which
could be influenced at different degrees by the introduced
new loss process. One optional way is that we can create a
minimum in the dominated loss channel in the case the loss to
minor channels will not be enhanced obviously.
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Experimentally suppressing SDIs-induced loss in ultracold
diatomic collisions could be using a combination of electric
and radio-frequency (RF) fields. The RF field can couple
different MF with the same partial wave by the R-independent
interaction of RF photon with magnetic moment [3]. The
electric field offers the coupling of different partial-waves
in the same MF via the R-dependent interaction of field
with permanent dipole moment of diatom or static electric
polarizabilities of atoms [53]. Therefore the incoming and
outgoing channels are associated together in another way. This
combination could create an indirect coupling which will not
influence the elastic collision rate a lot but probably modify
the inelastic scattering property obviously due to interference
by tuning the electric and RF fields intensities.

IV. CONCLUSION

In summary, we investigated the SDIs induced two-body
loss rates of 85Rb in |2,−2 > ultracold collision by using
improved PT and CC approaches. The two-body loss rates to
the outgoing channel in MF = −3 at three typical regions are
investigated: lower magnetic field, near Fr and high magnetic
field. It shows that by taking into account the full scattering

wave function we can estimate SIDs-induced two-body loss
rate for ultracold diatomic collisions in the presence of mag-
netic field with PT approach. The short range second-order
SOC is demonstrated playing an important role in two-body
loss process in ultracold 85Rb diatomic collisions due to the
interference between the loss induced by SOC and MDDI.
Besides, we verified the pronounced dip in two-body loss rate
around 571 G mainly comes from the superposition of losses
from the two lower outgoing channels in MF = −2 with close
minima. Our calculations indicate beyond the Frs region the
diatom collisions in energetically high Zeeman level prefer
decaying to lower channel in the case several outgoing chan-
nel exist as well. Finally, we suggest the two-body loss could
be suppressed by introducing another weak loss process due
to the interference between two loss mechanisms. We also
present a possible scheme to tune dipolar two-body loss in
ultracold diatomic experiment.
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[12] V. Vuletić, A. J. Kerman, C. Chin, and S. Chu, Phys. Rev. Lett.
82, 1406 (1999).

[13] H.-W. Cho, D. J. McCarron, M. P. Köppinger, D. L. Jenkin,
K. L. Butler, P. S. Julienne, C. L. Blackley, C. R. LeSueur, J. M.
Hutson, and S. L. Cornish, Phys. Rev. A 87, 010703(R) (2013).

[14] M. Gröbner, P. Weinmann, E. Kirilov, H.-C. Nägerl, P. S.
Julienne, C. R. LeSueur, and J. M. Hutson, Phys. Rev. A 95,
022715 (2017).

[15] F. H. Mies, C. J. Williams, P. S. Julienne, and M. Krauss, J. Res.
Natl. Inst. Stand. Technol. 101, 521 (1996).

[16] P. J. Leo, E. Tiesinga, P. S. Julienne, D. K. Walter, S. Kadlecek,
and T. G. Walker, Phys. Rev. Lett. 81, 1389 (1998).

[17] S. Yi and L. You, Phys. Rev. A 63, 053607 (2001).
[18] X.-C. Yao, R. Qi, X.-P. Liu, X.-Q. Wang, Y.-X. Wang, Y.-P. Wu,

H.-Z. Chen, P. Zhang, H. Zhai, Y.-A. Chen, and J.-W. Pan, Nat.
Phys. 15, 570 (2019)

[19] L. Santos, G. V. Shlyapnikov, P. Zoller, and M. Lewenstein,
Phys. Rev. Lett. 85, 1791 (2000).

[20] M. A. Baranov, M. S. Mar’enko, V. S. Rychkov, and G. V.
Shlyapnikov, Phys. Rev. A 66, 013606 (2002).

[21] S. Hensler, J. Werner, A. Griesmaier, P. O. Schmidt, A. Gorlitz,
and T. Pfau, Appl. Phys. B 77, 765 (2002).

[22] N. Q. Burdick, Y. Tang, and B. L. Lev, Phys. Rev. X 6, 031022
(2016).

[23] J. S. Krauser, J. Heinze, S. Götze, M. Langbecker,
N. Fläschner, L. Cook, T. M. Hanna, E. Tiesinga, K.
Sengstock, and C. Becker, Phys. Rev. A 95, 042701
(2017).

[24] P. O. Fedichev, M. W. Reynolds, U. M. Rahmanov, and G. V.
Shlyapnikov, Phys. Rev. A 53, 1447 (1996).

[25] B. Pasquiou, G. Bismut, Q. Beaufils, A. Crubellier, E.
Maréchal, P. Pedri, L. Vernac, O. Gorceix, and B. Laburthe-
Tolra, Phys. Rev. A 81, 042716 (2010).

[26] P. Xu, J. Yang, M. Liu, X. He, Y. Zeng, K. Wang, J. Wang, D. J.
Papoular, G. V. Shlyapnikov, and M. Zhan, Nat. Commun. 6,
7803 (2015).

[27] J. P. Burke, J. L. Bohn, B. D. Esry, and C. H. Greene, Phys. Rev.
Lett. 80, 2097 (1998).

[28] J. M. Vogels, C. C. Tsai, R. S. Freeland, S. J. J. M. F.
Kokkelmans, B. J. Verhaar, and D. J. Heinzen, Phys. Rev. A
56, R1067(R) (1997).

[29] S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell, and
C. E. Wieman, Phys. Rev. Lett. 85, 1795 (2000).

052710-8

https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevA.84.032712
https://doi.org/10.1103/PhysRevA.84.032712
https://doi.org/10.1103/PhysRevA.84.032712
https://doi.org/10.1103/PhysRevA.84.032712
https://doi.org/10.1088/0953-4075/45/14/145302
https://doi.org/10.1088/0953-4075/45/14/145302
https://doi.org/10.1088/0953-4075/45/14/145302
https://doi.org/10.1088/0953-4075/45/14/145302
https://doi.org/10.1103/PhysRevA.94.062702
https://doi.org/10.1103/PhysRevA.94.062702
https://doi.org/10.1103/PhysRevA.94.062702
https://doi.org/10.1103/PhysRevA.94.062702
https://doi.org/10.1103/PhysRevLett.119.203402
https://doi.org/10.1103/PhysRevLett.119.203402
https://doi.org/10.1103/PhysRevLett.119.203402
https://doi.org/10.1103/PhysRevLett.119.203402
https://doi.org/10.1038/s41567-018-0169-x
https://doi.org/10.1038/s41567-018-0169-x
https://doi.org/10.1038/s41567-018-0169-x
https://doi.org/10.1038/s41567-018-0169-x
http://arxiv.org/abs/arXiv:1912.04874v3
https://doi.org/10.1103/PhysRevA.70.032701
https://doi.org/10.1103/PhysRevA.70.032701
https://doi.org/10.1103/PhysRevA.70.032701
https://doi.org/10.1103/PhysRevA.70.032701
https://doi.org/10.1103/PhysRevA.99.032711
https://doi.org/10.1103/PhysRevA.99.032711
https://doi.org/10.1103/PhysRevA.99.032711
https://doi.org/10.1103/PhysRevA.99.032711
https://doi.org/10.1126/science.aau5322
https://doi.org/10.1126/science.aau5322
https://doi.org/10.1126/science.aau5322
https://doi.org/10.1126/science.aau5322
https://doi.org/10.1103/PhysRevLett.89.283202
https://doi.org/10.1103/PhysRevLett.89.283202
https://doi.org/10.1103/PhysRevLett.89.283202
https://doi.org/10.1103/PhysRevLett.89.283202
https://doi.org/10.1103/PhysRevLett.82.1406
https://doi.org/10.1103/PhysRevLett.82.1406
https://doi.org/10.1103/PhysRevLett.82.1406
https://doi.org/10.1103/PhysRevLett.82.1406
https://doi.org/10.1103/PhysRevA.87.010703
https://doi.org/10.1103/PhysRevA.87.010703
https://doi.org/10.1103/PhysRevA.87.010703
https://doi.org/10.1103/PhysRevA.87.010703
https://doi.org/10.1103/PhysRevA.95.022715
https://doi.org/10.1103/PhysRevA.95.022715
https://doi.org/10.1103/PhysRevA.95.022715
https://doi.org/10.1103/PhysRevA.95.022715
https://doi.org/10.6028/jres.101.052
https://doi.org/10.6028/jres.101.052
https://doi.org/10.6028/jres.101.052
https://doi.org/10.6028/jres.101.052
https://doi.org/10.1103/PhysRevLett.81.1389
https://doi.org/10.1103/PhysRevLett.81.1389
https://doi.org/10.1103/PhysRevLett.81.1389
https://doi.org/10.1103/PhysRevLett.81.1389
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1103/PhysRevA.63.053607
https://doi.org/10.1038/s41567-019-0455-2
https://doi.org/10.1038/s41567-019-0455-2
https://doi.org/10.1038/s41567-019-0455-2
https://doi.org/10.1038/s41567-019-0455-2
https://doi.org/10.1103/PhysRevLett.85.1791
https://doi.org/10.1103/PhysRevLett.85.1791
https://doi.org/10.1103/PhysRevLett.85.1791
https://doi.org/10.1103/PhysRevLett.85.1791
https://doi.org/10.1103/PhysRevA.66.013606
https://doi.org/10.1103/PhysRevA.66.013606
https://doi.org/10.1103/PhysRevA.66.013606
https://doi.org/10.1103/PhysRevA.66.013606
https://doi.org/10.1007/s00340-003-1334-0
https://doi.org/10.1007/s00340-003-1334-0
https://doi.org/10.1007/s00340-003-1334-0
https://doi.org/10.1007/s00340-003-1334-0
https://doi.org/10.1103/PhysRevX.6.031022
https://doi.org/10.1103/PhysRevX.6.031022
https://doi.org/10.1103/PhysRevX.6.031022
https://doi.org/10.1103/PhysRevX.6.031022
https://doi.org/10.1103/PhysRevA.95.042701
https://doi.org/10.1103/PhysRevA.95.042701
https://doi.org/10.1103/PhysRevA.95.042701
https://doi.org/10.1103/PhysRevA.95.042701
https://doi.org/10.1103/PhysRevA.53.1447
https://doi.org/10.1103/PhysRevA.53.1447
https://doi.org/10.1103/PhysRevA.53.1447
https://doi.org/10.1103/PhysRevA.53.1447
https://doi.org/10.1103/PhysRevA.81.042716
https://doi.org/10.1103/PhysRevA.81.042716
https://doi.org/10.1103/PhysRevA.81.042716
https://doi.org/10.1103/PhysRevA.81.042716
https://doi.org/10.1038/ncomms8803
https://doi.org/10.1038/ncomms8803
https://doi.org/10.1038/ncomms8803
https://doi.org/10.1038/ncomms8803
https://doi.org/10.1103/PhysRevLett.80.2097
https://doi.org/10.1103/PhysRevLett.80.2097
https://doi.org/10.1103/PhysRevLett.80.2097
https://doi.org/10.1103/PhysRevLett.80.2097
https://doi.org/10.1103/PhysRevA.56.R1067
https://doi.org/10.1103/PhysRevA.56.R1067
https://doi.org/10.1103/PhysRevA.56.R1067
https://doi.org/10.1103/PhysRevA.56.R1067
https://doi.org/10.1103/PhysRevLett.85.1795
https://doi.org/10.1103/PhysRevLett.85.1795
https://doi.org/10.1103/PhysRevLett.85.1795
https://doi.org/10.1103/PhysRevLett.85.1795


EFFECT OF SPIN-DEPENDENT INTERACTIONS ON THE … PHYSICAL REVIEW A 101, 052710 (2020)

[30] S. T. Thompson, E. Hodby, and C. E. Wieman, Phys. Rev. Lett.
94, 020401 (2005).

[31] T. Köhler, E. Tiesinga, and P. S. Julienne, Phys. Rev. Lett. 94,
020402 (2005).

[32] C. L. Blackley, C. R. Le Sueur, J. M. Hutson, D. J. McCarron,
M. P. Köppinger, H.-W. Cho, D. L. Jenkin, and S. L. Cornish,
Phys. Rev. A 87, 033611 (2013).

[33] R. J. Wild, P. Makotyn, J. M. Pino, E. A. Cornell, and D. S. Jin,
Phys. Rev. Lett. 108, 145305 (2012).

[34] D. A. Brue and J. M. Hutson, Phys. Rev. A 87, 052709 (2013).
[35] Q. Beaufils, A. Crubellier, T. Zanon, B. Laburthe-Tolra, E.

Maréchal, L. Vernac, and O. Gorceix, Phys. Rev. A 79, 032706
(2009).

[36] C. Ticknor, C. A. Regal, D. S. Jin, and J. L. Bohn, Phys. Rev. A
69, 042712 (2004).

[37] C. Strauss, T. Takekoshi, F. Lang, K. Winkler, R. Grimm, J.
Hecker Denschlag, and E. Tiemann, Phys. Rev. A 82, 052514
(2010).

[38] J. M. Hutson and S. Green, computer code MOLSCAT, version
14 (CCP6, Daresbury, 1994).

[39] B. R. Johnson, J. Comput. Phys. 13, 445 (1973).
[40] J. M. Blatt, J. Comput. Phys. 1, 382 (1967).
[41] K. Willner, O. Dulieu, and F. Masnou-Seeuws, J. Chem. Phys.

120, 548 (2004).

[42] P. Pellegrini, M. Gacesa, and R. Côté, Phys. Rev. Lett. 101,
053201 (2008).

[43] O. Dulieu and C. Gabbanini, Rep. Prog. Phys. 72, 086401
(2009).

[44] N. Bouloufa, M. Pichler, M. Aymar, and O. Dulieu, Phys. Rev.
A 83, 022503 (2011).

[45] A. Ridinger, S. Chaudhuri, T. Salez, D. R. Fernandes, N.
Bouloufa, O. Dulieu, C. Salomon, and F. Chevy, Europhys.
Lett. 96, 33001 (2011).

[46] N. Bouloufa-Maafa, M. Aymar, O. Dulieu, and C. Gabbanini,
Laser Phys. 22, 1502 (2012).

[47] M. Gacesa, S. Ghosal, J. N. Byrd, and R. Côté, Phys. Rev. A 88,
063418 (2013).

[48] D. Borsalino, R. Vexiau, M. Aymar, E. Luc-Koenig, O. Dulieu,
and N. Bouloufa-Maafa, J. Phys. B 49, 055301 (2016).

[49] J. Vala, O. Dulieu, F. Masnou-Seeuws, P. Pillet, and R. Kosloff,
Phys. Rev. A 63, 013412 (2000).

[50] C. P. Koch, R. Kosloff, and F. Masnou-Seeuws, Phys. Rev. A
73, 043409 (2006).

[51] T. Karman and J. M. Hutson, Phys. Rev. Lett. 121, 163401
(2018).

[52] L. Lassablière and G. Quéméner, Phys. Rev. Lett. 121, 163402
(2018).

[53] M. Marinescu and L. You, Phys. Rev. Lett. 81, 4596 (1998).

052710-9

https://doi.org/10.1103/PhysRevLett.94.020401
https://doi.org/10.1103/PhysRevLett.94.020401
https://doi.org/10.1103/PhysRevLett.94.020401
https://doi.org/10.1103/PhysRevLett.94.020401
https://doi.org/10.1103/PhysRevLett.94.020402
https://doi.org/10.1103/PhysRevLett.94.020402
https://doi.org/10.1103/PhysRevLett.94.020402
https://doi.org/10.1103/PhysRevLett.94.020402
https://doi.org/10.1103/PhysRevA.87.033611
https://doi.org/10.1103/PhysRevA.87.033611
https://doi.org/10.1103/PhysRevA.87.033611
https://doi.org/10.1103/PhysRevA.87.033611
https://doi.org/10.1103/PhysRevLett.108.145305
https://doi.org/10.1103/PhysRevLett.108.145305
https://doi.org/10.1103/PhysRevLett.108.145305
https://doi.org/10.1103/PhysRevLett.108.145305
https://doi.org/10.1103/PhysRevA.87.052709
https://doi.org/10.1103/PhysRevA.87.052709
https://doi.org/10.1103/PhysRevA.87.052709
https://doi.org/10.1103/PhysRevA.87.052709
https://doi.org/10.1103/PhysRevA.79.032706
https://doi.org/10.1103/PhysRevA.79.032706
https://doi.org/10.1103/PhysRevA.79.032706
https://doi.org/10.1103/PhysRevA.79.032706
https://doi.org/10.1103/PhysRevA.69.042712
https://doi.org/10.1103/PhysRevA.69.042712
https://doi.org/10.1103/PhysRevA.69.042712
https://doi.org/10.1103/PhysRevA.69.042712
https://doi.org/10.1103/PhysRevA.82.052514
https://doi.org/10.1103/PhysRevA.82.052514
https://doi.org/10.1103/PhysRevA.82.052514
https://doi.org/10.1103/PhysRevA.82.052514
https://doi.org/10.1016/0021-9991(73)90049-1
https://doi.org/10.1016/0021-9991(73)90049-1
https://doi.org/10.1016/0021-9991(73)90049-1
https://doi.org/10.1016/0021-9991(73)90049-1
https://doi.org/10.1016/0021-9991(67)90046-0
https://doi.org/10.1016/0021-9991(67)90046-0
https://doi.org/10.1016/0021-9991(67)90046-0
https://doi.org/10.1016/0021-9991(67)90046-0
https://doi.org/10.1063/1.1630031
https://doi.org/10.1063/1.1630031
https://doi.org/10.1063/1.1630031
https://doi.org/10.1063/1.1630031
https://doi.org/10.1103/PhysRevLett.101.053201
https://doi.org/10.1103/PhysRevLett.101.053201
https://doi.org/10.1103/PhysRevLett.101.053201
https://doi.org/10.1103/PhysRevLett.101.053201
https://doi.org/10.1088/0034-4885/72/8/086401
https://doi.org/10.1088/0034-4885/72/8/086401
https://doi.org/10.1088/0034-4885/72/8/086401
https://doi.org/10.1088/0034-4885/72/8/086401
https://doi.org/10.1103/PhysRevA.83.022503
https://doi.org/10.1103/PhysRevA.83.022503
https://doi.org/10.1103/PhysRevA.83.022503
https://doi.org/10.1103/PhysRevA.83.022503
https://doi.org/10.1209/0295-5075/96/33001
https://doi.org/10.1209/0295-5075/96/33001
https://doi.org/10.1209/0295-5075/96/33001
https://doi.org/10.1209/0295-5075/96/33001
https://doi.org/10.1134/S1054660X12100039
https://doi.org/10.1134/S1054660X12100039
https://doi.org/10.1134/S1054660X12100039
https://doi.org/10.1134/S1054660X12100039
https://doi.org/10.1103/PhysRevA.88.063418
https://doi.org/10.1103/PhysRevA.88.063418
https://doi.org/10.1103/PhysRevA.88.063418
https://doi.org/10.1103/PhysRevA.88.063418
https://doi.org/10.1088/0953-4075/49/5/055301
https://doi.org/10.1088/0953-4075/49/5/055301
https://doi.org/10.1088/0953-4075/49/5/055301
https://doi.org/10.1088/0953-4075/49/5/055301
https://doi.org/10.1103/PhysRevA.63.013412
https://doi.org/10.1103/PhysRevA.63.013412
https://doi.org/10.1103/PhysRevA.63.013412
https://doi.org/10.1103/PhysRevA.63.013412
https://doi.org/10.1103/PhysRevA.73.043409
https://doi.org/10.1103/PhysRevA.73.043409
https://doi.org/10.1103/PhysRevA.73.043409
https://doi.org/10.1103/PhysRevA.73.043409
https://doi.org/10.1103/PhysRevLett.121.163401
https://doi.org/10.1103/PhysRevLett.121.163401
https://doi.org/10.1103/PhysRevLett.121.163401
https://doi.org/10.1103/PhysRevLett.121.163401
https://doi.org/10.1103/PhysRevLett.121.163402
https://doi.org/10.1103/PhysRevLett.121.163402
https://doi.org/10.1103/PhysRevLett.121.163402
https://doi.org/10.1103/PhysRevLett.121.163402
https://doi.org/10.1103/PhysRevLett.81.4596
https://doi.org/10.1103/PhysRevLett.81.4596
https://doi.org/10.1103/PhysRevLett.81.4596
https://doi.org/10.1103/PhysRevLett.81.4596

