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Rydberg spectrum of a single trapped Ca+ ion: A Floquet analysis
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We compute the Rydberg spectrum of a single Ca+ ion in a Paul trap by incorporating various internal and
external coupling terms of the ion to the trap in the Hamiltonian. The coupling terms include spin-orbit coupling
in Ca+, charge (electron and ionic core) coupling to the radio frequency and static fields, ion-electron coupling
in the Paul trap, and ion center-of-mass coupling. The electronic Rydberg states are precisely described by a
one-electron model potential for e− + Ca2+, and accurate eigenenergies, quantum defect parameters, and static
and tensor polarizabilities for a number of excited Rydberg states are obtained. The time-periodic rf Hamiltonian
is expanded in the Floquet basis, and the trapping-field-broadened Rydberg lines are compared with recent
observations of Ca+(23P) and Ca+(52F ) Rydberg lines.
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I. INTRODUCTION

Trapped Rydberg ions have recently come to the fore as
promising candidates for fast quantum gate operations and
long coherence times. The controllability and long coherence
times of trapped ions, when augmented with precision and
tunability of Rydberg excitations, offer tantalizing opportu-
nities to leverage the best of the two schemes [1–4]. The
realization of such quantum gates with long-range Rydberg
and Coulomb interactions may be used in Rydberg ion crystals
for entanglement operations in quantum information process-
ing and computing applications [3,5]. Additionally, trapped
Rydberg ions possess enormous polarizabilities which can be
manipulated with external fields [6], making them exquisite
probes of their environments.

Trapped ions whose motional state fidelity is prone to
decoherence due to fluctuating surface electric-field dipole
noise [7–10] can be used to detect and probe residual electric
fields present in Paul traps [4,11,12]. Rydberg atoms likewise
have been shown to be sensitive probes of certain surfaces due
to the presence of low electric fields [13].

The presence of static, dynamic, and stray fields in a
Paul trap strongly modifies the Rydberg spectral properties
of the ion. It was investigated theoretically in Refs. [5,14],
followed by the first realization of Rydberg F [4] and P [6]
states in trapped Ca+ ion and the coherent control of a single
trapped Rydberg Sr+ ion in S states [2]. Accurate values for
eigenenergies, transition rates, and multipole polarizabilities
of low-excited states of Ca+ in the absence of trapping fields
were presented in Ref. [15].

In this work, we demonstrate details of a variational calcu-
lation of Paul-trap-induced Ca+(52F, 23P) Rydberg spectra.
A parametric one-electron valence potential with spin-orbit
coupling is used to describe the electronic structure of bare
Ca+ ions. The energy levels, transition dipole moments, and
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quantum defects for highly excited ions are calculated for
S, P, D, F , and G states (up to n = 64). The scalar and
tensor polarizabilities for the Rydberg states are determined
and compared with available values. A Floquet expansion
is used to calculate the matrix elements with the coupling
of the ion motion to the rf and electrodes’ trap potentials.
The resulting Rydberg spectra with additional peaks due to
the field couplings are examined and compared with recent
experimental findings [4]. Unless indicated otherwise, atomic
units (a.u.) are used throughout.

II. THEORY AND COMPUTATION

A. Hamiltonian terms

The Hamiltonian of an atomic ion in a Paul trap can be
written as [14]

Ĥ = Ĥe + ĤIe + ĤI, (1)

where Ĥe is the electronic Hamiltonian for an ion in a Paul
trap, ĤIe is the Hamiltonian describing the atomic electron
coupling to the trapped ion motion, and ĤI is the Hamiltonian
for the motion of the ion in the trap. Each term is described in
detail below.

1. Electron motion in the trap fields

The coupling of the valance electron to the trapping poten-
tials (in a.u.) is given as

Ĥe = ĤFF − �(r, t ) + Egeomz cos(�rft ), (2)

where the first term on the right-hand side is the field-free
Hamiltonian, describing a single free Ca+ ion. The second
term is the coupling of the electron to the linear Paul trap,
and the last term is the residual electric field, which the ion
is exposed to due to fabrication imperfections. The magnitude
of this residual field is obtained from the broadening of the
4S-4P transition in Ca+ [4]. �rf is the rf frequency.

2469-9926/2020/101(5)/052510(9) 052510-1 ©2020 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.052510&domain=pdf&date_stamp=2020-05-18
https://doi.org/10.1103/PhysRevA.101.052510


MARIUSZ PAWLAK AND H. R. SADEGHPOUR PHYSICAL REVIEW A 101, 052510 (2020)

The field-free Hamiltonian is

ĤFF = − 1
2�r + Vl (r) + VLS(r), (3)

where the valence electron interacts with all other electrons
via an effective nonlocal parametric potential [16]:

Vl (r) = −1

r

(
2 + (Z − 2)e−a(l )

1 r + a(l )
2 re−a(l )

3 r
)

− αc

2r4

(
1 − e−(r/r(l )

c )6)
, (4)

with Z being the ion nuclear charge. The last term in Eq. (4)
is the core polarization potential, wherein αc is the electric
dipole polarizability of the doubly charged ionic core and r (l )

c
is a cutoff radius which ensures the proper behavior of the
potential near the origin. The l-dependent parameters (a(l )

1 ,
a(l )

2 , a(l )
3 , and r (l )

c ) fitted to experimental energy levels are
available for different alkaline-earth-metal ions in Ref. [16].

The spin-orbit coupling is

VLS(r) = α2
LS

2

1

r

dVl (r)

dr

(
1 − α2

LS

2
Vl (r)

)−2

L̂ · Ŝ, (5)

where αLS is the fine-structure constant, and 〈L̂ · Ŝ〉 = [ j( j +
1) − l (l + 1) − 3/4]/2. The total electronic angular momen-
tum quantum j = l ± 1

2 .
The coupling of the electron to the linear Paul trap includes

two terms,

−�(r, t ) = Ĥ rf
trap + Ĥdc

trap

= −α cos(�rft )(x2 − y2) + β(x2 + y2 − 2z2), (6)

where α and β are the rf and static electric field gradients,
respectively, and (x, y, z) are the electron coordinates.

Finally, the trap imperfection alternating residual electric
field amplitude, see the third term in Eq. (2), is written
explicitly as [4]

Egeom = 0.8(Urf/m) sin(�rft ), (7)

where Urf is the rf voltage. The numerical coefficient in Eq. (7)
may be different for different ion traps.

2. Electron motion coupled to trapped ion motion

In a highly excited Rydberg state, the spatial extent of the
electron wave function can become larger than the oscilla-
tor length, and the coupling of the electronic and external
motional degrees of freedom needs to be accounted for. The
Hamiltonian for the Rydberg electron coupling to the ion
motion (in a.u.) is

ĤIe = Ĥ rf
Ie + Ĥdc

Ie

= −2α cos(�rft )(xX − yY ) + 2β(xX + yY − 2zZ ), (8)

where (X,Y, Z ) are the ion coordinates in the trap.

3. Ion motion in the trap

The Hamiltonian for the ion center-of-mass motion in the
trap is expressed as (in a.u.)

ĤI = − 1

2M
�R + �(R, t ). (9)

The static field and the rapidly oscillating rf field form an
effective time-independent harmonic potential [14,17],

�(R, t ) � M

2

∑
ρ=X,Y,Z

ω2
ρρ

2, (10)

where M is the mass of the ion and

ωX = ωY =
√

2{[α/(M�rf )]2 − β/M},
ωZ = 2

√
β/M,

(11)

are, respectively, the transverse and axial trap frequencies.
The total Hamiltonian in Eq. (1), when grouped for com-

putational efficiency, is

Ĥ = ĤFF + [
Ĥ rf

trap + Ĥdc
trap

] + Ĥgeom + [
Ĥ rf

Ie + Ĥdc
Ie

] + ĤI.

(12)

B. Solutions to the field-free Hamiltonian

We are interested in the bound eigenstate spectrum of the
stationary time-independent Schrödinger equation describing
the valence electron motion in Ca+:

ĤFF	 = E	. (13)

The bound states of this Hamiltonian are expanded in the L2

basis, ϕk (r)Yl,m(θ, φ), where ϕk = rζ−1e−γk r are Slater-type
orbitals (STOs), with ζ and γk as the optimization parameters.
Because STOs are not orthogonal, we diagonalize the overlap
matrix S: λ = VTSV, where λ is a diagonal matrix of positive
eigenvalues and V is an orthogonal eigenvector matrix. Next,
we transform the radial part of the basis set to an orthonormal
form:

ϕ̃p(r) = 1√
λp,p

∑
k

Vk,pϕk (r). (14)

Matrix elements of the filed-free Hamiltonian in the orthonor-
mal basis set are

[HFF]i′,i = δl ′,lδm′,m√
λp′,p′λp,p

∑
k′,k

V ∗
k′,p′ 〈ϕk′ |ĤFF|ϕk〉Vk,p. (15)

This variational approach allows us to calculate accurately
the field-free energy spectrum for any arbitrary (l, j) sets.
The trial space is spanned by 660 STOs. The optimization
procedure and the details for calculating the matrix elements
of the Hamiltonian are provided in Ref. [18]. The energies
resulting from the diagonalization of HFF are fully converged
with respect to basis set size. The energies and wave functions
also behave properly with respect to the spin-orbit splitting,
which decreases with increasing orbital quantum number.

The radial field-free eigenfunctions are

ψn(r) =
∑

p

C(l, j)
p,n√
λp,p

∑
k

Vk,pϕk (r), (16)

where the expansion coefficients C(l, j)
p,n are from the eigenvec-

tor matrix of HFF.
The eigenenergies are used to determine the quantum

defects δl, j . Within the quantum defect theory approach, the
energy levels of the system with one valence electron are
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given by [19,20]

En,l, j = − Z2
c

2[n − δl, j (n)]2
, (17)

where Zc is the ionic core charge and n is the principal quan-
tum number. For highly excited states, it is often sufficient
to take δl, j (n) as a constant. For lower excitations, the Ritz
expansion is applied:

δl, j (n) = δ
l, j
0 + δ

l, j
2(

n − δ
l, j
0

)2 + δ
l, j
4(

n − δ
l, j
0

)4 + · · · . (18)

The scalar (α0) and tensor (α2) polarizabilities of the
Ca+(52l ) Rydberg states are calculated as [21,22]

α0 = −2

3

∑
n′,l ′, j′

(2 j′ + 1)l>

{
l j 1

2
j′ l ′ 1

}2 |〈nl|r|n′l ′〉|2
En,l, j − En′,l ′, j′

,

(19)

α2 = − 2

√
10 j(2 j − 1)(2 j + 1)

3( j + 1)(2 j + 3)

∑
n′,l ′, j′

(−1) j+ j′ (2 j′ + 1)l>

×
{

l j 1
2

j′ l ′ 1

}2{
j j′ 1
1 2 j

} |〈nl|r|n′l ′〉|2
En,l, j − En′,l ′, j′

,

(20)

where l> is the greater of l and l ′. The total polarizability of a
state with nonzero total angular momentum is [23]

αtot = α0 + α2

3m2
j − j( j + 1)

j(2 j − 1)
, (21)

with − j � mj � j.

C. Floquet solutions to the time-periodic Hamiltonian

Since the Hamiltonian is time periodic, we expand the
solutions in a Floquet basis [24–28], leading to the eigenvalue
equation (in a.u.)

ĤFYε(R, r, t )=
(

Ĥ − i
∂

∂t

)
Yε(R, r, t ) = εYε(R, r, t ), (22)

where ĤF is the Floquet Hamiltonian and Yε(r, R, t ) are time-
periodic wave functions with period 2π/�rf ,

Yε(r, R, t ) = Yε

(
r, R, t + 2π

�rf

)
=

∞∑
q=−∞

eiq�rf t�q
ε (r, R).

(23)

The time-independent components �
q
ε (r, R) are usually called

the Floquet channel functions. They fulfill the relationship

�q
ε (r, R) = �

q+g
ε+g�rf

(r, R) (24)

for any integer g. We represent each component in the
basis set

ξη(r, R) = ψn(r)Yl,m(θ, φ)
∏

ρ=X,Y,Z

ψkρ
(ρ), (25)

where η is a superindex containing the quantum numbers
{n, l, m, kX , kY , kZ}. Solutions of a three-dimensional quan-
tum harmonic oscillator, �ρ=X,Y,Zψkρ

(ρ), are used here as a
part of the basis set, since by Eq. (10)〈 ∏

ρ=X,Y,Z

ψk′
ρ

∣∣ĤI

∣∣ ∏
ρ=X,Y,Z

ψkρ

〉

=
∑

ρ=X,Y,Z

ωρ

(
kρ + 1

2

)
δk′

ρkρ
, (26)

where kρ are the harmonic oscillator quantum numbers.
Then, the Floquet-Hamiltonian matrix is expressed as

[HF]q′,η′,q,η = �rf

2π

∫ 2π/�rf

0
〈ξη′ (r, R)|Ĥ (r, R, t )|ξη(r, R)〉

× ei(q−q′ )�rf t dt + q�rfδq′,qδη′,η. (27)

Since the rf field in the Paul trap is sinusoidal, the Floquet-
Hamiltonian matrix is reduced to the following form:

[HF]q′,q = [
E + Hdc

trap + Hdc
Ie + HI + q�rf I

]
δq′,q

+ 1
2

[
Hrf

trap + Hrf
Ie + Hgeom

]
δq′,q±1. (28)

The explicit expressions for the matrix elements are
given in the Appendix. Analytical solutions for all the an-
gular matrix elements are reported in the Supporting In-
formation of Ref. [29]. To construct the supermatrix in
Eq. (28), the Ca+(n � 64, l � 4, |m| � l , j = l − 1/2) 12
photon absorption and emission transitions are considered
(q = −12,−11, . . . , 11, 12). Since the calculations are time-
consuming, the ion is assumed to be in the ground motional
state (kX = kY = kZ = 0). This approximation is physically
motivated, since the mass of the ionic core is much larger than
the mass of the valence electron.

Equation (28) can be, in general, presented in matrix
form as

HF =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . .

. . . A − 2�rf I V

V† A − �rf I V

V† A V

V† A + �rf I V

V† A + 2�rf I
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)
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TABLE I. The low-lying nD3/2 and high-lying nF5/2 and
nP1/2 energy levels of Ca+. The presented results are compared
with Ref. [31], where the spin-orbit splitting is neglected, and
with Ref. [6]. The calculated transition dipole moments, dDF =
〈3D3/2|r|nF5/2〉 and dDP = 〈3D3/2|r|nP1/2〉, are given in the last col-
umn. The values are in atomic units.

EnD(×10−1) EnD3/2 (×10−1)
n Ref. [31] This work

3 −3.73917 −3.74136
4 −1.77235 −1.77338
5 −1.04894 −1.04878
6 −0.693570 −0.693448
7 −0.492592 −0.492543
8 −0.367889 −0.367876
9 −0.285204 −0.285207

10 −0.227570 −0.227579

EnF (×10−3) EnF5/2 (×10−3) EnF5/2 (×10−3) dDF (×10−2)
n Ref. [31] Ref. [6] This work This work

45 −0.988791 −0.988929 −0.988967 2.38399
46 −0.946244 −0.946373 −0.946408 2.30637
47 −0.906385 −0.906505 −0.906539 2.23288
48 −0.868992 −0.869106 −0.869137 2.16321
49 −0.833867 −0.833973 −0.834003 2.09709
50 −0.800829 −0.800929 −0.800957 2.03428
51 −0.769716 −0.769810 −0.769837 1.97457
52 −0.740382 −0.740471 −0.740496 1.91769
53 −0.712693 −0.712777 −0.712801 1.86350
54 −0.686529 −0.686609 −0.686631 1.81182
55 −0.661780 −0.661855 −0.661876 1.76249

EnP(×10−2) EnP1/2 (×10−2) EnP1/2 (×10−2) dDP(×10−3)
n Ref. [31] Ref. [6] This work This work

20 −0.580433 −0.580421 −0.580590 8.07380
21 −0.522603 −0.522596 −0.522737 7.45575
22 −0.473006 −0.473002 −0.473120 6.91301
23 −0.430148 −0.430147 −0.430247 6.43329
24 −0.392862 −0.392862 −0.392948 6.00677
25 −0.360222 −0.360223 −0.360298 5.62551
26 −0.331487 −0.331489 −0.331554 5.28306
27 −0.306059 −0.306061 −0.306118 4.97408
28 −0.283448 −0.283450 −0.283500 4.69415
29 −0.263253 −0.263256 −0.263300 4.43958
30 −0.245142 −0.245145 −0.245184 4.20727

with

A = E + Hdc
trap + Hdc

Ie + HI, (30)

V = 1
2

(
Hrf

trap + Hrf
Ie + Hgeom

)
. (31)

The convergence of the Floquet approach is examined by
including progressively more Floquet basis sets (5, 9, 15, 21,
and 25 channels). Our final matrix is prepared for the fol-
lowing quantum numbers: n � 64, l � 4, |m| � l , j = l − 1

2 ,
kX = 0, kY = 0, kZ = 0, and |q| � 12. This yields the matrix
with the size of 38 025 × 38 025 to be diagonalized.

TABLE II. Calculated quantum defect parameters in Eq. (18) for
Ca+ in different S, P, D, F , and G states.

Level δ
l, j
0 δ

l, j
2 δ

l, j
4

nS1/2 1.80149622 0.201535974 0.312279201
nP1/2 1.43927290 0.331987211 0.687628538
nP3/2 1.43532329 0.332803651 0.690740476
nD3/2 0.627759022 −0.0148289072 1.98904443
nD5/2 0.627066817 −0.0128801411 1.96257423
nF5/2 0.0298974503 −0.202650265 0.497416258
nF7/2 0.0296853803 −0.198110426 0.457337917
nG7/2 0.00614904531 −0.0419102731 0.0164937590
nG9/2 0.00614352002 −0.0418535034 0.0717188390

D. Stark effect

To calculate energy spectrum of the ion interacting with an
external homogeneous static electric field and prepare a Stark
map, we consider the Hamiltonian in the form (in a.u.)

Ĥdc
e = ĤFF + Edcz, (32)

where Edc is the dc field strength. The field is chosen along the
z direction. We variationally solved the Schrödinger equation
using STOs of different spherical symmetry (l = 0, 1, 2, 3, 4).
The matrix elements of the perturbed term of Eq. (32) do not
vanish for l ′ = l ± 1. Since m is a good quantum number here,
we took m = 0 for which the Stark effect is the largest. A
similar computational approach was applied in Ref. [30].

E. Oscillator strength

The intensity of transitions between states Yν ′ and Yν is
given by the oscillator strength (in a.u.):

fν ′,ν = 2
3ων ′,ν |μν ′,ν |2, (33)

where ων ′,ν = εν − εν ′ is the energy difference between two
states. The transition dipole moment for the singly charged ion
in a Paul trap, where all effects described above are included,
reads

μν ′,ν = 〈Yν ′ |r cos θ |Yν〉
=

∑
η′,η

D∗
q′=0,n′,l ′,m′,k′

X ,k′
Y ,k′

Z ;ν ′Dq=0,n,l,m,kX ,kY ,kZ ;ν

×
∑
p′,p

(
C(l ′, j′ )

p′,n′
)∗

C(l, j)
p,n 〈ϕ̃p′ |r|ϕ̃p〉〈Yl ′,m′ | cos θ |Yl,m〉

×δk′
X ,kX δk′

Y ,kY δk′
Z ,kZ , (34)

where Dq,n,l,m,kX ,kY ,kZ ;ν are the expansion coefficients ob-
tained by diagonalizing the Floquet-Hamiltonian matrix
[Eq. (29)]. We chose the middle Floquet channel that pro-
vides the most reliable spectrum, hence q = 0. In the com-
putations of the oscillator strengths for 3D3/2 → 52F5/2 and
3D3/2 → 23P1/2 transitions, we put in Eq. (34) n′ = 3, l ′ = 2,
n = 52, and l = 3 and n′ = 3, l ′ = 2, n = 23, and l = 1,
respectively.
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TABLE III. The scalar, α0, and tensor, α2, polarizabilities of the
Rydberg states of Ca+. All the values are in MHz/(V/cm)2.

α0 α2

Level This work Ref. [23] This work Ref. [23]

52P −69.774 15.137
52P1/2 −69.836 0.000
52P3/2 −68.519 14.980

52D 32.149 −39.221
52D3/2 31.857 −27.559
52D5/2 31.260 −38.421

52F — —
52F5/2 582.449 −212.689
52F7/2 587.395 −250.175

III. RESULTS AND DISCUSSION

A. Rydberg energies, quantum defects, and
scalar and tensor polarizabilities

The low-lying nD3/2 and high-lying nF5/2 and nP1/2 energy
levels as well as the corresponding transition dipole moments
are presented in Table I; we calculate all Ca+(n � 64, l �
4) eigenenergies and eigenfunctions. We find good agree-
ment with the results reported by Djerad in Ref. [31] based
on the quantum defect theory and experimental data taken
from Ref. [32]. Furthermore, our results exhibit even better
agreement with recent experimental findings of Mokhberi and
coworkers [6], especially for the highly excited states. The
energy levels of Refs. [6,31], listed in Table I, are determined
using quantum defect parameters and expressions provided by
the authors of these two references. One prominent feature
with our results is that, although the basis set is generally
optimized for highly excited Rydberg states, the accuracy in
the low-energy states is still maintained.

The quantum defect parameters in Eq. (18), are presented
in Table II. All calculated energy levels are used to fit to
parameters in Eq. (17). The recently experimentally extracted
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FIG. 1. Stark map of Ca+ near the 52F level showing the mixing
of Rydberg states with different angular momenta in an electric field.
As the inset indicates, at small fields, relevant to experimental values,
the 52F -state energy shift is quadratic in the field and there is no field
mixing.
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FIG. 2. The Mollow triplet effect around the zero detuning of
3D3/2 to 52F5/2 transition line, when �rf/2π = 3.5 (solid curve)
and 5.2 (dashed curve) MHz. The rf and static field gradients are
α = 8.52 × 106 V/m2 and β = 3.32 × 104 V/m2, respectively. The
residual electric field is not considered in these calculations, i.e.,
Egeom = 0. (a) The calculations limited to 1-photon processes, by
including 3 Floquet channels, i.e., (−1, 0, +1). (b) The calcula-
tions limited to 2-photon processes (5 Floquet channels). (c) Up to
12-photon processes allowed (25 Floquet channels). The Gaussian
convolution is performed on the calculated results by considering a
5-MHz laser linewidth.

quantum defect values δ
l, j
0 for Ca+(nP1/2) and Ca+(nF5/2)

states are, respectively, 1.436 90(3) and 0.029 02(2) [6]. The
goodness of our fit, within a nonlinear least-squares proce-
dure, is as follows: the sum of squares due to error, also known
as the sum of squares of residuals, is less than 2.2 × 10−9, the
root-mean-squared error is less than 6.1 × 10−6, whereas the
coefficient of determination (R2) for the worst case is equal to
one with an accuracy to seven decimal places.

A good measure of the accuracy of our wave functions
and energies are the static and tensor polarizabilities for
Rydberg states, as the polarizability is an acutely sensitive
parameter of the linear response theory to perturbations by
external fields. The static scalar and tensor polarizabilities are
defined in Eqs. (19) and (20) We calculate the Ca+(n = 52)
Rydberg polarizabilities, presented in Table III, and com-
pared with available values from literature [23]. The sum-
mation in Eqs. (19) and (20) is performed over bound states
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FIG. 3. The normalized oscillator strength for the Ca+(3D3/2 →
52F5/2) resonant transition at various Egeom. Correspondingly, α =
8.52 × 106 V/m2, β = 3.32 × 104 V/m2, and �rf/2π = 3.5 MHz.
Up to ±12 photons in absorption and emission are included in the
Floquet calculations for convergence. The Gaussian convolution is
performed on the calculated results by considering a 5-MHz laser
linewidth.

up to n′ = 64. The experimentally determined αtot (52F ) =
10+7

−3 × 102 MHz/(V/cm)2 [4,33] is in agreement with the
theoretical results in Table III, i.e., αtot (52F5/2) = 752.600
and αtot (52F7/2) = 766.091 MHz/(V/cm)2.

Polarizability is proportional to the squares of transition
dipole moments and inversely proportional to the energy
differences [see Eqs. (19) and (20)], and thus the polarizability
of the nF states is significantly larger in comparison with
the polarizability for the separated states with not-negligible
quantum defects (l < 3 states in Table II) [34]. The main
contribution to the polarizability of the 52F state comes from
the coupling to the nearby 52G state. Figure 1 shows the Stark
map of Ca+ eigenstates in the vicinity of the 52F state up
to 100 V/cm. Electric fields in the ion traps are usually less
than 1 V/cm [35]; at such low electric fields, the F state is
well isolated from the G state. As expected, the inset of Fig. 1
shows that for small fields the energy shift remains quadratic
and there is no field mixing.

B. Trap-induced Rydberg spectra

We investigate the spectroscopic features of the
Ca+(3D3/2) + hν → Ca+(nF5/2) transition line when a single
Ca+ ion is confined in a Paul trap. We start with Egeom = 0 in
Eq. (2). The coupling of the electron to the linear Paul trap,
Eq. (6), is considered with the rf (α = 8.52 × 106 V/m2)
and the electrode (β = 3.32 × 104 V/m2) field gradients.
Multiphoton absorption and emission Floquet transitions, i.e.,
Ca+(3D3/2) + qhν → Ca+(nF5/2), with up to q = 12 photons
absorbed and emitted, are considered.

Figure 2 shows the Mollow triplets formed near the
Ca+(52F ) Rydberg line, for two experimental rf frequen-
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FIG. 4. The oscillator strength for the Ca+(3D3/2 → 52F5/2) res-
onant transition with Egeom = 0.24 V/cm (a) and Egeom = 0.84 V/cm
(b). The transverse and longitudinal trap frequencies are ωradial/2π =
200 kHz and ωaxial/2π = 90 kHz, respectively. The parameters used
are the same as those in Fig. 3. Experimental data are courtesy of the
Mainz group [36] and the error bars depict the quantum projection
noise. The Gaussian convolution is performed on the calculated
results by considering a 5-MHz laser linewidth.

cies, �rf/2π = 3.5 and 5.2 MHz [4] with different Floquet
channels (1-photon, 2-photon, and 12-photon absorption and
emission). In Fig. 2(c), the separation between the two outer
peaks is 2�rf , indicating the convergence of the results. Note
that the calculated oscillator strengths are convoluted with
a Gaussian laser linewidth of 5 MHz full width at half
maximum. As this linewidth is greater than the rf frequency,
�rf/2π = 3.5 MHz (solid blue curve), only one broad max-
imum is visible. The coupling in the Mollow triplet is due
to the electron-trap interaction, Eq. (6). The Ĥ rf

trap matrix
elements obey the �l = 0, 2 and �m = ±2 selection rules,
while the Ĥdc

trap matrix elements select the �l = 0 and 2 and
the �m = 0 transitions.

The effect of the residual electric field, Egeom, on the
spectral line, 3D3/2 → 52F5/2, is examined in Fig. 3. The
calculated oscillator strengths for this transition are shown
for different values of the residual electric field, 0 �
Egeom � 0.84 V/cm. The transition matrix elements are in-
tegrated over the ground motional state of the trap, e.g.,
Eq. (26). Spectral convolution is carried out by a Gaussian
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FIG. 5. The normalized oscillator strength for the Ca+(3D3/2 →
23P1/2) resonance transition with Egeom = 1.6 V/cm, �rf/2π =
14.56 MHz, α = 3.161 × 108 V/m2, and β = 1.286 × 106 V/m2

(solid black line) and Egeom = 0.1 V/cm, �rf/2π = 5.98 MHz, α =
1.298 × 108 V/m2, and β = 1.286 × 106 V/m2 (dashed-dotted red
line). These results in black and red should be compared with the
experimental spectra in Figs. 2(b) and 2(c) in Ref. [6], respectively.
In particular, the formation of Rydberg side bands at about ±45 and
±55 MHz are visible in the inset plots and detected in the experiment.
A 1-MHz laser linewidth is used for the Gaussian convolution of the
calculated spectra.

function with the 5-MHz laser linewidth. In Fig. 4, the
calculated oscillator strengths are compared with the ob-
served spectra [4,33], at Egeom = 0.24 and 0.84 V/cm. As
observed in the experiment, the calculated line shape of the
resonance confirms the strong state-dependent coupling to the
static and oscillatory electric field potentials in the trap.

Figure 5 presents the calculated oscillator strength for
the Ca+(3D3/2 → 23P1/2) transition for two sets of trap
parameters, as in Ref. [6]: Egeom = 1.6 V/cm, �rf/2π =
14.56 MHz, α = 3.161 × 108 V/m2, and β = 1.286 ×
106 V/m2; and Egeom = 0.1 V/cm, �rf/2π = 5.98 MHz,
α = 1.298 × 108 V/m2, and β = 1.286 × 106 V/m2.
The results are convoluted with a Gaussian function of
1-MHz laser linewidth. The peaks, including small
far-detuned bumps, agree almost perfectly with the maxima

in the experimental spectra in Figs. 2(b) and 2(c) in
Ref. [6].

IV. SUMMARY AND OUTLOOK

This work is a description of the first fully variational
calculation of the Rydberg spectra of a single ion in a Paul
trap. All relevant coupling terms in the Hamiltonian of the
ion in the trap are accounted for. The time-periodic rf field
is treated nonperturbatively within the Floquet formalism.
The motional state of the ion in the trap is also consid-
ered. The quantum defect parameters and static and tensor
dipole polarizabilities for highly excited states of Ca+ are
obtained and compared with available measurements. Pre-
cise trapped-induced Rydberg ion [Ca+(52F ) and Ca+(23P)]
spectra are calculated. These spectra with their sensitiv-
ity to trap or external static and time-varying fields can
be used as exquisite probes of residual and stray electric
field fluctuations near electrode surfaces and for quantum
nonequilibrium dynamics of ion qubits. The extremely large
polarizabilities of and controlled long-range interactions be-
tween Rydberg states can be employed for ion imaging [37].
Future studies of qubit operation, fidelity, and fast compu-
tation with trapped Rydberg ions should benefit from such
spectral analysis.
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APPENDIX

Matrix elements of the terms of the time-independent
Floquet-Hamiltonian, presented in Eq. (28), with the basis set
{ξη}, Eq. (25), are explicitly given below:

[E]η′,η = En,l, jδn′,nδl ′,lδm′,mδk′
X ,kX δk′

Y ,kY δk′
Z ,kZ , (A1)[

Hdc
trap

]
η′,η = β〈ξη′ |x2 + y2 − 2z2|ξη〉

= β〈ψn′ |r2|ψn〉
(
δl ′,lδm′,m − 3〈Yl ′,m′ | cos2 θ |Yl,m〉)δk′

X ,kX δk′
Y ,kY δk′

Z ,kZ , (A2)[
Hdc

Ie

]
η′,η = 2β〈ξη′ |xX + yY − 2zZ|ξη〉

= 2β〈ψn′ |r|ψn〉(〈Yl ′,m′ | sin θ cos φ|Yl,m〉〈ψk′
X
|X |ψkX 〉δk′

Y ,kY δk′
Z ,kZ

+〈Yl ′,m′ | sin θ sin φ|Yl,m〉〈ψk′
Y
|Y |ψkY 〉δk′

X ,kX δk′
Z ,kZ − 2〈Yl ′,m′ | cos θ |Yl,m〉〈ψk′

Z
|Z|ψkZ 〉δk′

X ,kX δk′
Y ,kY ), (A3)

[HI]η′,η = δn′,nδl ′,lδm′,m

∑
ρ=X,Y,Z

ωρ

(
kρ + 1

2

)
δk′

ρ ,kρ
, (A4)

[I]η′,η = δn′,nδl ′,lδm′,mδk′
X ,kX δk′

Y ,kY δk′
Z ,kZ , (A5)[

Hrf
trap

]
η′,η = −α〈ξη′ |x2 − y2|ξη〉

= −α〈ψn′ |r2|ψn〉(〈Yl ′,m′ | sin2 θ cos2 φ|Yl,m〉 − 〈Yl ′,m′ | sin2 θ sin2 φ|Yl,m〉)δk′
X ,kX δk′

Y ,kY δk′
Z ,kZ , (A6)
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[
Hrf

Ie

]
η′,η = −2α〈ξη′ |xX − yY |ξη〉

= −2α〈ψn′ |r|ψn〉(〈Yl ′,m′ | sin θ cos φ|Yl,m〉〈ψk′
X
|X |ψkX 〉δk′

Y ,kY δk′
Z ,kZ

−〈Yl ′,m′ | sin θ sin φ|Yl,m〉〈ψk′
Y
|Y |ψkY 〉δk′

X ,kX δk′
Z ,kZ ), (A7)

[Hgeom]η′,η = Egeom〈ξη′ |z|ξη〉
= Egeom〈ψn′ |r|ψn〉〈Yl ′,m′ | cos θ |Yl,m〉δk′

X ,kX δk′
Y ,kY δk′

Z ,kZ , (A8)

where η denotes a superindex containing quantum numbers
{n, l, m, kX , kY , kZ}. Simple expressions for the above angular

matrix elements are reported in the Supporting Information in
Ref. [29].
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