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Radiative QED corrections to one-photon transition rates in the hydrogen
atom at finite temperatures
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Within the framework of QED theory at finite temperature, the thermal radiative corrections to spontaneous
one-photon transition rates in hydrogen atom are investigated. The radiative one-loop self-energy corrections
are described in the thermal case. Closed analytical expressions are derived and their numerical calcul-
ations for the spontaneous decay rate of the 2p state are carried out. The dominance of thermal radiative
corrections to a spontaneous Lyα decay rate over an ordinary induced transition rate up to temperatures
T < 6000 K is demonstrated.
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I. INTRODUCTION

Radiative corrections to transition rates and lifetimes in
atoms and ions are of no less interest than radiative corrections
to the energies of bound states (such as corrections to the
Lamb shift, hyperfine splitting, etc.) [1–4]. The precision in
measurements of decay rates has considerably increased in
recent years, which has been accompanied by a corresponding
increase in the accuracy of theoretical calculations [5–11].
The experimental uncertainty achieved at the level of one
per thousand [12] makes such studies sensitive to relativistic,
radiative, nuclear size, and recoil effects [4,13–17]. There-
fore, the detailed theoretical analysis of various radiative
corrections providing a versatile verification of fundamental
physics is required. The precise values of the transition rates in
different atomic systems are also needed for investigations of
atomic collision processes or interpretation of the spectra from
astrophysical sources [18]. Moreover, accurate calculations of
the transition rates can serve for verifications of basic parts
in more complicated processes, such as the parity violation
amplitudes in heavy ions and atoms [19,20]. In this regard,
radiative corrections to the transition rates become extremely
important for the decay rates suppressed with respect to dipole
transitions (forbidden by selection rules) [1,16]. To date,
theoretical calculations of such decay rates have advanced to
the evaluation of the two-loop self-energy diagrams [3,21,22].

The accounting of different radiative effects required to
achieve the experimental uncertainty draws attention to other
types of phenomena. The impact of physical conditions,
such as external fields for example, on laboratory experiment
and astrophysical processes deserves special consideration
[23–27]. As a separate area of research, the influence of
blackbody radiation (BBR) at finite temperatures plays an
important role in a number of scenarios: development of
atomic clocks, recombination history of the early universe,
or radiation transfer in an interstellar medium [28–34].
The quantum mechanical (QM) theory of energy shift
and transition rates induced by the BBR is given in [35].
Theoretical calculations within the framework of rigorous

quantum electrodynamics (QED) of the thermal Stark shift,
level broadening, and BBR-induced bound-free transitions
have been carried out in [37], and later in [38–40]. The
advantage of QED theory application to investigations of this
kind is the accurate accounting for finite lifetimes of atomic
levels. Although such effects are outside the scope of this
work, the formalism developed in [37–40] (see, also, [36])
can reveal new (unknown) thermal corrections to transition
rates between bound states and analyze their significance at
astrophysical and laboratory conditions.

In the present work, the radiative one-loop self-energy
(SE) corrections caused by the “heat bath” to the one-photon
transition rates for the hydrogen atom are investigated within
the framework of thermal QED theory. The heat bath acting on
the atomic system implies an environment described by black-
body radiation, i.e., the photon field distributed according to
Planck’s law. We restrict ourselves to considering the leading
SE thermal corrections to the transition rates, since the next
orders or effects associated with vacuum polarization (VP)
are suppressed by temperature factors and, therefore, should
be much less [1,4,36].

The paper is organized as follows. In Sec. II, we briefly
describe the adiabatic S-matrix approach for the evaluation
of one-photon transition probabilities in one-electron atomic
systems. The derivation of SE thermal radiative corrections
is considered in Sec. III. Expressions derived in Sec. III are
applied to the numerical calculation of thermal corrections to
the 2p → 1s + γ (E1) transition rate in hydrogen. The results
of the calculations are discussed in Sec. IV. Below we will
use the relativistic units h̄ = me = c = 1 (me is the electron
rest mass, c is the speed of light, and h̄ is the reduced Planck
constant).

II. ADIABATIC S-MATRIX APPROACH:
EVALUATION OF TRANSITION RATE

For evaluation of the transition probabilities and radia-
tive corrections, we will use the adiabatic S-matrix approach
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FIG. 1. The Feynman graph corresponding to the photon emis-
sion in a one-electron atom. The double solid line describes the
electron in the field of a nucleus (Furry picture); the wavy line with
the arrow at the end describes the emitted photon. The indices a and
b refer to the set of quantum numbers of the initial and final states of
an atom, respectively; ω denotes the frequency of the emitted photon.

[41–43]. This allows one to take into account contributions
to QED corrections arising from the reducible Feynman di-
agrams [24,44]. The adiabatic Sη matrix differs from the
ordinary S matrix by the insertion of the exponential fac-
tor e−η|t | (η > 0 is the adiabatic parameter) in each vertex
of the Feynman diagram. It refers to the concept of adia-
batic switching on and off of the interaction formally in-
troduced by the replacement, Ĥint (t ) → Ĥη

int (t ) = e−η|t |Ĥint (t )
[2,3].

For the one-electron atom, the one-photon transition from
state a to state b is described by the Feynman diagram in
Fig. 1. Within the framework of the adiabatic S-matrix ap-
proach, the corresponding first-order S-matrix element is

Ŝ(1)
ab = (−ie)

∫
dxψb(x)γμA∗

μ(x)e−η|t |ψa(x). (1)

Here, e is the electron charge, ψa(x) = ψa(r)e−iEat is the
solution of Dirac’s equation for the atomic electron, Ea is the
Dirac energy of state a, ψa = ψ†

a γ0 is the Dirac conjugated
wave function with ψ†

a being its Hermitian conjugate, and
γμ = (γ0, γ ) are the Dirac matrices. Photon field wave func-
tion A(k,e)

μ (x) is

A(k,e)
μ (x) =

√
2π

ω
e(λ)
μ ei(kr−ωt ) =

√
2π

ω
e(λ)
μ e−iωt A(k,e)

μ (r), (2)

where e(λ)
μ is the polarization 4-vector, k is the wave vec-

tor, ω = |k| is the photon frequency, and x ≡ (r, t ) is the
coordinate 4-vector, where (r, t are the space and time
coordinates).

Following the standard evaluation of S-matrix theory, the
transition rate is [42,43]

Wab = lim
η→0+

η
∑

e

∫ ∣∣Ŝ(1)
ab

∣∣2 dk
(2π )3

, (3)

where dk = ω2dωdν and ν = k/|k| is the photon propagation
vector. The integration over the time variable in Eq. (1)
essentially yields a representation of the δ function [43,45],∫ ∞

−∞
dtei(Eb−Ea+ω)t−η|t |

= 2η

(ωab − ω)2 + η2
≡ 2πδη(ωab − ω). (4)

Here, ωab = Ea − Eb and lim
η→0+

δη(x) = δ(x). Then, taking

Eq. (1) by square modulus and integrating over ω, one can
arrive at

Wab = ω2
ab

(2π )2

∑
e

∫ ∣∣Û (1)
ab

∣∣2
dν, (5)

where

Û (1)
ab = (−ie)

√
2π

ωab
〈b|(e∗α)e−ikr|a〉. (6)

To obtain Eq. (5), the following relation was used [43,45]:

4η2
∫ +∞

−∞

ωdω

[(ωab − ω)2 + η2]2
= 2πωab

η
. (7)

In the nonrelativistic limit, kr ∼ αZ 	 1, the use of the
dipole approximation for the transition amplitude (6) leads to

Û (1)
ab = (−ie)

√
2π

ωab
〈b|e∗p|a〉, (8)

where 〈a|T̂ |b〉 now denotes the matrix element of operator T̂
with Schrödinger wave functions for an atomic electron in the
Coulomb field. Substituting Eq. (8) into Eq. (5), performing
summation over photon polarizations, and integration over
photon directions, one can arrive at

Wab = 4e2

3
ωab|〈b|p|a〉|2. (9)

Finally, the summation over the magnetic quantum numbers
of the final state and averaging over magnetic quantum num-
bers of the initial state in Eq. (9) should be performed. Then,
employing the quantum mechanical relation

〈a|p|b〉 = iωab〈a|r|b〉, (10)

the partial transition rate corresponding to the emission pro-
cess a → b + γ (E1) is given by the expression

Wab = 4e2

3

1

2la + 1

∑
mamb

ω3
ab|〈b|r|a〉|2. (11)

In the presence of the BBR field, i.e., isotropic external
radiation field with equilibrium temperature T , the partial
induced transition can be additionally found in the form

W ind
ab = 4e2

3

1

2la + 1

∑
mamb

ω3
ab|〈b|r|a〉|2nβ (ωab), (12)

where nβ (ω) is the Planck distribution function nβ (ω) =
(eβω − 1)−1, β ≡ 1/kBT , and kB is the Boltzmann constant.
The thermal background leads to the level broadening due to
the BBR-induced transition to all possible final states. This
broadening is represented by the sum over all final states
(including continuum) [35],

�BBR
a = 4e2

3

1

2la + 1

∑
b

∑
mamb

ω3
ab|〈b|r|a〉|2nβ (ωab). (13)
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FIG. 2. The Feynman graph corresponding to the thermal one-
loop QED correction to photon emission in a one-electron atom.
The double solid line describes the electron in the field of the
nucleus (Furry picture); the wavy line with the arrow at the end
describes the emitted photon with frequency ω. The wavy line
with index γT denotes the thermal photon propagator. The in-
dices a and b refer to the quantum numbers of the initial and
final states of an atom, respectively, while indices n1 and n2 re-
fer to the quantum numbers of the intermediate states in electron
propagators.

Then the total widths of level a is

�a =
∑
b<a

Wab +
∑

b

W ind
ab ≡ �nat

a + �BBR
a , (14)

where �nat
a is the natural width of level a. In the laboratory

experiments, �BBR
a is actually small for the low-lying atomic

levels, but becomes important for the Rydberg states and in-
creases with the growth of temperature. The induced transition
rates with necessity are taken into account in the astrophysical
investigations at high temperatures [33].

III. THERMAL SELF-ENERGY CORRECTIONS
TO ONE-PHOTON TRANSITION RATE

The thermal (one-loop) self-energy corrections to the one-
photon transition rate are given by the set of Feynman dia-
grams represented in Figs. 2–4. Then the one-photon transi-
tion probability corrected according to Figs. 2–4 is defined by

W̃ab = lim
η→0+

η
∑

e

∫ ∣∣Ŝ(1)
ab + Ŝ(3)

ab

∣∣2 dk
(2π )3

, (15)

where Ŝ(3)
ab is the sum of three third-order S-matrix elements

corresponding to the Feynman diagrams in Figs. 2 and 3.
Taking the square modulus in Eq. (15) and neglecting by the
terms proportional to e6, the corrected transition rate takes the

ba
n1

ω
γT

n2

FIG. 3. The Feynman graph corresponding to the thermal one-
loop QED correction to photon emission in a one-electron atom. All
notations are the same as in Fig. 2.

ba
n2n1

γT

ω

FIG. 4. The Feynman graph corresponding to the thermal one-
loop QED correction to photon emission in a one-electron atom. All
notations are the same as in Fig. 2.

form

W̃ab = lim
η→0+

η
∑

e

∫ [∣∣Ŝ(1)
ab

∣∣2 + 2Re
(
Ŝ(1)∗

ab × Ŝ(3)
ab

)] dk
(2π )3

,

(16)

where the first term in brackets in Eq. (16) leads to the
expression (5) and the second term represents the thermal
corrections.

We start from the evaluation of the thermal loop correction
to a one-photon transition rate given by Fig. 2. The corre-
sponding adiabatic S-matrix element is

Ŝ(3)Fig.2
ab = (−ie)3

∫
dx3dx2dx1ψb(x3)S(x3, x2)e−η|t3|γμ3

× Dβ
μ3μ2

(x3, x2)e−η|t2|γμ2 S(x2, x1)γμ1 e−η|t1|

× A∗
μ1

(x1)ψa(x1), (17)

where S(x2x1) is the Feynman propagator for the atomic
electron and Dβ

μν (x2, x1) is the thermal photon propagator.
In the Furry picture, the eigenmode’s decomposition of the
electron propagator reads [46]

S(x2, x1) = 1

2π i

∫ ∞

−∞
d ei(t2−t1 )

∑
n

ψn(r2)ψn(r1)

En(1 − i0) + 
.

(18)

The summation in Eq. (18) extends over the entire Dirac
spectrum of electron states n in the field of the nucleus. The
thermal photon propagator Dβ

μν (x2, x1) in the Feynman gauge
can be written in the form [36,37]

Dβ
μν (x2, x1)

= − gμν

πr12

∫ ∞

−∞
nβ (|ωβ |)sin(|ωβ |r12)e−iωβ (t2−t1 )dωβ, (19)

where r12 = |r1 − r2| and gμν is the metric tensor.
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Integration over the time variables in Eq. (17) yields

Ŝ(3)Fig.2
ab = (−ie)3

4π3

∫ ∞

−∞
d1

∫ ∞

−∞
d2

8η3

[(Ea + 2 − ω)2 + η2][(2 − 1 + ωβ )2 + η2][(Eb + 1 − ωβ )2 + η2]

×
√

2π

ω

∫ ∞

−∞
dωβnβ (|ωβ |)

∑
n2n1

〈n1|(e∗α)e−ikr|a〉
En1 (1 − i0) + 2

〈bn2| 1−α2α3
r23

sin(|ωβ |r23)|n2n1〉
En2 (1 − i0) + 1

, (20)

where integration over variables 1 and 2 in Eq. (20) can be performed with the use of the Cauchy theorem. The result is∫ ∞

−∞
d1

∫ ∞

−∞
d2

8η3

[(Ea + 2 − ω)2 + η2][(2 − 1 + ωβ )2 + η2][(Eb + 1 − ωβ )2 + η2]

× 1

En1 (1 − i0) + 2

1

En2 (1 − i0) + 1
= 1

ωn1b − 2iη

1

ωn2b + ωβ − iη − i0

24π2η

(ωab − ω)2 + (3η)2
. (21)

Following definition (16), the correction to the one-photon transition rate can be found as

�Wab = lim
η→0+

η
∑

e

∫
2Re

(
Ŝ(1)∗

ab × Ŝ(3)
ab

)ω2dωdν

(2π )3
. (22)

Taking in mind that Eq. (21) is multiplied by expression (4), the integration over photon frequency ω should be performed,∫ +∞

−∞

2η

(ωab − ω)2 + η2

24π2η

(ωab − ω)2 + (3η)2
ωdω = 4π3ωab

η
.

(23)

Then, Eq. (22) reduces to

�Wab = Re

(
ω2

ab

∑
e

∫
Û (1)∗

ab Û (3)
ab dν

)
, (24)

where

Û (3)Fig.2
ab = (−ie)3

4π3

√
2π

ωab

∫ ∞

−∞
dωβnβ (|ωβ |)

∑
n2n1

〈n1|(e∗α)e−ikr|a〉
ωn1b − 2iη

〈bn2| 1−α2α3
r23

sin(|ωβ |r23)|n2n1〉
ωn2b + ωβ − iη

= (−ie)3

4π3

√
2π

ωab

∫ ∞

0
dωβnβ (ωβ )

∑
n2n1

〈n1|(e∗α)e−ikr|a〉〈bn2| 1−α2α3
r23

sin(ωβr23)|n2n1〉
ωn1b − 2iη

×
(

1

ωn2b + ωβ − iη
+ 1

ωn2b − ωβ − iη

)
. (25)

The diagram shown in Fig. 2 and the corresponding amplitude given by Eq. (25) have a reducible part (reference state
contribution) when n1 = b. To evaluate it, we set n1 = b in Eq. (25) and consider the Taylor expansion in the vicinity of η = 0,
which gives

Û (3)Fig.2
ab(n1=b) = (−ie)3

4π3

√
2π

ωab

∫ ∞

0
dωβnβ (ωβ )

∑
n2

〈b|(e∗α)e−ikr|a〉〈bn2|1 − α2α3

r23
sin(ωr23)|n2b〉

×
{

i

2η

(
1

ωn2b + ωβ − iη
+ 1

ωn2b − ωβ − iη

)
− 1

2

[
1

(ωn2b + ωβ − iη)2
+ 1

(ωn2b − ωβ − iη)2

]
+ O(η)

}
. (26)

The real part [see Eq. (24)] of the first term in curly brackets in Eq. (26) multiplied by expression (8) vanishes with the accounting
of the pure imaginary factor 1/(−2iη). Then, the combination of the reducible and irreducible contributions is

Û (3)Fig.2
ab = (−ie)3

4π3

√
2π

ωab

∫ ∞

0
dωβnβ (ωβ )

⎧⎨⎩ ∑
n2,n1 
=b

〈n1|(e∗α)e−ikr|a〉〈bn2| 1−α2α3
r23

sin(ωβr23)|n2n1〉
ωn1b

×
(

1

ωn2b + ωβ − iη
+ 1

ωn2b − ωβ − iη

)
− 1

2

∑
n2

〈b|(e∗α)e−ikr|a〉〈bn2|1 − α2α3

r23
sin(ωβr23)|n2b〉

×
[

1

(ωn2b + ωβ − iη)2
+ 1

(ωn2b − ωβ − iη)2

]}
. (27)
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One can note that the thermal corrections are suppressed by the factor of temperature in addition to the Zα expansion.
Therefore, applying the nonrelativistic limits to the expression (27) can serve as an adequate approximation for the search for
the dominant contribution. Within the dipole approximation kr 	 1, we have

〈n1|(e∗α)e−ikr|a〉 = 〈n1|e∗p|a〉 = −iωan1〈n1|e∗r|a〉, (28)

〈bn2|1 − α2α3

r23
sin(ωβr23)|n2n1〉 ≈ ωβ〈b|n2〉〈n2|n1〉 − ωβ〈b|p|n2〉〈n2|p|n1〉 + ω3

β

3
〈b|r|n2〉〈n2|r|n1〉

= ω〈b|n2〉〈n2|n1〉 +
(

−ωωn2n1ωn2b + ω3

3

)
〈b|r|n2〉〈n2|r|n1〉, (29)

where the relation given by Eq. (10) was used. Then, substituting Eqs. (28) and (29) into Eq. (27), we find

Û (3)Fig.2
ab = (−ie)3

4π3

√
2π

ωab

∫ ∞

0
dωβnβ (ωβ )

⎧⎨⎩ ∑
n2,n1 
=b

−iωan1〈n1|e∗r|a〉
ωn1b

×
[
ωβ〈b|n2〉〈n2|n1〉 − ωβ〈b|p|n2〉〈n2|p|n1〉 + ω3

β

3
〈b|r|n2〉〈n2|r|n1〉

](
1

ωn2b + ωβ − iη
+ 1

ωn2b − ωβ − iη

)

− 1

2

∑
n2

(−iωab〈b|e∗r|a〉)

[
ωβ〈b|n2〉〈n2|b〉 − ωβ〈b|p|n2〉〈n2|p|b〉 + ω3

β

3
〈b|r|n2〉〈n2|r|b〉

]

×
[

1

(ωn2b + ωβ − iη)2
+ 1

(ωn2b − ωβ − iη)2

]⎫⎬⎭. (30)

In view of the orthogonality property of wave functions and the inequality n1 
= b, the term ωβ〈b|n2〉〈n2|n1〉 turns to zero. In
turn, the term ωβ〈b|n2〉〈n2|b〉 leads to infrared divergence for n2 = b:

Û (3)Fig.2
ab(n2=b) = − e3

2π5/2

√
ωab

2

∫ ∞

0

dωβ

ωβ

nβ (ωβ ). (31)

Below we will show that the same divergences occur for the diagrams in Figs. 3 and 4. In particular, from the combination of
these three graphs will follow that the singular contribution for the diagram in Fig. 4 is canceled precisely by the corresponding
terms in the diagrams in Figs. 2 and 3. The same is true for the ordinary radiative QED corrections to one-photon transition
rates; see [47]. Thus, all the infrared divergences contained in Figs. 2–4 are canceled, removing the terms ωβ〈b|n2〉〈n2|n1〉 and
ωβ〈b|n2〉〈n2|b〉 in Eq. (30). Then, Eq. (30) reduces to

Û (3)Fig.2
ab = (−ie)3

4π3

√
2π

ωab

∫ ∞

0
dωβnβ (ωβ )

⎧⎨⎩ ∑
n2,n1 
=b

−iωan1〈n1|e∗r|a〉
ωn1b

[
−ωβ〈b|p|n2〉〈n2|p|n1〉 + ω3

β

3
〈b|r|n2〉〈n2|r|n1〉

]

×
(

1

ωn2b + ωβ − iη
+ 1

ωn2b − ωβ − iη

)
− 1

2

∑
n2

(−iωab〈b|e∗r|a〉)

[
−ωβ〈b|p|n2〉〈n2|p|b〉 + ω3

β

3
〈b|r|n2〉〈n2|r|b〉

]

×
[

1

(ωn2b + ωβ − iη)2
+ 1

(ωn2b − ωβ − iη)2

]⎫⎬⎭. (32)

Expression (32) can be rewritten in another way,

Û (3)Fig.2
ab = (−ie)3

4π3

√
2π

ωab

∫ ∞

0
dωβnβ (ωβ )

⎧⎨⎩ ∑
n2,n1 
=b

−iωan1〈n1|e∗r|a〉
ωn1b

[
−ωβ〈b|p|n2〉〈n2|p|n1〉 + ω3

β

3
〈b|r|n2〉〈n2|r|n1〉

]

×
(

1

ωn2b + ωβ − iη
+ 1

ωn2b − ωβ − iη

)
− 1

2

∑
n2

(−iωab〈b|e∗r|a〉)
∂

∂Eb

[
−ωβ〈b|p|n2〉〈n2|p|b〉 + ω3

β

3
〈b|r|n2〉〈n2|r|b〉

]

×
(

1

ωn2b + ωβ − iη
+ 1

ωn2b − ωβ − iη

)⎫⎬⎭. (33)
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Then, applying relation (10), we obtain the final expression within the nonrelativistic limit for the diagram in Fig. 2,

Û (3)Fig.2
ab = (−ie)3

4π3

√
2π

ωab

∫ ∞

0
dωβnβ (ωβ )

⎧⎨⎩ ∑
n2,n1 
=b

−iωan1〈n1|e∗r|a〉〈b|r|n2〉〈n2|r|n1〉
ωn1b

(
−ωβωn2n1ωn2b + ω3

β

3

)

×
(

1

ωn2b + ωβ − iη
+ 1

ωn2b − ωβ − iη

)
− iωab〈b|e∗r|a〉

2

∂

∂Eb

∑
n2

〈b|r|n2〉〈n2|r|b〉
(

4ω3
β

3

ωn2b

ω2
n2b − ω2

β

)}
. (34)

Evaluation of the diagram in Fig. 3 repeats the procedure above [see Eqs. (21)–(34)], with the S-matrix element

Ŝ(3)Fig.3
ab = (−ie)3

∫
dx3dx2dx1ψb(x3)γμ3 A∗

μ3
(x3)S(x3, x2)e−η|t3|Dβ

μ2μ1
(x2, x1)e−η|t2|γμ2 S(x2, x1)γμ1 e−η|t1|ψa(x1). (35)

Then the transition amplitude can be written as

Û (3)Fig.3
ab = (−ie)3

4π3

√
2π

ωab

∫ ∞

0
dωβnβ (ωβ )

⎧⎨⎩ ∑
n1,n2 
=a

−iωn2b〈b|e∗r|n2〉〈n2|r|n1〉〈n1|r|a〉
ωn2a

(
−ωβωn2n1ωan1 + ω3

β

3

)

×
(

1

ωn1a + ωβ − iη
+ 1

ωn1a − ωβ − iη

)
− iωab〈b|e∗r|a〉

2

∂

∂Ea

∑
n1

〈a|r|n1〉〈n1|r|a〉
(

4ω3
β

3

ωn1a

ω2
n1a − ω2

β

)}
, (36)

where the same infrared divergence as in Eq. (31) arises with n1 = a.
Now we can consider the last diagram given by Fig. 4. The corresponding S-matrix element is

Ŝ(3)Fig.4
ab = (−ie)3

∫
dx3dx2dx1ψb(x3)S(x3, x2)e−η|t3|γμ3 Dβ

μ3μ1
(x3, x1)γμ2 A∗

μ2
(x2)γμ1 e−η|t2|S(x2, x1)e−η|t1|ψa(x1), (37)

Performing integration over time variables and frequencies in the electron and photon propagators, we arrive at the following
expression for the transition amplitude:

Û (3)Fig.4
ab = (−ie)3

4π3

√
2π

ωab

{∑
n2n1

(−i)ωn1n2〈n2|e∗r|n1〉
∫ ∞

0
dωβnβ (ωβ )

[
ωβ〈b|n2〉〈n1|a〉

+
(

−ωβωbn2ωan1 + ω3
β

3

)
〈b|r|n2〉〈n1|r|a〉

]

×
[

1

(ωn2b + ωβ − iη)(ωn1a + ωβ − iη)
+ 1

(ωn2b − ωβ − iη)(ωn1a − ωβ − iη)

]⎫⎬⎭. (38)

The infrared divergence in Eq. (38) appears from the term ω〈b|n2〉〈n1|a〉, with n1 = a and n2 = b. Then the divergent part of the
amplitude shown in Fig. 4 congregates to

Û (3)Fig.4
ab(n1=a,n2=b) = e3

π5/2

√
ωab

2

∫ ∞

0

dωβnβ (ωβ )

ωβ

. (39)

The result (39) has the opposite sign and is twice as large as Eq. (31), canceling the aggregated contribution given by Eq. (31)
for Figs. 2 and 3. Then, Eq. (38) can be written in the form

Û (3)Fig.4
ab = (−ie)3

4π3

√
2π

ωab

{∑
n2n1

(−i)ωn1n2〈n2|e∗r|n1〉〈b|r|n2〉〈n1|r|a〉
∫ ∞

0
dωβnβ (ωβ )

(
−ωβωbn2ωan1 + ω3

β

3

)

×
[

1

(ωn2b + ωβ − iη)(ωn1a + ωβ − iη)
+ 1

(ωn2b − ωβ − iη)(ωn1a − ωβ − iη)

]}
. (40)
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Finally, the thermal radiative corrections corresponding to the diagrams in Fig. 2–4, after the integration over photon directions
and summation over polarizations, are given by

�W Fig.2
ab = −4e4

3π

1

2la + 1

∑
mamb

∑
n2n1

⎧⎨⎩ ∑
n2,n1 
=b

ω2
abωan1〈a|r|b〉〈n1|r|a〉〈b|r|n2〉〈n2|r|n1〉

ωn1b
P

∫ ∞

0
dωβnβ (ωβ )

(
−ωβωn2n1ωn2b + ω3

β

3

)

×
(

2ωn2b

ω2
n2b − ω2

β

)
− ω3

ab|〈a|r|b〉|2|〈b|r|n2〉|2
2

∂

∂Eb
P

∫ ∞

0
dωβnβ (ωβ )

∑
n2

(
4ω3

β

3

ωn2b

ω2
n2b − ω2

β

)⎫⎬⎭, (41)

�W Fig.3
ab = −4e4

3π

1

2la + 1

∑
mamb

∑
n2n1

⎧⎨⎩ ∑
n1,n2 
=a

ω2
abωn2b〈a|r|b〉〈b|r|n2〉〈n2|r|n1〉〈n1|r|a〉

ωn2a
P

∫ ∞

0
dωβnβ (ωβ )

×
(
−ωβωn2n1ωan1 + ω3

β

3

)(
2ωn1a

ω2
n1a − ω2

β

)
− ω3

ab|〈a|r|b〉|2|〈a|r|n1〉|2
2

∂

∂Ea
P

∫ ∞

0
dωβnβ (ωβ )

∑
n1

(
4ω3

β

3

ωn1a

ω2
n1a − ω2

β

)}
,

(42)

�W Fig.4
ab = −4e4

3π

1

2la + 1

∑
mamb

∑
n2n1

ω2
abωn1n2〈a|r|b〉〈n2|r|n1〉〈b|r|n2〉〈n1|r|a〉P

∫ ∞

0
dωβnβ (ωβ )

×
(

−ωβωn2bωn1a + ω3
β

3

)
2
(
ω2

β + ωn2bωn1a
)(

ω2
n2b − ω2

β

)(
ω2

n1a − ω2
β

) . (43)

Here the principal value of integral, P , has appeared as a result
of taking the real part in Eq. (24) and applying the Sokhotski-
Plemelj theorem in the limit η → 0.

In addition to the thermal QED corrections derived above,
we must take into account the contribution originating from
changing the photon energy ωab in the zero-order transition
probability given by Eq. (12) due to the BBR-induced Stark
shifts of the energies of the bound states a and b. Within the
framework of finite-temperature QED of the bound states, the
BBR-induced Stark shift corresponds to the thermal one-loop
SE diagram; see Fig. 5. Recently, this graph was evaluated
in [37], where the real part representing the Stark shift was
found to be in complete agreement with the equation obtained
in [35] within the quantum mechanical approach. Following

aa
n

FIG. 5. The Feynman graph corresponding to the thermal one-
loop electron self-energy. The wavy line with index γT denotes the
thermal photon propagator. The real part of this graph corresponds
to the thermal Stark shift, while the imaginary part represents the
induced one-photon width �BBR

a of the atomic energy level a.

[35,37], the Stark shift is given by

�Eβ
a = 1

2la + 1

∑
mamb

4e2

3π

∑
n

|〈a|r|n〉|2P
∫ ∞

0
dωβω3

βnβ (ωβ )

× ωan

ω2
an − ω2

β

. (44)

Numerical values of �Eβ
a at different temperatures are

collected in Table I for the 1s, 2s, and 2p states in the hydrogen
atom. The BBR-induced Stark shifts for states a and b, related
to the real part of the diagram in Fig. 5, also contribute to the
photon energy ωab and, consequently, to the transition rate.
The corresponding correction can be written as a difference
between the transition rate given by Eq. (12) calculated with
zero-order photon energy ωab and the Stark-shift corrected

TABLE I. Blackbody-radiation-induced dynamic Stark shifts
(Hz) of energy levels of hydrogen at different temperatures (Kelvin).
The numbers in square brackets indicate powers of ten. Fine structure
and the Lamb shift were neglected in performing the calculation. The
asterisks correspond to the values presented in [35].

T 1s 2s 2p

300 −3.8754[−2] −1.0434 −1.5181
−4.128[−2]∗ −1.077∗ −1. 535∗

1000 −4.7893 −1.3229[2] −1.9438[2]
3000 −3.9148[2] −1.4111[4] −2.1033[4]
5000 −3.0797[2] −7.6499[4] −1.0774[5]
8000 −2.1370[4] −1.2917[5] −1.2786[5]
10000 −5.5601[4] −3.0019[4] 9.3418[4]
50000 −2.5583[6] 4.5616[7] 6.0049[7]

052503-7



ZALIALIUTDINOV, SOLOVYEV, AND LABZOWSKY PHYSICAL REVIEW A 101, 052503 (2020)

TABLE II. Corrections to one-photon transition rates corresponding to Figs. 2–4, induced transition rates W ind
2p1s, and BBR-induced width

�BBR
2p in s−1 at different temperatures (Kelvin). The numbers in the square brackets indicate powers of ten. All calculations were performed in

the Feynman gauge of the thermal photon propagator.

T �W Fig.2
2p1s �W Fig.3

2p1s �W Fig.4
2p1s �W Stark

2p1s �W total
2p1s W ind

2p1s �BBR
2p

300 −6.3948[−5] 1.5111[−3] 9.7273[−4] 1.1547[−6] 2.4210[−3] 2.3598[−163] 4.7430[−6]
1000 −7.1011[−4] 1.7011[−2] 1.0883[−2] 1.4450[−4] 2.7328[−2] 2.3435[−43] 3.2943[−2]
3000 −6.3567[−3] 1.7575[−1] 1.0602[−1] 1.5731[−2] 2.9114[−1] 4.5156[−9] 7.5856[4]
5000 −1.7445[−2] 4.1682[−1] 3.1890[−1] 7.9768[−2] 7.9804[−1] 3.2486[−2] 1.5306[6]
8000 −4.0087[−2] 6.6053[−1] 7.83286[−1] 8.1160[−2] 1.4849 2.3373[2] 9.2948[6]
10000 −6.3120[−2] 8.4717[−1] 1.1223 −1.1357[−1] 3.3473[−1] 4.5126[3] 1.7960[7]
50000 −5.1929 2.8715[1] −3.7875 −4.7716[1] −2.79814[1] 6.4759[7] 4.4084[8]

photon energy ω̃ab = Ea + �Eβ
a − Eb − �Eβ

b [47],

�W Stark
ab = 1

2la + 1

∑
mamb

4e2

3

(
ω3

ab − ω̃3
ab

)|〈b|r|a〉|2. (45)

Finally, the total thermal QED correction, arising from the
graphs in Figs. 2–5, to the one-photon transition rate is given
by

�W total
ab = �W Fig.2

ab + �W Fig.3
ab + �W Fig.4

ab + �W Stark
ab . (46)

Here, �W Fig.2
ab , �W Fig.3

ab , �W Fig.4
ab , and �W Stark

ab are defined
by Eqs. (41)–(43) and (45), respectively. These corrections
were obtained in the nonrelativistic limit as the contributions
of leading order in α. Numerical values of �W Fig.2

ab , �W Fig.3
ab ,

�W Fig.4
ab , and �W Stark

ab for the 2p → 1s + γ (E1) transition in
the hydrogen atom at different temperatures are collected in
Table II. All calculations were performed in the Feynman
gauge of the thermal photon propagator. It is important to
note that the diagrams depicted in Figs. 2–4 are physically
inseparable and only their total contribution is gauge invariant
and makes physical sense.

IV. CONCLUSIONS AND DISCUSSION

In this work, the thermal one-loop self-energy corrections
to the one-photon transition rate were obtained within the
framework of QED theory. The partial transition probabili-
ties and total depopulation rates induced by the BBR field
[see Eqs. (12) and (13)] at different temperatures were also
evaluated. The numerical values are given in Table II. For
the summation over the entire spectrum in Eqs. (41)–(43),
the B-spline method was employed [48]. The spectrum of
virtual states was checked on calculation of Stark shifts
and depopulation rates; see Tables I and II. As an addi-
tional verification, the Thomas-Reiche-Kuhn sum rule was
also checked by this method. The results of the calcula-
tions for BBR-induced Stark shifts at T = 300 K are in
excellent agreement with our previous results [37]. However,
at high temperatures, the present calculations are more ac-
curate due to the improved numerical integration over ωβ

in Eq. (44).
As an example, we focused on the numerical evaluation of

Eq. (46) for the Lyα 2p → 1s + γ (E1) transition in hydrogen
atom; see Table II. To demonstrate the role of thermal QED
corrections, it is useful to compare them with the “ordinary”

QED corrections. The radiative QED correction of lowest
order to the Lyα transition was found in [3] as

�W QED
2p1s = W2p1s

α

π
(αZ )2

[(
8

3
ln

4

3
− 61

18

)
ln(αZ )−2

+ 6.57603

]
≈ −1490 s−1, (47)

where W2p1s = 6.268 × 108 s−1 is the spontaneous one-
photon decay rate of the lowest order; see Eq. (11). As seen in
Table II, the thermal radiative SE corrections contribute to the
ordinary QED correction �W QED

2p1s at a level of several percent
and more, beginning from temperatures greater than 50 000 K.

The fundamental importance of the theoretical value of the
Lyα transition rate W2p1s in neutral hydrogen is caused by
determining the 2p − 2s Lamb shift. For a successful compar-
ison of theory and experimental measurements, it is necessary
to know the theoretical rate of the 2p → 1s + γ (E1) transi-
tion with a precision of 10−6–10−8 [49,50]. Assuming that
the experiment is carried out at room temperature T = 300 K,
the thermal radiative QED correction found in the present
work is of the relative magnitude 10−11. This is, however,
several orders less than the current accuracy of the Lamb
shift determination, but could be important for future precise
measurements.

It can also be expected that thermal corrections considered
in the present work could play a role in various astrophysical
applications when the radiative processes are considered at
higher temperatures. In particular, the theoretical and exper-
imental analysis of line intensities of quasars and similar
objects where the radiation temperature reaches several tens
of thousands of degrees requires the knowledge of atomic
transition rates and level populations [51–53]. It is worth
noting that the Lyman alpha line, as well as the 21 cm line,
is the main source of identification of distant quasars [54].
Concerning this, it is more correct to analyze thermal radiative
QED corrections with respect to the BBR-induced transition
rates, which plays an important role in rate equations of
population balance [26]. From Eqs. (41)–(43), it follows that
the parametric estimation of the leading order in α for the
thermal contributions �W Fig.2

ab , �W Fig.3
ab , and �W Fig.4

ab is the
same as the simplest correction arising via the Stark shift,
given by Eq. (45). Then the magnitudes of �W Fig.2

ab , �W Fig.3
ab ,

and �W Fig.4
ab at room temperature are about a hundred times

larger than the induced transition rate, W ind
2p1s. They become
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comparable at the temperatures about T = 6000–8000 K.
Beginning from 8000 K, the thermal radiative corrections
become less than the BBR-induced transition rate W ind

2p1s. From
Table II, it also follows that the BBR-induced line broadening
�BBR

2p is the same order of magnitude as the corrections in
Eq. (46) at the temperature T = 1000 K and exceeds �W total

2p1s
at higher temperatures. The results are applicable up to the
hydrogen ionization temperature Tion ∼ 157 000 K, when cor-
rections Eqs. (41)–(43) and (45) may be even more important
than the radiative QED effects given by Eq. (47). In conclu-
sion, a different type of radiative and temperature dependent

corrections to the decay rates was introduced. Despite the
relative smallness of these corrections, they may be important
in certain laboratory experiments and astrophysical problems
dealing with the BBR-induced effects.
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