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The electron-electron interaction correction of first order in 1/Z to the one-electron part of the nuclear recoil
effect on binding energies in atoms and ions is considered within the framework of the rigorous quantum
electrodynamics (QED) approach. The calculations to all orders in αZ are performed for the 1s2 state in
heliumlike ions and the 1s22s and 1s22p1/2 states in lithiumlike ions in the range Z = 5–100. The results obtained
are compared with the Breit-approximation values. The performed calculations complete a systematic treatment
of the QED nuclear recoil effect up to the first order in 1/Z . The correction obtained is combined with the
previously studied two-electron part as well as the higher-order electron-correlation corrections evaluated within
the Breit approximation to get the total theoretical predictions for the mass shifts.
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I. INTRODUCTION

It is well known that within the nonrelativistic approxima-
tion the effect of the nuclear motion on spectra of hydrogen-
like ions is accounted for exactly by replacing the electron
mass m with the reduced mass mr = mM/(m + M ), with M
being the mass of the nucleus. The lowest-order relativistic
correction of first order in m/M can be derived from the
Breit equation for the electron and nucleus [1]. For N-electron
systems, the corresponding one-electron contribution to the
nuclear recoil effect can be described by the operator

HNMS = 1

2M

N∑
i

{
p2

i − αZ

ri

[
αi + (αi · ri )ri

r2
i

]
· pi

}
, (1)

where p = −i∇ is the momentum operator, r is the position
vector, r = |r|, α are the Dirac matrices, α is the fine-structure
constant, and Z is the nuclear charge number [the relativistic
units (h̄ = 1, c = 1) are used throughout the paper]. The one-
electron operator in Eq. (1) gives rise to the so-called normal
mass shift (NMS). In the case of more than one electron, the
NMS operator (1) does not provide an exhaustive description
of the effect of the nuclear motion, since there is also the two-
electron contribution given by the specific mass shift (SMS)
operator:

HSMS = 1

2M

N∑
i �= j

{
pi · p j − αZ

ri

[
αi + (αi · ri )ri

r2
i

]
· p j

}
. (2)

The NMS and SMS operators add to the mass shift (MS)
operator [2–4],

HM = HNMS + HSMS , (3)

which allows one to treat the nuclear recoil contribution
within the (m/M )(αZ )4mc2 approximation. To date, the MS
operator (3) is used extensively in relativistic calculations of

the atomic spectra and isotope shifts (see, e.g., Refs. [5–20]
and references therein).

The fully relativistic description of the nuclear recoil effect
on binding energies requires application of the bound-state
quantum electrodynamics (QED) beyond the Breit approxi-
mation. The corresponding theory to first order in m/M and
to all orders in αZ was developed in Refs. [2,3,21]; see
also Refs. [22–24]. Numerous QED evaluations of the nu-
clear recoil contribution to binding energies were performed
over the past three decades [6,13,24–29]. However, all the
previous nonperturbative (in αZ) calculations were limited
by the independent-electron approximation, i.e., the electron-
electron interaction corrections to the nuclear recoil effect
were neglected. It should be noted that the interelectronic-
interaction effects were treated approximately in some cases
by modifying the zeroth-order approximation and adding into
it a local screening potential (see, e.g., Ref. [6]). In our recent
work [30], we addressed the issue of the QED evaluation of
the interelectronic-interaction correction of first order in 1/Z
to the two-electron part of the nuclear recoil effect on binding
energies. The present paper focuses on deriving the rigorous
QED formalism for calculations of the corresponding correc-
tion to the dominant one-electron part. The results obtained
represent the nontrivial QED contribution to the NMS and
complete the rigorous consideration of the first-order (in 1/Z)
nuclear recoil effect to all orders in αZ .

The QED formalism worked out in the present work is
illustrated by calculating the one-electron part of the nuclear
recoil effect on binding energies of the 1s2 state in heliumlike
ions and the 1s22s and 1s22p1/2 states in lithiumlike ions for
the wide range of nuclear charge number, Z = 5–100. The
behavior of the nontrivial QED contribution to the NMS as
a function of Z is studied. These calculations together with
those performed in Ref. [30] provide a better understanding
of the applicability limits for the MS operator (3). In par-
ticular, one can assume that the application of a rigorous
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QED approach will resolve some discrepancies which take
place nowadays between the preliminary calculations and
the high-precision measurements of the isotope shifts of the
fine-structure splittings in singly ionized argon (Ar+) [31,32]
and calcium (Ca+) [33]. We also stress that the effect un-
der consideration may contribute significantly when specific
differences of the energies or isotope shifts are studied (see,
e.g., Ref. [34] for the related discussion in the case of the
bound-electron g factor).

The paper is organized as follows. The main aspects of the
QED theory of the nuclear recoil effect on binding energies
within the independent-electron approximation are outlined in
Sec. II. The formulas for the first-order (in 1/Z) correction to
the one-electron part of the nuclear recoil effect valid to all
orders in αZ are discussed in Sec. III. The numerical results
and the comparison with the values obtained employing the
MS Hamiltonian (3) are given in Sec. IV.

II. QED THEORY OF THE NUCLEAR RECOIL EFFECT
WITHIN THE INDEPENDENT-ELECTRON

APPROXIMATION

The QED theory of the nuclear recoil effect on atomic
binding energies was worked out in Refs. [2,3,21]. The for-
mulation of the theory presented in Ref. [21] is the most
convenient for the needs of the present study. It reduces the
problem of accounting for the nuclear recoil effect to a mod-
ification of the standard QED Hamiltonian of the electron-
positron field interacting with the quantized electromagnetic
field and the classical Coulomb potential of the nucleus Vn.
The modification consists of an extra term to the interaction
part of the QED Hamiltonian; see Ref. [21] for details. As
a result, the nuclear recoil effect to first order in m/M and
to all orders in αZ can be taken into account by pertur-
bation theory in the interaction representation of the Furry
picture [35]. For the construction of the perturbation series,
we employ the two-time Green’s function (TTGF) method
[36]. All the necessary Feynman rules can be found, e.g.,
in Ref. [36]. In order to describe the new elements of the
diagram technique as compared to the standard bound-state
QED, we briefly discuss the derivation of the formulas for the
one-electron part of the nuclear recoil effect to zeroth order in
1/Z for the electron in the state |a〉. The total one-electron
contribution for a given many-electron state is obtained
by adding the corresponding terms from all one-electron
orbitals.

The one-electron part of the nuclear recoil effect is given
by the diagrams depicted in Fig. 1. The double line denotes
the propagator for an electron in the classical field of the
nucleus. The vertex with a small black dot corresponds to
the conventional QED vertex. The new vertex with a bold dot
arises from the extra term to the QED Hamiltonian derived
in Ref. [21]. It contains the momentum operator p. Following
the notations employed in Ref. [21], we refer to the dotted
line joining two bold dots in Fig. 1(a) as the “Coulomb recoil”
interaction. The dashed line ending with a bold dot on one side
in Figs. 1(b) and 1(c) designates the “one-transverse-photon
recoil” interaction, since it includes the transverse part of the

(b) (c) (d)(a)

FIG. 1. One-electron nuclear recoil diagrams to zeroth order in
1/Z: the Coulomb (a), one-transverse (b) and (c), and two-transverse
(d) contributions. See the text and Ref. [21] for the description of the
Feynman rules.

photon propagator in the Coulomb gauge

Dlk (ω, r) = − 1

4π

[
exp(i

√
ω2 + i0 r)

r
δlk

+ ∇l∇k
exp(i

√
ω2 + i0 r) − 1

ω2r

]
, (4)

where we fix the branch of the square root by the condition
Im(

√
ω2 + i0) > 0. The dashed line with a bold dot on it in

Fig. 1(d) corresponds to the “two-transverse-photon recoil”
interaction, since it involves the product of two photon propa-
gators (4). The terminology used comes from operating in the
Coulomb gauge which appears to be the most appropriate and
convenient gauge for studying the nuclear recoil effect; see,
e.g., Refs. [2,3,23].

Within the Furry picture, the zeroth-order approximation
for one-electron energies and wave functions is determined
by the Dirac equation with the binding potential of the nucleus
Vn,

[−iα · ∇ + βm + Vn(r)]ψn(r) = εnψn(r) . (5)

The TTGF method prescribes that the first-order correction
to the energy of an arbitrary single level |u〉 can be obtained
according to the following formula:

	E (1) = 1

2π i

∮



dE 	E	g(1)
uu (E ) . (6)

Here 	g(1)
uu represents the Fourier transform of the contri-

bution to the two-time Green’s function projected on the
unperturbed state |u(0)〉, 	E = E − E (0)

u , E (0)
u is the unper-

turbed energy, and the oriented counterclockwise contour 


surrounds E (0)
u in the complex E plane; see Ref. [36] for

details. For the one-electron nuclear recoil contribution under
consideration, we assume that the unperturbed wave function
|u(0)

1el〉 is given by the solution ψa of the Dirac equation (5),
and the unperturbed energy coincides with the corresponding
energy εa. The diagrams shown in Fig. 1 are similar to the
first-order self-energy diagram; see, e.g., Refs. [37–39]. For
this reason, the derivation of the formulas does not cause
any problems, and by applying the TTGF method one readily
obtains

	E (1)
c = 1

M

i

2π

∫ ∞

−∞
dω

∑
n

〈a|pk|n〉〈n|pk|a〉
ω + εa − uεn

(7)
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for the Coulomb contribution in Fig. 1(a),

	E (1)
tr1 = − 1

M

i

2π

∫ ∞

−∞
dω

∑
n

[ 〈a|pk|n〉〈n|Dk (ω)|a〉
ω + εa − uεn

+ 〈a|Dk (ω)|n〉〈n|pk|a〉
ω + εa − uεn

]
(8)

for the one-transverse-photon contribution in Figs. 1(b) and
1(c), and

	E (1)
tr2 = 1

M

i

2π

∫ ∞

−∞
dω

∑
n

〈a|Dk (ω)|n〉〈n|Dk (ω)|a〉
ω + εa − uεn

(9)

for the two-transverse-photon contribution in Fig. 1(d). In
Eqs. (7)–(9) and below, the summation over the repeated
indices is implied, u = 1 − i0 provides the proper treatment
of the poles in the electron propagator, and

Dk (ω) = −4παZαl Dlk (ω) , (10)

where αl (l = 1, 2, 3) are the Dirac matrices. For the follow-
ing, it is convenient to introduce the notations

Rc = 1

M
p1 · p2 , (11)

Rtr1(ω) = − 1

M
[p1 · D2(ω) + D1(ω) · p2] , (12)

Rtr2(ω) = 1

M
D1(ω) · D2(ω) , (13)

for the Coulomb, one-transverse-photon, and two-transverse-
photon interactions, respectively. By analogy with the self-
energy operator �(E ), we also introduce the operator P(E )
for the nuclear recoil effect,

〈a|P(E )|b〉 = i

2π

∫ ∞

−∞
dω

∑
n

〈an|R(ω)|nb〉
ω + E − uεn

, (14)

where R means any of the operators (11)–(13). Then, Eqs. (7)–
(9) can be rewritten as 〈a|Pc(εa)|a〉, 〈a|Ptr1(εa)|a〉, and
〈a|Ptr2(εa)|a〉, respectively. Finally, the total one-electron con-
tribution to the nuclear recoil effect to zeroth order in 1/Z is
given by the sum of Eqs. (7)–(9),

	E (1)
1el = 	E (1)

c + 	E (1)
tr1 + 	E (1)

tr2 . (15)

The integration over ω in the Coulomb contribution (7) can
be evaluated analytically using the standard identity (ω1 <

0 < ω2):∫ ω2

ω1

dω
f (ω)

ω ± i0
= ∓iπ f (0) + P.V.

∫ ω2

ω1

dω
f (ω)

ω
, (16)

where P.V. means the principal value integral. Indeed, apply-
ing the formula (16) to Eq. (7) and taking into account that all
the principal value integrals vanish, one obtains

	E (1)
c = 1

2M

εn>0∑
n

〈a|pk|n〉〈n|pk|a〉

− 1

2M

εn<0∑
n

〈a|pk|n〉〈n|pk|a〉 , (17)

where the first and second summations run over the positive-
and negative-energy parts of the spectrum, respectively. It is

useful to compare this expression with the formula which can
be obtained by employing the nonrelativistic part of the NMS
operator (1):

	E (1)
c,Breit =

〈
a

∣∣∣∣ p2

2M

∣∣∣∣a
〉

= 1

2M

∑
n

〈a|pk|n〉〈n|pk|a〉 , (18)

where the summation runs over all the states. One can see that
introducing the projectors on the positive-energy part of the
spectrum in Eqs. (7) or (17) leads to the result which differs
from the value (18) by the contribution of the negative-energy
continuum, being of order (m/M )(αZ )5mc2, i.e., beyond the
Breit approximation. The expression (18) is implied to be the
lowest-order approximation of the Coulomb contribution (7).
One should note that Eq. (18) contains actually some terms of
the higher orders in αZ as well, since it is evaluated with the
Dirac wave functions. The nontrivial QED Coulomb contribu-
tion, which cannot be obtained from the Breit equation, reads
[25]

	E (1)
c,QED ≡ 	E (1)

c − 	E (1)
c,Breit

= − 1

M

εn<0∑
n

〈a|pk|n〉〈n|pk|a〉 . (19)

In order to obtain the lowest-order relativistic approxima-
tion to the one-transverse-photon contribution (8), one has
to consider the zero-energy-transfer limit ω → 0 of Eq. (10)
given by

Dk (0) = αZ

2r

[
αk + (αiri)rk

r2

]
. (20)

By neglecting the energy dependence of the vector D(ω) in
Eq. (8), we come to the integral, which is similar to the
Coulomb case (7). One should take care defining its Breit
approximation, since discarding the negative-energy part of
the spectrum in Eq. (8) leads once again to a slightly different
result. As in the Coulomb case, we consider the expression
arising from the NMS operator,

	E (1)
tr1,Breit = − 1

2M
〈a|(p · D(0) + D(0) · p)|a〉 , (21)

as the lowest-order relativistic approximation to Eq. (8), and
the nontrivial QED part of the one-transverse-photon contri-
bution is

	E (1)
tr1,QED ≡ 	E (1)

tr1 − 	E (1)
tr1,Breit . (22)

We note, finally, that the two-transverse-photon contribution
	E (1)

tr2 is completely beyond the Breit approximation. Thus,
we relegate it to the nontrivial QED part.

The total one-electron nuclear recoil contribution (15)
can be conveniently represented as a sum of the Breit-
approximation term and the nontrivial QED term,

	E (1)
1el = 	E (1)

1el,Breit + 	E (1)
1el,QED , (23)

	E (1)
1el,Breit = 	E (1)

c,Breit + 	E (1)
tr1,Breit

= 1

2M
〈a|[p2 − (p · D(0) + D(0) · p)]|a〉, (24)
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(a)

(b)

FIG. 2. The second-order diagrams describing the electron-
electron interaction correction to the one-electron two-transverse-
photon contribution to the nuclear recoil effect. The analogous
diagrams with the Coulomb and one-transverse photon recoil interac-
tions have to be taken into account as well. See the text and Ref. [21]
for the description of the diagram technique.

	E (1)
1el,QED = 	E (1)

c,QED + 	E (1)
tr1,QED + 	E (1)

tr2

= 1

M

i

2π

∫ ∞

−∞
dω 〈a|

(
Dk (ω) − [pk,Vn]

ω + i0

)

× G(ω + εa)

(
Dk (ω) + [pk,Vn]

ω + i0

)
|a〉 , (25)

where G(ω) = ∑
n |n〉〈n|[ω − uεn]−1 is the Dirac-Coulomb

Green’s function and [A, B] = AB − BA. The formalism for
treating the nuclear recoil effect to all orders in αZ was ini-
tially derived in Ref. [2] in the form given by Eqs. (23)–(25).

III. ELECTRON-ELECTRON INTERACTION
CORRECTION TO THE ONE-ELECTRON PART OF THE

NUCLEAR RECOIL EFFECT

One set of Feynman diagrams contributing to the first
order (in 1/Z) electron-electron interaction correction to the
one-electron part of the nuclear recoil effect is shown in
Fig. 2. The wavy line corresponds to the photon propagator,
while all the other notations are the same as in Fig. 1. The
two-transverse-photon contribution presented in Fig. 2 has to
be complemented by the corresponding Coulomb and one-
transverse-photon contributions. Therefore, the total number
of the second-order diagrams is four times higher.

The second-order correction to energy of a single level |u〉
is given by [36]

	E (2) = 1

2π i

∮



dE 	E	g(2)
uu (E )

−
[

1

2π i

∮



dE 	E	g(1)
uu (E )

][
1

2π i

∮



dE 	g(1)
uu (E )

]
,

(26)

FIG. 3. The one-photon exchange diagram which contributes to
the second “disconnected” term in Eq. (26) along with the first-order
diagrams in Fig. 1.

where the contour 
 surrounds the unperturbed energy E (0)
u

and keeps outside all the other singularities of the Green’s
function. In this paper we are interested in the two-electron
corrections presented in Fig. 2. An arbitrary many-electron
problem can be easily decomposed into the set of two-electron
problems. For this reason, it is sufficient to assume the unper-
turbed wave function |u(0)〉 in Eq. (26) to be represented by
the one-determinant two-electron wave function,

∣∣u(0)
2el

〉 = 1√
2

∑
P

(−1)PψPa(r1)ψPb(r2) , (27)

where ψa and ψb are the solutions of the Dirac equation
(5), P is the permutation operator, and (−1)P is the sign
of the permutation. The unperturbed energy is given by
the sum of the one-electron Dirac energies: E (0)

u = εa + εb.
The generalization to the case of a many-determinant wave
function is straightforward and can be done in the final
expressions.

The second term in Eq. (26), given by the product of the
first-order contributions to the Green’s function, is usually
referred to as the “disconnected” one. The relevant diagrams
are shown in Figs. 1 and 3. The disconnected term is to be
considered together with the related contribution in the first
term in Eq. (26). As a rule, it is fully canceled analytically by
identifying the corresponding expressions. In the following,
we will not mention the disconnected term any longer, but its
contribution is always taken into account.

Prior to deriving the formulas for the interelectronic-
interaction correction to the one-electron part of the nuclear
recoil effect, we introduce the operator

I (ω) = e2α
μ
1 αν

2 Dμν (ω) , (28)

where αμ = (1,α) and Dμν is the photon propagator. For
the Coulomb gauge, in which we operate, Eq. (28) has
the form

I (ω) = α

[
1

r12
− (α1 · α2)

exp(i
√

ω2 + i0 r12)

r12

+ (α1 · ∇1)(α2 · ∇2)
exp(i

√
ω2 + i0 r12) − 1

ω2r12

]
.

(29)
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The zero-energy-transfer limit ω → 0 of Eq. (29) reads

I (0) = α

[
1

r12
− (α1 · α2)

r12
− (α1 · ∇1)(α2 · ∇2) r12

2

]
.

(30)

The operator (30) can be used to evaluate the interelectronic-
interaction correction to the MS operator (3) within the Breit
approximation.

As noted in Sec. II, the diagrams for the one-electron part
of the nuclear recoil effect in Fig. 1 are similar to the diagram
for the first-order self-energy. In turn, the diagrams for the
electron-electron interaction correction in Fig. 2 are similar to
the two-electron self-energy diagrams, which were discussed
in detail in, e.g., Refs. [40,41]. For this reason, we present
here only the final formulas and omit all the intermediate
manipulations. We divide the total interelectronic-interaction
correction to the one-electron part of the nuclear recoil effect
into three parts. The contribution of the diagrams in Fig. 2(b)
is referred to as the “vertex” term (	E (2)

vert). The contribution
of the diagrams shown in Fig. 2(a) is naturally divided into
the “irreducible” (	E (2)

irr ) and “reducible” (	E (2)
red ) parts. The

reducible part is defined as the contribution in which the
energy of the intermediate two-electron state coincides with
the energy of the initial state E (0)

u . The irreducible part is the
remainder.

The irreducible contribution reads

	E (2)
irr = 2[〈a|P(εa)|ξa〉 + 〈b|P(εb)|ξb〉] , (31)

where the operator P was defined by Eq. (14),

|ξa〉 =
∑
εn �=εa

|n〉
εa − εn

∑
P

(−1)P〈nb|I (	)|PaPb〉 , (32)

|ξb〉 =
∑
εn �=εb

|n〉
εb − εn

∑
P

(−1)P〈an|I (	)|PaPb〉 , (33)

and 	 = εPa − εa. The reducible contribution has the form

	E (2)
red = 〈ba|I ′(	)|ab〉[〈a|P(εa)|a〉 − 〈b|P(εb)|b〉]

+ 	E1ph[〈a|P′(εa)|a〉 + 〈b|P′(εb)|b〉] , (34)

where I ′(	) = dI/dω|ω=	, P′(εa) = dP(E )/dE |E=εa , and
	E1ph = ∑

P(−1)P〈PaPb|I (	)|ab〉 is the one-photon-
exchange correction. Finally, the vertex contribution is given
by

	E (2)
vert =

∑
P

(−1)P i

2π

∫ ∞

−∞
dω

∑
n1n2

[ 〈Pa n2|R(ω)|n1a〉〈n1Pb|I (	)|n2b〉
(ω + εPa − uεn1 )(ω + εa − uεn2 )

+ 〈Pa n1|I (	)|an2〉〈Pb n2|R(ω)|n1b〉
(ω + εPb − uεn1 )(ω + εb − uεn2 )

]
. (35)

To summarize, within the rigorous QED approach the
interelectronic-interaction correction of first order in 1/Z to
the one-electron part of the nuclear recoil effect is given by
the sum of Eqs. (31), (34), and (35). The calculations are to be
performed for all the operators (11)–(13),

	E (2)
1el = 	E (2)

c + 	E (2)
tr1 + 	E (2)

tr2 . (36)

As in the case of the independent-electron approximation
discussed in Sec. II, the integration over ω in the Coulomb

contribution 	E (2)
c can be carried out analytically. The irre-

ducible contribution and the part of the reducible contribution
with I ′ can be treated similar to Eq. (7) using the formula (16).
These terms can be rewritten in the form similar to Eq. (17).
For the other contributions, Cauchy’s residue theorem should
be employed. Then, the second part of the reducible contribu-
tion (with the operator P′) vanishes, since it contains only the
second-order poles for the Coulomb interaction (11). Finally,
the vertex contribution is

	E (2)
c,vert = 1

M

∑
P

(−1)P

{ εn1 <0∑
n1

n2∑
εn2 >0

[ 〈Pa|pk|n1〉〈n2|pk|a〉〈n1Pb|I (	)|n2b〉
εn2 − εn1 + 	

+ 〈Pa n1|I (	)|an2〉〈Pb|pk|n1〉〈n2|pk|b〉
εn2 − εn1 − 	

]

+
εn2 <0∑

n2

n1∑
εn1 >0

[ 〈Pa|pk|n1〉〈n2|pk|a〉〈n1Pb|I (	)|n2b〉
εn1 − εn2 − 	

+ 〈Pa n1|I (	)|an2〉〈Pb|pk|n1〉〈n2|pk|b〉
εn1 − εn2 + 	

]}
. (37)

Concluding this section, we note that the Breit-
approximation results for the electron-electron correction to
the NMS can be obtained from the QED formulas derived
in the present work. To do so, one has to neglect the energy
dependence in the operators D(ω) and I (ω) in Eqs. (10) and
(29), respectively, and introduce the projectors on the positive-
energy part of the spectrum in Eqs. (32), (33), and (35). In
addition, the lowest-order relativistic limit of the operator P in
Eq. (14) has to be treated as discussed in Sec. II. On these
assumptions, the integration over ω in all the expressions
can be performed analytically by employing Eq. (16) and

Cauchy’s residue theorem. As a result, the reducible and
vertex contributions vanish identically, and the irreducible
contribution reproduces the interelectronic-interaction correc-
tion of first order in 1/Z to the one-electron part of the
nuclear recoil within the Breit approximation. Obviously, the
two-transverse-photon contribution has to be omitted in this
approximation.

IV. NUMERICAL RESULTS AND DISCUSSION

In this work, the formalism derived in Secs. II and III is
employed for nonperturbative (in αZ) calculations of the one-
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TABLE I. The nuclear recoil contribution to binding energies of the 1s, 2s, and 2p1/2 states expressed in terms of the function A(αZ )
defined by Eq. (38). For each Z , the first line shows the results of the QED calculations to all orders in αZ , whereas the second line displays the
values obtained within the Breit approximation employing the normal mass shift (NMS) operator given in Eq. (1). The individual contributions,
the Coulomb (c), the one-transverse-photon (tr1), and the two-transverse-photon (tr2) contributions are shown only for the 1s state.

Z Approach A1s
c (αZ ) A1s

tr1(αZ ) A1s
tr2(αZ ) A1s(αZ ) A2s(αZ ) A2p1/2 (αZ )

QED 0.501315 −0.001201 −0.000047 0.500066 0.125051 0.125041
5

HNMS 0.501333 −0.001334 – 0.499999 0.125042 0.125042

QED 0.505223 −0.004502 −0.000253 0.500468 0.125237 0.125163
10

HNMS 0.505363 −0.005368 – 0.499995 0.125166 0.125167

QED 0.520945 −0.016490 −0.001206 0.503248 0.126176 0.125656
20

HNMS 0.521953 −0.021999 – 0.499954 0.125667 0.125673

QED 0.548214 −0.035322 −0.002787 0.510105 0.128157 0.126517
30

HNMS 0.551392 −0.051594 – 0.499798 0.126508 0.126534

QED 0.589533 −0.061804 −0.004789 0.522940 0.131600 0.127850
40

HNMS 0.596793 −0.097421 – 0.499373 0.127698 0.127781

QED 0.649386 −0.098199 −0.006909 0.544277 0.137127 0.129846
50

HNMS 0.663456 −0.165147 – 0.498309 0.129224 0.129456

QED 0.735510 −0.148884 −0.008655 0.577971 0.145734 0.132852
60

HNMS 0.760401 −0.264500 – 0.495901 0.131033 0.131619

QED 0.860884 −0.221722 −0.009082 0.630080 0.159089 0.137493
70

HNMS 0.902512 −0.412217 – 0.490294 0.132886 0.134339

QED 1.049608 −0.331694 −0.006266 0.711648 0.180304 0.144991
80

HNMS 1.117655 −0.639407 – 0.478248 0.134239 0.137667

QED 1.343409 −0.506445 0.004025 0.840989 0.215024 0.157885
90

HNMS 1.453046 −1.002570 – 0.450476 0.133231 0.141468

QED 1.420806 −0.553271 0.007663 0.875198 0.224427 0.161526
92

HNMS 1.541376 −1.099804 – 0.441572 0.132411 0.142234

QED 1.553578 −0.634200 0.014619 0.933997 0.240743 0.167966
95

HNMS 1.693024 −1.267592 – 0.425432 0.130603 0.143340

QED 1.831537 −0.805924 0.031669 1.057282 0.275548 0.182201
100

HNMS 2.010789 −1.622347 – 0.388442 0.125349 0.144890

electron contribution to the nuclear recoil effect on binding
energies of the 1s2 state in heliumlike ions and the 1s22s
and 1s22p1/2 states in lithiumlike ions. By evaluating the
differences of the results obtained for the binding energies,
one can calculate the corresponding contributions to the ion-
ization energies of the 1s22s and 1s22p1/2 states and to the
2p1/2–2s transition energy in Li-like ions. The calculations are
performed in the range Z = 5–100. As noted in Sec. III, for
the Coulomb contributions the integration over ω can be per-
formed analytically. For the one-transverse-photon and two-
transverse-photon contributions, the corresponding integrals
are calculated numerically employing Wick’s rotation of the
integration contour to the complex plane; see Ref. [42] for de-
tails. The summation over the one-electron states in the elec-
tron propagator is carried out using the finite basis set of the
Dirac-equation eigenfunctions constructed from the B splines
[43,44] by means of the dual-kinetic-balance approach [45].

Within the Furry picture, the finite nuclear size correction
to various atomic properties generally can be taken into ac-
count by substituting the potential of the extended nucleus into
the Dirac equation (5). In the case of the nuclear recoil effect,
this recipe leads only to a partial treatment of the nuclear size

correction [21]. The rigorous evaluation of this correction has
been performed up to date only within the Breit approximation
[46–48]. The discussion of the uncertainty related to this
approximate treatment of the nuclear size correction to the
nuclear recoil effect can be found, e.g., in Refs. [29,49]. We
stress that this uncertainty exceeds that which can be obtained
by varying the nuclear charge distribution model and the
nuclear charge radius within its error bar. In the present study,
the Fermi model for the nuclear charge distribution is used
for all nuclei with Z � 15. Otherwise, the homogeneously
charged sphere model is employed. The nuclear charge radii
are taken from Refs. [49,50].

A. One-electron part of the nuclear recoil effect

We start with the results obtained within the independent-
electron approximation. As noted above, numerous calcula-
tions of the one-electron contribution to the nuclear recoil
effect on binding energies of low-lying states in hydrogenlike
ions can be found in the literature; see Refs. [24–26,29].
Nevertheless, for the sake of completeness, we summarize our
results for the one-electron contribution to zeroth order in 1/Z
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TABLE II. The interelectronic-interaction correction of first or-
der in 1/Z to the one-electron part of the nuclear recoil contribution
to the binding energy of the 1s2 state expressed in terms of the
dimensionless function B(αZ ) defined by Eq. (39).

Z Approach Bc(αZ ) Btr1(αZ ) Btr2(αZ ) B(αZ )

QED −0.62826 0.00185 0.00006 −0.62635
5

HNMS −0.62829 0.00207 – −0.62622

QED −0.63805 0.00695 0.00031 −0.63080
10

HNMS −0.63824 0.00837 – −0.62987

QED −0.67814 0.02589 0.00141 −0.65084
20

HNMS −0.67952 0.03512 – −0.64440

QED −0.74943 0.05739 0.00312 −0.68892
30

HNMS −0.75394 0.08562 – −0.66832

QED −0.86063 0.10551 0.00508 −0.75005
40

HNMS −0.87142 0.17013 – −0.70129

QED −1.02728 0.17855 0.00662 −0.84211
50

HNMS −1.04937 0.30672 – −0.74264

QED −1.27663 0.29171(1) 0.00643 −0.97848
60

HNMS −1.31831 0.52716 – −0.79115

QED −1.65677 0.47294(1) 0.00162 −1.18220(1)
70

HNMS −1.73185 0.88874 – −0.84311

QED −2.25999 0.77744(1) −0.01449 −1.49704
80

HNMS −2.39366 1.50299 – −0.89067

QED −3.26153 1.31583(1) −0.05794 −2.00364(1)
90

HNMS −3.49868 2.59077 – −0.90791

QED −3.53632 1.46896(1) −0.07270 −2.14006(1)
92

HNMS −3.80258 2.89955 – −0.90304

QED −4.01641 1.74072(1) −0.10079 −2.37648(1)
95

HNMS −4.33457 3.44668 – −0.88788

QED −5.05385(1) 2.34318(4) −0.16993(1) −2.88060(3)
100

HNMS −5.48748 4.65565 – −0.83183

in Table I. The results for the 1s, 2s, and 2p1/2 states are given
in terms of the dimensionless function A(αZ ) defined by

	E (1) = m

M
(αZ )2A(αZ ) mc2 . (38)

To avoid misunderstanding, we note that the index “(1)”
here (and analogous indices below) refers to the perturbation-
theory order in the framework of the TTGF method, and it is
equal to the order in 1/Z plus 1. For each Z (in Table I), the
values calculated within the rigorous QED formalism employ-
ing Eqs. (7)–(9) are displayed in the first line, while the results
obtained by means of the NMS operator (1) are shown in the
second line. The Coulomb Ac, the one-transverse-photon Atr1,
and the two-transverse-photon Atr2 contributions are shown
only for the 1s state in order to provide insight into how the
individual terms contribute to the total values. From Table I,
one can see that the nontrivial QED part of the nuclear recoil
effect can significantly alter the Breit-approximation result.
For instance, for the 1s state it even exceeds the lowest-order
relativistic value for Z > 92.

The first-order (in 1/Z) electron-electron interaction cor-
rection to the nuclear recoil effect can be conveniently ex-

TABLE III. The interelectronic-interaction correction of first or-
der in 1/Z to the one-electron part of the nuclear recoil contribution
to the binding energy of the 1s22s state expressed in terms of the
dimensionless function B(αZ ) defined by Eq. (39).

Z Approach Bc(αZ ) Btr1(αZ ) Btr2(αZ ) B(αZ )

QED −1.02742 0.00274 0.00008 −1.02460
5

HNMS −1.02745 0.00303 – −1.02442

QED −1.04126 0.01036 0.00041 −1.03049
10

HNMS −1.04151 0.01224 – −1.02927

QED −1.09798 0.03896 0.00185 −1.05716
20

HNMS −1.09983 0.05122 – −1.04861

QED −1.19891 0.08672 0.00399 −1.10820
30

HNMS −1.20494 0.12427 – −1.08067

QED −1.35644 0.15948 0.00614 −1.19082
40

HNMS −1.37084 0.24554 – −1.12530

QED −1.59271 0.26916 0.00717 −1.31638
50

HNMS −1.62219 0.44013 – −1.18206

QED −1.94675 0.43776(1) 0.00484 −1.50415
60

HNMS −2.00248 0.75257 – −1.24992

QED −2.48789 0.70598(1) −0.00556 −1.78748(1)
70

HNMS −2.58861 1.26394 – −1.32467

QED −3.35000 1.15466(1) −0.03461 −2.22995
80

HNMS −3.53029 2.13366 – −1.39663

QED −4.79042 1.94762(1) −0.10743 −2.95022(1)
90

HNMS −5.11280 3.68168 – −1.43112

QED −5.18740 2.17346(1) −0.13159 −3.14553(1)
92

HNMS −5.55004 4.12298 – −1.42707

QED −5.88241 2.57461(2) −0.17719 −3.48500(1)
95

HNMS −6.31700 4.90663 – −1.41037

QED −7.38956(1) 3.46536(4) −0.28818(1) −4.21237(3)
100

HNMS −7.98510 6.64491 – −1.34018

pressed in terms of the dimensionless function B(αZ ) defined
by

	E (2) = m

M

(αZ )2

Z
B(αZ ) mc2 . (39)

Our results for the interelectronic-interaction correction to the
one-electron part of the nuclear recoil effect on the binding
energies of the 1s2, 1s22s, and 1s22p1/2 states are shown in
Tables II, III, and IV, respectively. As in Table I, for each Z
we present two values. The first value is evaluated within the
framework of the ab initio approach derived in the preceding
section, whereas the second one is obtained within the Breit
approximation via the NMS operator (1). The functions Bc,
Btr1, and Btr2 correspond to the contributions of the Coulomb
(11), the one-transverse-photon (12), and the two-transverse-
photon (13) interactions, respectively. The uncertainties given
in the parentheses are due to the numerical errors only. They
are estimated by studying the convergence of the results with
respect to the size of the basis set as well as the number of
points in the quadrature formula for the integration over ω.

From Tables II–IV, one can see that the results of the QED
calculations tend to the Breit-approximation values when
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TABLE IV. The interelectronic-interaction correction of first or-
der in 1/Z to the one-electron part of the nuclear recoil contribution
to the binding energy of the 1s22p1/2 state expressed in terms of the
dimensionless function B(αZ ) defined by Eq. (39).

Z Approach Bc(αZ ) Btr1(αZ ) Btr2(αZ ) B(αZ )

QED −1.09828 0.00266 0.00007 −1.09556
5

HNMS −1.09831 0.00289 – −1.09542

QED −1.11258 0.01017 0.00034 −1.10207
10

HNMS −1.11278 0.01169 – −1.10109

QED −1.17123 0.03906 0.00150 −1.13066
20

HNMS −1.17275 0.04899 – −1.12375

QED −1.27558 0.08863 0.00305 −1.18391
30

HNMS −1.28056 0.11905 – −1.16151

QED −1.43815 0.16579 0.00404 −1.26832
40

HNMS −1.45015 0.23572 – −1.21443

QED −1.68116 0.28397 0.00274 −1.39445
50

HNMS −1.70605 0.42351 – −1.28254

QED −2.04377 0.46749(1) −0.00418 −1.58047
60

HNMS −2.09154 0.72595 – −1.36559

QED −2.59593 0.76112(1) −0.02356 −1.85838(1)
70

HNMS −2.68384 1.22278 – −1.46106

QED −3.47332 1.25346(1) −0.07027 −2.29013
80

HNMS −3.63420 2.07194 – −1.56226

QED −4.94405 2.12708(1) −0.17879 −2.99576(1)
90

HNMS −5.24001 3.59851 – −1.64151

QED −5.35164 2.37701(1) −0.21386 −3.18849(1)
92

HNMS −5.68680 4.03754 – −1.64926

QED −6.06731 2.82181(1) −0.27938 −3.52488(1)
95

HNMS −6.47332 4.82083 – −1.65249

QED −7.62960(1) 3.81396(4) −0.43661(1) −4.25225(3)
100

HNMS −8.19725 6.57466 – −1.62259
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FIG. 4. The interelectronic-interaction correction of first order in
1/Z to the one-electron part of the nuclear recoil effect on the binding
energy of the 1s2 state expressed in terms of the dimensionless
function B(αZ ) defined by Eq. (39). The solid line represents the
results of the QED calculations to all orders in αZ , whereas the
dashed line corresponds to the calculations based on the normal mass
shift (NMS) operator given by Eq. (1).
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Contributionto the 2p1/2–2s transitionenergy
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FIG. 5. The interelectronic-interaction correction of first order
in 1/Z to the one-electron part of the nuclear recoil effect on the
2p1/2–2s transition energy in Li-like ions expressed in terms of the
dimensionless function B(αZ ) defined by Eq. (39). Notations are the
same as in Fig. 4.

αZ → 0. This behavior is what one can expect, having in
mind that the NMS operator (1) provides the lowest-order rel-
ativistic approximation to the theory worked out. On the other
hand, due to the energy dependence of the vector D(ω) in the
integration over ω in Eq. (14) and analogous expressions, the
one-transverse-photon contribution acquires the considerable
correction compared to the Breit approximation for high-Z
ions. The nontrivial QED Coulomb contribution as well as
the two-transverse-photon contribution also grow rapidly with
increasing Z . As a result, the higher orders (in αZ) modify
the behavior of the function B(αZ ) significantly. Indeed, the
function B(αZ ) calculated to all orders in αZ may differ by
several times from the approximate one obtained by means
of the NMS operator. In order to illustrate this fact, the
interelectronic-interaction correction to the one-electron part
of the nuclear recoil effect on the binding energy of the 1s2

state is plotted in Fig. 4, where the data given in the last
column of Table II are presented. The Breit-approximation
values and the ab initio QED results are shown with the
dashed and solid lines, respectively. It is seen that the NMS
operator leads to the strong underestimation of the nuclear
recoil effect at the high-Z region. A similar situation takes
place for binding energies of the 1s22s and 1s22p1/2 states.
However, this is not always the case. For instance, the contri-
bution under consideration to the 2p1/2–2s transition energy in
Li-like ions is presented in Fig. 5. In this transition energy, the

(a) (b) (c) (d)

FIG. 6. Two-electron nuclear recoil diagrams to zeroth order in
1/Z: the Coulomb (a), one-transverse (b) and (c), and two-transverse
(d) contributions.
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(b) (c) (d)(a)

(e) (f)

FIG. 7. The interelectronic-interaction correction to the two-
electron two-transverse-photon contribution to the nuclear recoil ef-
fect. The analogous diagrams with the Coulomb and one-transverse-
photon recoil interactions have to be taken into account as well.

interelectronic-interaction correction to the one-electron part
of the nuclear recoil effect obtained by means of the rigorous
QED approach appears to be less pronounced than the one
evaluated within the lowest-order relativistic approximation.

B. Total nuclear recoil effect to first order in 1/Z

As noted in Sec. I, the one-electron part of the nuclear
recoil effect, which is the major focus of the present work,
has to be combined with the two-electron part in order to
complete the rigorous consideration to first order in 1/Z .
The two-electron nuclear recoil contribution was studied non-
perturbatively (in αZ) in our recent paper [30]. Within the
independent-electron approximation, the two-electron contri-
bution is described by the diagrams depicted in Fig. 6. The
interelectronic-interaction correction to the two-electron part
of the nuclear recoil effect is given by the diagrams displayed
in Fig. 7. The notations for the diagram technique are the
same as in Figs. 1 and 2. We note that the diagrams analogous

TABLE V. The nuclear recoil contribution to the binding energy of the 1s2 state. The values obtained within the independent-electron
approximation (to zeroth order in 1/Z) are given in terms of the function A(αZ ) defined by Eq. (38). The interelectronic-interaction correction
of first order in 1/Z is given in terms of the function B(αZ )/Z defined by Eq. (39). The one-electron contribution is evaluated in the present
work, while the two-electron contribution is taken from Ref. [30].

One-electron Two-electron Total

Z Approach A B/Z A B/Z A + B/Z

QED 1.000133 −0.125270 0.0 0.026735 0.901597
5

HMS 0.999999 −0.125244 0.0 0.026731 0.901486

QED 1.000937 −0.063080 0.0 0.013486 0.951343
10

HMS 0.999990 −0.062987 0.0 0.013473 0.950476

QED 1.006497 −0.032542 0.0 0.006988 0.980943
20

HMS 0.999907 −0.032220 0.0 0.006944 0.974631

QED 1.020211 −0.022964 0.0 0.004946 1.002193
30

HMS 0.999597 −0.022277 0.0 0.004844 0.982163

QED 1.045879 −0.018751 0.0 0.004031 1.031159
40

HMS 0.998745 −0.017532 0.0 0.003838 0.985051

QED 1.088554 −0.016842 0.0 0.003587 1.075299
50

HMS 0.996618 −0.014853 0.0 0.003256 0.985021

QED 1.155941 −0.016308 0.0 0.003403 1.143036
60

HMS 0.991803 −0.013186 0.0 0.002874 0.981491

QED 1.260160 −0.016889 0.0 0.003401 1.246672
70

HMS 0.980589 −0.012044 0.0 0.002590 0.971134

QED 1.423296 −0.018713 0.0 0.003559 1.408143
80

HMS 0.956496 −0.011133 0.0 0.002346 0.947709

QED 1.681978 −0.022263 0.0 0.003896 1.663612
90

HMS 0.900953 −0.010088 0.0 0.002093 0.892958

QED 1.750397 −0.023262 0.0 0.003990 1.731125
92

HMS 0.883145 −0.009816 0.0 0.002036 0.875365

QED 1.867993 −0.025016 0.0 0.004149 1.847127
95

HMS 0.850865 −0.009346 0.0 0.001943 0.843462

QED 2.114564 −0.028806 0.0 0.004476 2.090235
100

HMS 0.776885 −0.008318 0.0 0.001763 0.770329
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TABLE VI. The nuclear recoil contribution to the binding energy of the 1s22s state. The values obtained within the independent-electron
approximation (to zeroth order in 1/Z) are given in terms of the function A(αZ ) defined by Eq. (38). The interelectronic-interaction correction
of first order in 1/Z is given in terms of the function B(αZ )/Z defined by Eq. (39). The one-electron contribution is evaluated in the present
work, while the two-electron contribution is taken from Ref. [30].

One-electron Two-electron Total

Z Approach A B/Z A B/Z A + B/Z

QED 1.125184 −0.204919 0.0 0.031254 0.951519
5

HMS 1.125041 −0.204885 0.0 0.031250 0.951406

QED 1.126174 −0.103049 0.0 0.015782 1.038907
10

HMS 1.125157 −0.102927 0.0 0.015768 1.037998

QED 1.132673 −0.052858 0.0 0.008209 1.088024
20

HMS 1.125574 −0.052430 0.0 0.008162 1.081306

QED 1.148368 −0.036940 0.0 0.005841 1.117269
30

HMS 1.126105 −0.036022 0.0 0.005732 1.095815

QED 1.177480 −0.029770 0.0 0.004792 1.152501
40

HMS 1.126443 −0.028132 0.0 0.004581 1.102892

QED 1.225681 −0.026328 0.0 0.004295 1.203648
50

HMS 1.125841 −0.023641 0.0 0.003927 1.106127

QED 1.301675 −0.025069 0.0 0.004103 1.280709
60

HMS 1.122836 −0.020832 0.0 0.003505 1.105510

QED 1.419249 −0.025535 0.0 0.004129 1.397843
70

HMS 1.113475 −0.018924 0.0 0.003199 1.097750

QED 1.603600 −0.027874 0.0 0.004350 1.580076
80

HMS 1.090736 −0.017458 0.0 0.002940 1.076217

QED 1.897002 −0.032780 0.0 0.004793 1.869014
90

HMS 1.034184 −0.015901 0.0 0.002666 1.020949

QED 1.974823 −0.034191 0.0 0.004914 1.945547
92

HMS 1.015556 −0.015512 0.0 0.002603 1.002647

QED 2.108737 −0.036684 0.0 0.005120 2.077172
95

HMS 0.981468 −0.014846 0.0 0.002500 0.969122

QED 2.390112 −0.042124 0.0 0.005542 2.353531
100

HMS 0.902234 −0.013402 0.0 0.002294 0.891126

to those in Fig. 7 with the two-transverse-photon interaction
replaced with the Coulomb and one-transverse-photon inter-
actions have to be taken into account as well.

In Tables V–VII, we summarize the data obtained to first
order in 1/Z for the nuclear recoil effect on the binding ener-
gies of the 1s2, 1s22s, and 1s22p1/2 states. The results for the
zeroth- and first-order (in 1/Z) contributions are presented in
terms of the functions A(αZ ) and B(αZ )/Z , respectively. The
one-electron part of the nuclear recoil effect is calculated in
the present work. To zeroth order in 1/Z , the one-electron con-
tribution to binding energy is obtained by summing the values
from Table I for all the electrons involved. The interelectronic-
interaction correction to the one-electron part is taken from
Tables II–IV. For the two-electron contribution the data from
Ref. [30] are used. We note that for the 1s2 and 1s22s states the
two-electron part vanishes identically within the independent-
electron approximation. For each state, the sum of the zeroth-
and first-order contributions, A(αZ ) + B(αZ )/Z , is presented
in the last column. As above, in Tables V–VII we compare
the results obtained by means of the rigorous QED approach

and within the Breit approximation via the MS operator (3).
For illustrative purposes, the data for the binding energy of
the 1s2 state from Table V and the corresponding data for the
2p1/2–2s transition energy in Li-like ions are plotted in Figs. 8
and 9, respectively. The data for the transition energy are
obtained as the difference of the values presented in Tables VII
and VI. In Figs. 8 and 9, the dashed lines correspond to
the calculations within the Breit approximation using the
MS operator (3), while the solid lines represent the QED
results valid to all orders in αZ . The contributions within the
independent-electron approximation, A(αZ ), are shown with
the blue lines with circles. The sum of the zeroth and first
orders in 1/Z , A(αZ ) + B(αZ )/Z , are given with the red lines
with squares. There is no doubt that the convergence of the
1/Z perturbation theory may be slow for low-Z ions. For this
reason, the results presented in Tables V–VII and Figs. 8 and 9
should not be considered as the final ones for low- and middle-
Z systems; the contribution of the higher orders in 1/Z can be
significant (see the discussion below). Nevertheless, these data
yield insights into the state-of-the-art QED calculations of the
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TABLE VII. The nuclear recoil contribution to the binding energy of the 1s22p1/2 state. The values obtained within the independent-
electron approximation (to zeroth order in 1/Z) are given in terms of the function A(αZ ) defined by Eq. (38). The interelectronic-interaction
correction of first order in 1/Z is given in terms of the function B(αZ )/Z defined by Eq. (39). The one-electron contribution is evaluated in the
present work, while the two-electron contribution is taken from Ref. [30].

One-electron Two-electron Total

Z Approach A B/Z A B/Z A + B/Z

QED 1.125174 −0.219111 −0.077986 0.088710 0.916786
5

HMS 1.125041 −0.219084 −0.077986 0.088706 0.916676

QED 1.126100 −0.110207 −0.077835 0.044519 0.982578
10

HMS 1.125157 −0.110109 −0.077833 0.044505 0.981720

QED 1.132153 −0.056533 −0.077225 0.022595 1.020990
20

HMS 1.125580 −0.056188 −0.077196 0.022542 1.014739

QED 1.146728 −0.039464 −0.076199 0.015449 1.046514
30

HMS 1.126131 −0.038717 −0.076046 0.015315 1.026684

QED 1.173729 −0.031708 −0.074741 0.012011 1.079291
40

HMS 1.126526 −0.030361 −0.074234 0.011734 1.033666

QED 1.218400 −0.027889 −0.072820 0.010076 1.127767
50

HMS 1.126073 −0.025651 −0.071506 0.009563 1.038480

QED 1.288793 −0.026341 −0.070388 0.008916 1.200980
60

HMS 1.123422 −0.022760 −0.067442 0.008034 1.041254

QED 1.397653 −0.026548 −0.067367 0.008234 1.311973
70

HMS 1.114927 −0.020872 −0.061327 0.006777 1.039506

QED 1.568287 −0.028627 −0.063632 0.007903 1.483931
80

HMS 1.094163 −0.019528 −0.051886 0.005537 1.028286

QED 1.839863 −0.033286 −0.058988 0.007886 1.755474
90

HMS 1.042421 −0.018239 −0.036694 0.004028 0.991517

QED 1.911923 −0.034657 −0.057926 0.007923 1.827262
92

HMS 1.025379 −0.017927 −0.032597 0.003658 0.978513

QED 2.035959 −0.037104 −0.056235 0.008007 1.950628
95

HMS 0.994205 −0.017395 −0.025536 0.003036 0.954310

QED 2.296765 −0.042522 −0.053123 0.008235 2.209355
100

HMS 0.921775 −0.016226 −0.010645 0.001757 0.896661

nuclear recoil effect to all orders in αZ and give an indication
of how different terms relate to each other.

We stress that the interelectronic-interaction correction
under consideration becomes particularly important when a
cancellation of the zeroth-order contributions occurs. For
instance, the one-electron contribution for the 1s2 core can-
cels in the 2p1/2–2s transition in Li-like ions within the
independent-electron approximation. As a result, the non-
trivial QED contributions of zeroth and first orders in 1/Z
are of comparable magnitude for low- and middle-Z ions
for this transition. In this regard, one can expect an even
stronger cancellation of the leading-order contributions in
the case of the 2p3/2–2p1/2 transition in B-like ions; see
the related discussion for the QED contribution to the field
shift in Ref. [13]. In addition, the ab initio treatment of the
electron-electron interaction correction to all orders in αZ
may even change the sign of the correction. Indeed, one can
see that the solid lines in Fig. 9 do not cross each other, in
contrast to the dashed ones. All this leads to the conclusion
that the high-precision calculations of the nuclear recoil effect

need to take into account the QED contribution beyond the
independent-electron approximation.

C. Mass shift of binding and transition energies

As noted above, in order to obtain accurate theoretical
predictions for the mass shift of binding and transition en-
ergies, one has to account for the second- and higher-order
electron-electron interaction corrections to the nuclear recoil
effect as well. In the present work, we evaluate these contri-
butions within the lowest-order relativistic approximation by
employing the MS operator (3) and the Dirac-Coulomb-Breit
Hamiltonian. The calculations are performed by means of two
independent methods. First, we have calculated the expecta-
tion value of the MS operator with the many-electron wave
function obtained by the configuration-interaction method
in the basis of the Dirac-Sturm orbitals [5,15,51]; see also
Ref. [52]. The desired higher-order correction has been ex-
tracted by subtracting the zeroth- and first-order contributions
evaluated with the same basis set. Second, we have employed
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FIG. 8. The nuclear recoil effect on the binding energy of the
1s2 state to first order in 1/Z . The solid lines stand for the results
of the QED calculations to all orders in αZ , while the dashed lines
correspond to the calculations based on the mass shift (MS) operator
given by Eq. (3). The contributions of zeroth order in 1/Z , P[0](αZ ) =
A(αZ ), and the sums of zeroth and first orders in 1/Z , P[0,1](αZ, Z ) =
A(αZ ) + B(αZ )/Z , are shown with blue (circles) and red (squares)
lines, respectively.

the recursive formulation of the perturbation theory [53] in
order to directly access the required higher-order correction.
This method has been applied already for evaluation of the
higher-order nuclear recoil contributions to the ionization
energies in boronlike ions [54] and to the bound-electron g
factor in lithiumlike [55,56] and boronlike [57] ions. The
results of both independent approaches are found to be in good
agreement with each other.

The second- and higher-order (in 1/Z) interelectronic-
interaction corrections to the nuclear recoil effect on binding
energies of the 1s2, 1s22s, and 1s22p1/2 states are presented
in Table VIII in terms of the dimensionless function C(αZ, Z )
defined according to

	E (3+) = m

M

(αZ )2

Z2
C(αZ, Z ) mc2 . (40)

The one- and two-electron parts of the corresponding contri-
bution are evaluated with the use of the NMS (1) and SMS (2)
operators, respectively, and given explicitly. The uncertainties
specified in Table VIII correspond to the numerical errors
only. They are obtained by analyzing the convergence of the
results with respect to the number of the radial and angular
basis-set functions. We note that the two-electron part is more
sensitive to the correlation effects than the one-electron part.
As a result, the corresponding uncertainty is generally bigger
for low- and middle-Z ions. On the other hand, there is a
cancellation between the one- and two-electron contributions
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FIG. 9. The nuclear recoil effect on the 2p1/2–2s transition en-
ergy in Li-like ions to first order in 1/Z . Notations are the same as in
Fig. 8.

which allows us to obtain more accurate data for the total
values.

Finally, in Table IX we compile the total theoretical pre-
dictions for the mass shifts of the following quantities: (i)
the ground-state binding energy of He-like ions; (ii) the
binding energy of the 1s22s state; (iii) the binding energy
of the 1s22p1/2 state; and (iv) the 2p1/2–2s transition energy
in Li-like ions. The results are expressed in terms of the
dimensionless function P(αZ, Z ), defined according to

	Erec = m

M
(αZ )2P(αZ, Z ) mc2 , (41)

and the K factor (in units of eV amu) defined by

	Erec = K

M
. (42)

The total theoretical predictions comprise the QED results for
the zeroth-order, A(αZ ), and first-order, B(αZ )/Z , contribu-
tions from Tables I and II–IV, respectively, as well as the
higher-order correlation correction within the Breit approx-
imation, C(αZ, Z )/Z2, from Table VIII. In addition, within
the independent-electron approximation we account for the
correction δAfns,1el

Breit (αZ ), which determines the difference be-
tween the exact treatment of the nuclear size correction to the
low-order one-electron nuclear recoil effect and its evaluation
by the formula (24) with the wave functions for the extended
nucleus; see Ref. [48] and the discussion above. Therefore, the
function P(αZ, Z ) in Eq. (41) can be represented as follows:

P(αZ, Z ) = A(αZ ) + δAfns,1el
Breit (αZ ) + B(αZ )

Z
+ C(αZ, Z )

Z2
.

(43)

052506-12



QED THEORY OF THE NORMAL MASS SHIFT IN … PHYSICAL REVIEW A 101, 052506 (2020)

TABLE VIII. The interelectronic-interaction correction of second and higher orders in 1/Z to binding energies of the 1s2, 1s22s, and
1s22p1/2 states within the Breit approximation expressed in terms of the dimensionless function C(αZ, Z ) defined by Eq. (40).

1s2 1s22s 1s22p1/2

Z C1el C2el Ctot C1el C2el Ctot C1el C2el Ctot

5 0.1580(2) −0.1145(3) 0.0434(2) 0.4167(2) −0.1741(3) 0.2426(2) 0.5513(2) −0.3497(6) 0.2015(4)
10 0.1656(2) −0.1196(5) 0.0460(3) 0.4233(2) −0.1834(5) 0.2399(3) 0.5546(2) −0.3445(8) 0.2101(5)
20 0.1930(5) −0.1328(10) 0.0601(5) 0.4624(5) −0.2039(11) 0.2584(6) 0.6070(6) −0.3688(15) 0.2382(9)
30 0.2396(7) −0.1534(13) 0.0862(6) 0.5322(8) −0.2351(14) 0.2971(6) 0.7050(9) −0.4144(18) 0.2906(9)
40 0.3045(11) −0.1813(17) 0.1232(7) 0.6315(13) −0.2772(18) 0.3543(7) 0.8482(14) −0.4768(23) 0.3713(10)
50 0.3900(17) −0.2163(21) 0.1737(10) 0.7650(19) −0.3306(23) 0.4344(11) 1.0439(20) −0.5532(29) 0.4906(13)
60 0.4985(27) −0.2582(27) 0.2403(17) 0.9376(31) −0.3945(30) 0.5430(20) 1.3022(31) −0.6372(36) 0.6650(20)
70 0.6322(42) −0.3055(35) 0.3267(30) 1.1546(49) −0.4674(38) 0.6872(35) 1.6362(47) −0.7142(45) 0.9221(32)
80 0.7902(66) −0.3549(44) 0.4353(50) 1.4169(77) −0.5444(49) 0.8725(60) 2.0582(72) −0.7509(56) 1.3073(53)
90 0.954(10) −0.3966(57) 0.5569(80) 1.696(12) −0.6116(64) 1.0840(95) 2.552(11) −0.6655(71) 1.8861(83)
92 0.982(11) −0.4025(60) 0.5793(87) 1.745(13) −0.6214(67) 1.124(10) 2.651(12) −0.6194(75) 2.0314(90)
95 1.018(12) −0.4080(64) 0.610(10) 1.809(14) −0.6316(73) 1.177(12) 2.793(13) −0.5202(80) 2.272(10)
100 1.046(15) −0.4046(74) 0.641(12) 1.864(18) −0.6301(84) 1.234(14) 2.979(16) −0.2411(90) 2.738(13)

We note that the reduced-mass dependence in the Lamb shift
also contributes to the nuclear recoil effect; see, e.g., the dis-
cussion in Ref. [49] and references therein. This contribution
and the uncertainty related with it are out of the scope of the
present work. They have to be taken into account separately.

Besides the numerical uncertainties discussed above, there
are several sources for the theoretical uncertainties shown in

parentheses in Table IX. First of all, we take into account the
uncertainty due to uncalculated radiative nuclear recoil cor-
rection. To this end, we multiply the nontrivial one-electron
QED contribution (25) obtained within the independent-
electron approximation by a factor of 2α. Second, we esti-
mate the uncertainty due to the approximate treatment of the
nuclear size correction to the nuclear recoil effect by using the

TABLE IX. The mass shifts of the binding energies of the 1s2, 1s22s, and 1s22p1/2 states and the mass shift of the 2p1/2–2s transition
energy in Li-like ions in terms of the dimensionless function P(αZ, Z ) defined by Eq. (41) and the K factor (in eV amu) defined by Eq. (42).

1s2 1s22s 1s22p1/2 2p1/2–2s

Z P K P K P K P K

5 0.90334(1) 0.337116(3) 0.96122(1) 0.358719(3) 0.92485(2) 0.34514(1) −0.036376(19) −0.013575(7)

10 0.95180(1) 1.42082(2) 1.04131(2) 1.55442(2) 0.98468(1) 1.46989(2) −0.056628(6) −0.08453(1)
−0.08456(2)a

20 0.98110(10) 5.85817(57) 1.08867(10) 6.50051(62) 1.02159(10) 6.09994(58) −0.067085(8) −0.40057(5)

30 1.00230(30) 13.4658(40) 1.11761(32) 15.0150(44) 1.04685(30) 14.0643(40) −0.070762(24) −0.95068(32)
−0.9533(16)a

40 1.03130(69) 24.632(16) 1.15279(74) 27.533(18) 1.07958(69) 25.785(16) −0.073203(57) −1.7484(14)

50 1.0756(13) 40.140(50) 1.2041(15) 44.935(54) 1.1282(13) 42.103(50) −0.07587(12) −2.8316(43)

60 1.1438(24) 61.47(13) 1.2817(26) 68.88(14) 1.2019(24) 64.59(13) −0.07975(22) −4.286(12)
−4.334(29)a

70 1.2490(41) 91.36(30) 1.4004(45) 102.43(33) 1.3144(42) 96.14(31) −0.08599(39) −6.290(28)
−6.39(6)a

80 1.4142(74) 135.11(71) 1.5868(81) 151.60(77) 1.4902(75) 142.37(72) −0.09656(70) −9.225(67)
−9.40(12)a

90 1.680(18) 203.1(22) 1.887(20) 228.2(24) 1.772(18) 214.3(22) −0.1148(15) −13.88(19)
−14.23(24)a

92 1.751(23) 221.2(29) 1.967(25) 248.6(32) 1.847(23) 233.4(29) −0.1198(19) −15.14(24)
−15.44(27)a

95 1.873(35) 252.4(47) 2.106(37) 283.8(50) 1.978(35) 266.4(47) −0.1287(28) −17.34(37)

100 2.132(75) 318(11) 2.400(81) 358(12) 2.252(75) 336(11) −0.1477(58) −22.05(86)

aReference [11].
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FIG. 10. (a) The nuclear recoil effect on the 2p1/2–2s transition energy in Li-like ions in terms of the function P(αZ, Z ) defined by
Eq. (41). The blue dashed line corresponds to the calculation performed by means of the mass shift operator (3) to all order in 1/Z . The green
dashed-dotted line includes the nontrivial QED contribution within the independent-electron approximation (QED[0]). The violet dotted line
accounts for the QED correction to first order in 1/Z (QED[0,1]). The red solid line takes into account additionally the finite nuclear size (fns)
correction δAfns,1el

Breit (αZ ). The corresponding data from Ref. [11] are shown with magenta circles and black diamonds. The error bars are not
indicated. (b) The zoomed region for Z = 68–94. The uncertainties of the present calculation and Ref. [11] are shown.

prescription given in Refs. [29,49]. Finally, all the uncertain-
ties are combined by calculating their root sum square.

In Table IX, we compare our total values for the mass
shift of the 2p1/2–2s transition energy in Li-like ions with
the theoretical predictions from Ref. [11]. One can see that
the data from Ref. [11] lie systematically lower. The more
detailed comparison is performed in Figs. 10(a) and 10(b)
[Fig. 10(b) provides the zoomed version of Fig. 10(a), which
corresponds to the high-Z region (Z = 68–94)]. The four lines
labeled with TW in Fig. 10 represent our data obtained by
successive accounting for the different contributions. The blue
dashed line displays the results calculated by employing the
MS operator (3) and treating the correlation effects to all or-
ders in 1/Z within the Breit approximation. The green dashed-
dotted line differs from the first one by taking into account
the nontrivial QED contribution in zeroth order in 1/Z . The
violet dotted line is obtained by adding the higher-order (in
αZ) contribution in first order in 1/Z . Finally, the red solid line
includes also the finite nuclear size correction δAfns,1el

Breit (αZ )
and corresponds to the total data presented in Table IX. We
note that the last two corrections have a different sign and
partly cancel each other in the sum. These corrections have not
been taken into account in Ref. [11]. The Breit-approximation
values and the results with the QED contribution evaluated
within the independent-electron approximation from Ref. [11]

are shown in Fig. 10 with the magenta circles and black
diamonds, respectively. In order not to overload the plot,
we omit the error bars in Fig. 10(a). The uncertainties are
indicated only in Fig. 10(b). One can see that there is a
reasonable agreement between the data from Ref. [11] and the
results of the present study. The difference between the final
theoretical predictions is explained by the fact that the more
subtle effects are taken into account now. As a result, the un-
certainty of the nuclear recoil effect is reduced, especially for
middle-Z ions, where the contribution of the mass shift to the
isotope shifts is more significant. The results obtained are in
demand in view of the existing and forthcoming experimental
investigations of the relativistic and QED nuclear recoil effect
[6,58–60].

V. SUMMARY

To summarize, we have developed the rigorous QED for-
malism which allows us to calculate the electron-electron
interaction correction to the one-electron part of the nuclear
recoil effect on binding energies in atoms and ions nonper-
turbatively in the parameter αZ . The method derived was
employed for the ab initio calculations of the one-electron
nuclear recoil contribution to the binding energies of the
1s2 state in He-like ions and 1s22s and 1s22p1/2 states in
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Li-like ions in the wide range Z = 5–100. The corresponding
contribution to the 2p1/2–2s transition energy in Li-like ions
was studied as well. The one-electron part of the nuclear recoil
effect was combined with the two-electron part considered
recently in Ref. [30]. The all-order (in αZ) results to zeroth
and first orders in 1/Z were compared with the values obtained
by applying the mass shift operator HM . The nontrivial QED
contribution was extracted, and its behavior with the growth
of Z was investigated. This provides an estimation of the
accuracy of the calculations based on the mass shift operator
which is valid within the (m/M )(αZ )4mc2 approximation
only. Finally, the QED calculations to first order in 1/Z were
supplemented with the higher-order correlation corrections

evaluated within the Breit approximation. As a result, the
most accurate theoretical predictions for the mass shifts of the
binding and transition energies in He- and Li-like ions have
been obtained.
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