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Protection of quantum information from noise is a massive challenge. One avenue people have begun to
explore is reducing the number of particles needing to be protected from noise and instead use systems with more
states, so-called qudit quantum computers. These systems will require codes which utilize the full computational
space. Many prior qudit codes are very restrictive on relations between the parameters of number of qudits,
number of logical qudits, distance of the code, and number of bases. In this paper we show that codes for these
systems can be derived from already known codes, often relaxing the constraints somewhat, a result which could
prove to be very useful for fault-tolerant qudit quantum computers.
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I. BACKGROUND

The ability to perform classical computation within an
arbitrarily small error rate was shown by Shannon in the
1940s [1]. He provided a theoretical framework showing that
modern classical computation would be possible. From that
point, there arose a new challenge of finding actual codes
that could best implement Shannon’s result. This in turn
pushed coding theory into a new realm, inspiring codes
such as the Hamming code family and Bose-Chaudhuri-
Hocquenghem (BCH) codes [2], and later leading to incredi-
ble ideas such as polar codes [3] and turbo codes [4].

As computational power progressed, there began to be
investigations into the potential power of using quantum
phenomena as a computational tool. This brought those same
questions explored for classical computers back into question.
This led to various ideas to try to bring over classical codes in
some form or another. Among some of the earlier ideas was
the stabilizer formalism [5], Calderbank-Shor-Steane (CSS)
codes [6,7], and teleportation [8]. Many classical coding
theory methods have been generalized into this new quantum
setting, such as polynomial codes (a generalization of BCH
and cyclic codes) [9,10], polar codes [11], and turbo codes
[12,13]—including results such as a complete list of all per-
fect codes [14].

Building a quantum computer out of qudits (quantum
objects with more than two levels) instead of qubits (quantum
objects with only two levels) is an appealing option, since such
a system would need comparatively few qudits to perform
large quantum computations due to the larger computational
space of each particle in such a system. In addition, context
being the cause for the magic in quantum computation in the
qudit case has been shown, whereas the case for qubits is still
an open problem [15]. This has led to the characterization
of magic-state distillation regions for qudits as well as fault-
tolerant methods for such [16–18].
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This means that we also need error-correction methods for
these qudit systems. Prior work on qudit codes often depends
on having a classical code which satisfies the conditions
needed for CSS code construction, or a similar orthogonality
requirement (such as [19–21]). This allows for the generation
of many qudit quantum codes; however, at times these codes
can require very strict relations between the number of bases
for the particles (sometimes called the local dimension of the
system) as defined in Definition 1, the number of particles,
and the number of logical qudits. This can result in these
codes being less useful for constructed qudit systems. This
work aims to tackle this problem by working to reduce this
level of restriction by allowing codes to be used for qudits of a
different number of bases than they were initially designed for.
In some regards one may consider this a tool somewhat similar
in nature to CSS code construction: CSS allows classical to
quantum code construction, whereas this allows for quantum
to quantum code construction. In addition, this work may
provide an avenue for determining whether a code is utilizing
the qudit space particularly well.

Experimental realizations of qudit quantum computers
have been progressing, as well as the theory of making such
systems [22–24]. As these systems come online and grow
there will be a need to have more flexibility in the set of
codes that can be used to protect the information in these
systems. In this article we primarily explore the ability to
apply quantum error-correcting codes in smaller dimensional
spaces onto systems with larger alphabets without having to
discover codes for those systems through other methods, thus
creating extensions of these already known codes into larger
spaces.

Before we move on to discussing this problem, we must
first define our mathematical language for working on these
problems. Following that we introduce our results showing
the ability to apply codes in larger spaces and then show the
conditions required for preserving the distance of such codes,
as well as a region where the distance of these codes can be
preserved. We then propose some directions to carry out this
work.
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II. DEFINITIONS

In this section we define the majority of the tools used in
this paper. We recall common definitions and results for qudit
operators.

A qubit is defined as a two-level system with states |0〉 and
|1〉. We define a qudit as being a quantum system over q levels,
where q is prime.

Definition 1. Generalized Paulis for a space over q orthog-
onal levels, where we assume q is prime, are given by

Xq| j〉 = |( j + 1) mod q〉, Zq| j〉 = ω j | j〉, (1)

with ω = e2π i/q, where j ∈ Zq. These Paulis form a group,
denoted Pq.

When q = 2, these are the standard qubit operators. This
group structure is preserved over tensor products, since each
of these Paulis has order q.

Definition 2. An n-qudit stabilizer s is an n-fold tensor of
generalized Pauli operators, such that there exists at least one
state, |ψ〉, such that

s|ψ〉 = |ψ〉, (2)

where |ψ〉 ∈ Cqn
.

Definition 3. A stabilizer group S with commuting gener-
ators {si} is defined as the subgroup of all n-qudit generalized
Paulis formed from all multiplicative compositions (◦) of
these generators. This subgroup must not contain a nontrivial
multiple of the identity.

Definition 4. We call a basis of orthonormal states |ψ〉
which satisfy the condition in Definition 2 for a stabilizer
group S the codewords of the stabilizer.

Since each operator has order q, a collection of k compo-
sitionally independent generators for this stabilizer group will
have qk elements. Measuring the eigenvalues of the members
in our stabilizer group, called the syndrome, of our state gives
us a way to determine what error might have occurred and
then undo the determined error. We recall for the reader, the
well-known result:

Theorem 5. For any stabilizer code with k qudit stabilizers
and n physical qudits, there will be qn−k mutually orthogonal
basis stabilizer states, or codewords.

This differs from the standard convention of k being the
number of encoded qudits, since throughout this work we
focus ourselves on the number of stabilizer generators. When
discussing the errors that occur to our system, the standard
choice of the depolarizing channel model focuses on the
weights of the errors:

Definition 6. The weight of an n-qudit operator is given by
the number of nonidentity operators in it.

Definition 7. A stabilizer code, specified by its stabilizers
and stabilizer states, is characterized by a set of values:

(1) n: the number of qudits that the states are over
(2) n − k: the number of encoded (logical) qudits, where

k is the number of stabilizers
(3) d [for nondegenerate codes (where all stabilizer group

members have weight at least d)]: the distance of the code,
given by the lowest weight of an undetectable generalized
Pauli error (commutes with all stabilizer generators)

These values are specified for a particular code as: [[n, n −
k, d]]q, where q is the dimension of the qudit space.

We note that as long as no ambiguity exists, we suppress ⊗.
We include ⊗ only to make register changes explicit.

Working with tensors of operators can be challenging, and
so we make use of the following well-known mapping from
these to vectors. This mapping is sometimes referred to as the
symplectic representation, but we use alternative notation in
this work to provide some notational flexibility utilized in this
work. By representing these operators as vectors at times, the
solution to a problem can become far more tractable.

Definition 8. (φ representation of a qudit operator). We
define the surjective map

φq : P n
q �→ Z2n

q , (3)

which carries an n-qudit Pauli in P n
q to a 2n vector mod q,

where we define this map as

φq(ωα ⊗i−1 I ⊗ X a
q Zb

q ⊗n−i I )

= (0i−1 a 0n−i|0i−1 b 0n−i ), (4)

which puts the power of the ith X operator in the ith position
and the power of the ith Z operator in the (i + n)th position
of the output vector. Throughout we will assume that Zq

takes values in {0, . . . , q − 1}. This mapping is defined as a
homomorphism with φq(s1 ◦ s2) = φq(s1) ⊕ φq(s2), where ⊕
is a componentwise addition mod q. We denote the first half
of the vector as φq,x and the second half as φq,z.

When q = 2 this is the standard mapping used in the qubit
stabilizer formalism. We may invert the map φq to return
to the original n-qudit Pauli operator with the global phase
being undetermined. We make note of a special case of the φ

representation:
Definition 9. Let q be the dimension of the initial system.

Then we denote by φ∞ the mapping

φ∞ : P n
q �→ Z2n, (5)

where no longer are any operations taken mod some base, but
instead carried over the full set of integers.

As a clear example showing how these two are different,
consider these mappings acting on X ⊗ X −1:

φ2(X ⊗ X −1) = (1 1 | 0 0), φ∞(X ⊗ X −1) = (1 −1 | 0 0).

(6)

The first one takes −1 to 1, since we have required the entries
to be either 0 or 1 since q = 2, whereas φ∞ is allowed to have
negative values for entries since we are no longer performing
any mod operations, meaning that each entry just has to be an
integer.

The ability to define φ∞ as a homomorphism still (and with
the same rule) is a portion of the results of this paper, shown
in Theorem 12. Our definition of φq is the standard choice
for working with stabilizers over q bases; however, our φ∞
allows us to avoid being dependent on the number of bases
our system has when working with our stabilizers. In general
we will write a stabilizer as φq, perform some operations,
then write it in φ∞. We shorten this to write it as φ∞ and
can later select to write it as φq′ for some prime q′ by taking
elementwise mod q′. When we provide no subscript for the
representation, that implies that the choice is irrelevant. The
commutator of two operators in this picture is given by the
following definition:
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Definition 10. Let si, s j be two qudit Pauli operators over
q bases. Then these commute if and only if

φq(si ) � φq(s j ) = 0 mod q, (7)

where � is the symplectic product, defined by

φq(si ) � φq(s j ) = ⊕k[φq,z(s j )k φq,x(si)k

−φq,x (s j )k φq,z(si)k], (8)

where standard integer multiplication mod q is used and ⊕ is
addition mod q.

When q = 2, this becomes the standard commutation re-
lations between qubit Pauli’s and is particularly simplified
since addition and subtraction mod 2 are identical. Before
finishing, we make a brief list of some possible operations we
can perform on our φ representation for a stabilizer group:

1. As remarked above, we may add rows of the stabilizer
generator matrix together, which corresponds to composition
of operators

2. We may swap rows, corresponding to permuting the
stabilizers

3. We may multiply each row by any number in
{1, . . . , q − 1}, corresponding to composing a stabilizer with
itself. Since all operations are done over a prime number of
bases, each number has an inverse.

4. We may swap registers (qudits) in the following ways:
(a) We may swap columns (Reg i, Reg i + n) and

(Reg j, Reg j + n) for 0 < i, j � n, corresponding to re-
labelling qudits.

(b) We may swap columns Reg i and (−1) · Reg i +
n, for 0 < i � n, corresponding to conjugating by a
Hadamard gate on register i (or discrete Fourier transforms
in the qudit case [25]), thus swapping X and Z’s roles on
that qudit.
All of these operations leave all parameters of the code

alone but can be used in proofs. At this point we have all the
necessary definitions to prove our results and have a solid base
in qudit operators.

III. INVARIANT CODES

In this section we begin by defining invariant codes, which
are codes that can be used for systems over any number of
bases. Prior to this, only a few examples of invariant codes
were known. Then we proceed to show that all qudit codes
are invariant codes. This shows only that codes are valid over
other spaces, so we then show that at least for sufficiently
sized spaces all parameters of the code—particularly the
distance—are at least preserved, if not even improved. We
provide an argument about when the distance of the code
will be improved. We finish by showing how to find the
corresponding logical operators for these codes.

Definition 11. (Invariant codes). A stabilizer code is in-
variant if and only if

φq(si) � φq(s j ) = 0, ∀i, j (9)

holds for all primes q.
Qubit stabilizers need to commute only in the symplectic

sense for q = 2 but could commute in the symplectic sense
for q = 3, for example. To be an invariant code the stabilizers

need to commute in the symplectic sense for all prime values
of q. This is satisfied if φ∞(si ) � φ∞(s j ) = 0 for all stabilizers
si and s j in the stabilizer group S.

A. Motivating examples

Consider the following example of generators for a sta-
bilizer group: 〈XX, ZZ〉. As a qubit code this forms a valid
stabilizer code with codeword

|00〉 + |11〉√
2

, (10)

and the commutator of these generators can be seen to be
(1) + (1) = 2 ≡ 0 mod 2. Now suppose we wish to use this
code for a qutrit system. In order to do that we must transform
these generators into ones which have commutator 0; this can
be achieved with 〈XX −1, ZZ〉, whose powers are congruent
mod 2 to the original code. In this case φ∞(X ⊗ X −1) �
φ∞(Z ⊗ Z ) = 0. This means that not only can this be used
for qutrits but for all prime numbers of bases. The codeword
in the qutrit case is

|00〉 + |12〉 + |21〉√
3

, (11)

and the generalization of this for the codewords of a q-level
system is a simple extension. We simply make each term in
the codeword have the entries sum to a multiple of the qudit
dimension so that the ZZ operator has a +1 eigenvalue:

1√
q

⎛
⎝ q∑

j=1

| j mod q, q − j mod q〉
⎞
⎠. (12)

If we look at the generators of this code, there is no single
qudit operator that commutes with the generators; thus the
distance of this invariant form of the code is still d = 2.

This is not the only example of a code that can be turned
into invariant form. Another great example is the five-qubit
code [26]. In fact, no changes are needed:

〈XZZXI, IXZZX, XIXZZ, ZXIXZ〉. (13)

From inspection this can be seen to have commutators 0, and
so this is a valid stabilizer code for qudits, and it can also be
checked that this code will always have distance 3.

It is helpful to have a couple of examples; however, it has
been unknown whether it is always possible to put stabilizer
codes into an invariant form. We move forward from here to
show that this can always be done and discuss a method of
how to do this.

B. Embedding theorem statement and proof

We now show that all qudit stabilizer codes can be written
in an invariant form.1 This shows that we can form valid
stabilizer groups over any number of bases but says nothing
about the distance of these codes. This aspect is treated in the
section immediately following.

1We acknowledge Andrew Jena for his contributions in the form of
the following theorem and corollary.
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Theorem 12. All qudit stabilizer codes can be transformed
into invariant codes.

Proof. Let {s1, · · · , sk} be a set of stabilizer generators for
a qudit code over q levels, with k � n and q prime. We must
construct a set of stabilizers, {s′

1, · · · , s′
k}, such that

1. φ∞(s′
i) ≡ φq(si ) mod q, for all i

2. φ∞(s′
i) � φ∞(s′

j ) = 0, for all i �= j.
Without loss of generality, we assume that our stabilizers

are given in canonical form:⎛
⎜⎝

φ(s1)
...

φ(sk )

⎞
⎟⎠ = (Ik X2|Z1 Z2). (14)

We define the strictly lower diagonal matrix L with entries

Li j =
{

0 i � j
φ(si ) � φ(s j ) i > j

(15)

and define s′
1, · · · , s′

k such that⎛
⎜⎝

φ(s′
1)

...
φ(s′

k )

⎞
⎟⎠ = (Ik X2 | Z1 + L Z2). (16)

We show that s′
1, · · · , s′

k satisfies the conditions.

1. Since φ(si) � φ(s j ) ≡ 0 mod q for all i �= j, we ob-
serve that Li j ≡ 0 mod q for all entries. By adding rows of L
to our stabilizers, we have not changed the code modulo q.

2. For i > j, we observe the following:

φ(s′
i) � φ(s′

j )

= [φ(si) + (0 | Li 0)] � [φ(s j ) + (0 | Lj 0)]

= φ(si) � φ(s j ) + φ(si) � (0 | Lj 0)

+ (0 | Li 0) � φ(s j ) + (0 | Li 0) � (0 | Lj 0)

= φ(si) � φ(s j ) + 0 − Li j + 0

= 0.

�
Example 13. Consider the seven-qubit Steane code with

parameters [[7, 1, 3]]2, and denote it by � [27]. The φ rep-
resentation is given by

φ2(�) =
[

H | 0
0 | H

]
, (17)

where H is the parity-check matrix for the classical Hamming
code, given by

H =
⎡
⎣1 0 0 1 0 1 1

0 1 0 1 1 0 1
0 0 1 0 1 1 1

⎤
⎦. (18)

We will make this an invariant code using the method shown in Theorem 12. We begin by putting this in standard form,
performing operations mod 2:

φ2(�) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 | 0 0 0 0 1 1 0
0 1 0 0 0 0 0 | 0 0 0 1 1 1 0
0 0 1 0 0 0 1 | 0 0 0 1 0 1 0
0 0 0 1 0 0 0 | 1 1 0 0 0 0 1
0 0 0 0 1 0 0 | 0 1 1 0 0 0 1
0 0 0 0 0 1 0 | 1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦. (19)

Now that we have the code expressed in standard form, we construct the matrix containing the symplectic inner products, no
longer taking operation over mod 2. The antisymmetric matrix [�] representing the symplectic inner products between the
stabilizers and the resulting L matrix for this code are given below:

[�] =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 2 0 0
0 0 0 0 0 0
0 0 0 0 2 0

−2 0 0 0 0 0
0 0 −2 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦ ⇒ L =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−2 0 0 0 0 0
0 0 −2 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦. (20)

Adding this to our standard form, we have an invariant form for the Steane code given by

φ∞(�) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 1 | 0 0 0 0 1 1 0
0 1 0 0 0 0 0 | 0 0 0 1 1 1 0
0 0 1 0 0 0 1 | 0 0 0 1 0 1 0
0 0 0 1 0 0 0 | −1 1 0 0 0 0 1
0 0 0 0 1 0 0 | 0 1 −1 0 0 0 1
0 0 0 0 0 1 0 | 1 1 1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦. (21)

Since now all stabilizer generators from φ∞(�) commute, this
form of the code is a valid stabilizer code over any number of

bases. We do not know, however, what the distance of this
code is from this. We address this in Example 20.
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We will want to know the size of the maximal entry in this
invariant form for our bound on ensuring the distance of the
code is at least preserved. The bound on the maximal entry is
provided from the above proof:

Corollary 14. The maximal element in φ∞(S), B, is upper
bounded by

[2 + (n − k)(q − 1)](q − 1). (22)

Proof. As before, we begin with S in standard form. For
any i �= j, there are at most n − k entries, those entries which
are not part of the identity portion of the standard form, in
which both φq,x(si ) and φq,z(s j ) are nonzero and bounded
above by q − 1, and a single entry, corresponding to the
sole nonzero entry in the identity portion of the standard
form, in which one is 1 whereas the other is bounded above
by q − 1. This gives us a bound on the inner product of
(n − k)(q − 1)2 + (q − 1). This is a bound on the size of an
entry in our invariant stabilizer of q − 1 + (n − k)(q − 1)2 +
(q − 1) = [2 + (n − k)(q − 1)](q − 1). �

Example 15. In this example we show that CSS codes re-
main CSS codes under this transformation. Consider a general
CSS code given by

φ(�)=
[

Ik1 Xk2 Xn−(k1+k2 ) | 0 0 0
0 0 0 | Zk1 Ik2 Zn−(k1+k2 )

]
,

(23)

where we have put the two block matrices into approximately
standard form. We now perform Hadamards (or discrete
Fourier transforms) on the k2-sized middle blocks. We then
have

φ(�)=
[

Ik1 0 Xn−(k1+k2 ) | 0 Xk2 0
0 Ik2 0 | Zk1 0 Zn−(k1+k2 )

]
.

(24)

Now, we note that the first k1 stabilizers exactly commute with
each other, i.e., inner product 0 in the φ∞ sense, and likewise
for the k2 other stabilizer generators. Now we simply need
to consider the case where we pick generators from each of
the halves. We consider the matrix [�], as above. This has
nonzero entries for rows in k2 when the columns are in k1.
Likewise for when the rows are in k1, the entries are nonzero
for columns in k2. Thus we only add entries to Zk1 and Xk2 with
[�] and, hence, certainly also for our L matrix. In fact, the
L matrix adds entries only to Zk1 since it is lower triangular.
Given the new invariant form matrix, we may now invert our
initial step of applying discrete Fourier transforms, and we
will still have a CSS code.

C. Distance-preserving condition

Now that we know that all qudit codes can be put into an
invariant form, we now prove that at least for most sizes of
the space we can ensure that the distance of the code is at
least preserved. We find a cutoff on the number of bases in the
underlying space needed to at least preserve the distance.

Theorem 16. For all primes p > p∗, with p∗ a cutoff value
greater than q, the distance of an embedding of a nonde-
generate stabilizer code [[n, n − k, d]]q into p bases, [[n, n −
k, d ′]]p, has d ′ � d .

Before proving this theorem we make a couple of nuanced
definitions:

Definition 17. An unavoidable error is an error that com-
mutes with all stabilizers and produces the �0 syndrome over
the integers.

These correspond to undetectable errors that would remain
undetectable regardless of the number of bases for the code,
since they always exactly commute under the symplectic inner
product with all stabilizer generators and thus all members
of the stabilizer group. Since these errors are always unde-
tectable, we call them unavoidable errors, since changing the
number of bases would not allow this code to detect this error.
This then provides the following insight:

Remark 18. The distance of a code over the integers is
given by the minimal weight member in the set of unavoidable
errors. The distance over the integers is represented by d∗, and
so d∗ � d . This value is also the minimum number of columns
of the stabilizer generator matrix that are linearly dependent
over the integers (or equivalently, over the rationals) in the
symplectic sense.

We also define the other possible kind of undetectable error
for a given number of bases, which corresponds to the case
where some syndromes are multiples of the number of bases:

Definition 19. An artifact error is an error that commutes
with all stabilizers but produces at least one syndrome that is
only zero modulo the base.

These are named artifact errors, as their undetectability is
an artifact of the number of bases selected and could become
detectable if a different number of bases was used with this
code. Each undetectable error is either an unavoidable error
or an artifact error. We utilize this fact to show our theorem.

Proof. The ordering of the stabilizers and the ordering of
the registers does not alter the distance of the code. With this,
φ∞ for the stabilizer generators over the integers can have the
rows and columns arbitrarily swapped.

Let us begin with a code over q bases and extend it to p
bases. The errors for the original code are the vectors in the
kernel of φq for the code. These errors are either unavoidable
errors or are artifact errors. We may rearrange the rows and
columns so that the stabilizers and registers that generate these
entries that are nonzero multiples of q are the upper left 2d ×
2d minor, padding with identities if needed. The factor of 2
occurs due to the number of nonzero entries in φ∞ being up to
double the weight of the Pauli. The stabilizer(s) that generate
these multiples of q entries in the syndrome are members of
the null space of the minor formed using the corresponding
stabilizer(s).

Now, consider the extension of the code to p bases. Build-
ing up the qudit Pauli operators by weight j, we consider the
minors of the matrix composed through all row and column
swaps. These minors of size 2 j × 2 j can have a nontrivial null
space in two possible ways:

(1) If the determinant is 0 over the integers, then this is
either an unavoidable error or an error whose existence did
not occur due to the choice of the number of bases.

(2) If the determinant is not 0 over the integers but takes
the value of some multiple of p, then it’s 0 mod p and so a
null space exists.

Thus we can only introduce artifact errors to decrease the
distance. By bounding the determinant by p∗, any choice
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of p > p∗ will ensure that the determinant is a unit in Zp,
and will hence have a trivial null space, since the matrix is
invertible.

Now, in order to guarantee that the value of p is at least as
large as the determinant, we can use Hadamard’s inequality to
obtain

p > p∗ = B2(d−1)[2(d − 1)](d−1), (25)

where B is the maximal entry in φ∞. Since we only need to
ensure that the artifact-induced null space is trivial for Paulis
with weight less than d , we used this identity with 2(d − 1) ×
2(d − 1) matrices.

When j = d , we can either encounter an unavoidable error,
in which case the distance of the code is d , or we could obtain
an artifact error, also causing the distance to be d . It is possible
that neither of these occur at j = d , in which case the distance
becomes some d ′ with d < d ′ � d∗. �

Example 20. In our example of the Steane code, Corollary
14 tells us that the maximal entry is at most 3, but from our
application of the method given in Theorem 12 we have B =
1, so we defer to this value since it is the true maximal entry
value. The original distance was d = 3. This means that for all
primes larger than 12×2(2 × 2)2 = 16 we are guaranteed that
the distance is preserved. For primes below that value, we can
manually check and apply alternate manipulations if needed.
Given that all entries are ±1, we know that the determinant
of all the minors of interest are bounded by 4, and all primes
at least as large as 5 preserve the distance. Through manual
checking 3 is also not a possible minor determinant, so all
primes preserve the distance for our invariant form of the
Steane code.

To determine p∗ for a given invariant code one can compute
all the determinants of the minors; then so long as p is larger
than the largest of these (or just not in this set), the distance
will be preserved. We note that if p is in the set of minor
determinants, the distance may still be preserved, since when
considering the minors we have allowed them to be composed
of entries from the X portion and the Z portion arbitrarily.
If computing all these determinants is too computationally
costly, one could just select the maximal entry in the invariant
form instead of using the upper bound for B shown in Corol-
lary 14, which will also generally greatly reduce the value of
p∗.

We previously alluded to this proof that the code over
the integers has distance at least as large. To determine how
many bases are needed to ensure we have distance d∗, we
simply extend our above result to obtain the cutoff expression,
whereby no further distance improvements can be obtained
from embedding the code—suggesting that another code
ought to be used.

Corollary 21. For a nondegenerate stabilizer code we ob-
tain the integer distance d∗ when

p > B2(d∗−1)[2(d∗ − 1)]d∗−1. (26)

After this value the distance cannot be improved through
embedding. If d∗ is unknown, this can be upper bounded by
using k in place of d∗.

Proof. This follows from the above proof. The looser
bound comes from d∗ � k, so we can evaluate this at d∗ = k
to obtain the loosest condition. �

The above provides a condition on the number of bases
needed to ensure the distance of the code is at least preserved,
but one could also ask, given an invariant code, whether that
code can be used over fewer bases. We provide a bound on
this with the following:

Lemma 22. For a nondegenerate code, for all p < p∗∗,
with p∗∗ a cutoff value less than q (possibly � 2), the distance
of [[n, n − k, d]]q over p bases, [[n, n − k, d ′]]p, must have
d ′ < d .

Proof. Let t = � d−1
2 �. The qudit quantum Hamming bound

requires the initial code to satisfy

t∑
j=0

(
n

j

)
(q2 − 1) j � qk . (27)

Now we consider applying the code over p levels. Then we
may bound (

n

t

)
(p2 − 1)t �

t∑
j=0

(
n

j

)
(p2 − 1) j . (28)

Likewise, when p � 2 we may bound

pk � (p2 − 1)k . (29)

Combining these we have(
n

t

)
(p2 − 1)t � (p2 − 1)k . (30)

Then we violate the initial inequality if

p <

√
1 +

(
n

t

)1/(k−t )

= p∗∗. (31)

This means that p∗∗ is only a valid bound when it is larger
than 2, otherwise this result is trivially true since we no longer
have a quantum code. �

Combining these results mean that distance may be pre-
served for p∗∗ � p < p∗, while for p > p∗ it is guaranteed
to have the distance preserved. For the region of values of
p where the distance might be preserved, one can manually
check and attempt another invariant form to try to make the
distance preserved for the desired number of bases.

D. Invariant logical operators

Besides from the stabilizers, we also need logical operators
to perform computations over the encoded qudits. Now we
show how to construct such invariant logical operators.

Lemma 23. We may define invariant logical operators, L∞,
for the stabilizer code S as well.

Proof. Each logical operator is in N (S)/S, the normalizer
of S excluding S, and there are n − k X logical operators and
n − k Z logical operators. This means that we could, if we
desired, generate a code S′ whose generators are S ∪ LX . This
will have rank n and can be written in standard form as[

In|∗
]
, (32)

meaning that LX may be diagonalized within the last n − k
qudits. This can also be done with LZ .
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Then, since these logical operators are compositionally
independent, they must be linearly independent in the φ rep-
resentation, meaning rank(LX ∪ LZ ) = 2(n − k). Now, if we
take the standard form for S and append LX , LZ as additional
rows we have⎡

⎣ S
LX

LZ

⎤
⎦ =

⎡
⎣Ik A | B C

0 D | E F
0 G | H J

⎤
⎦. (33)

From the above observation it is possible to compose the
generators for LX , LZ to generate the matrix⎡

⎣Ik A | B C
0 In−k | E ′ F ′
0 G′ | H ′ In−k

⎤
⎦. (34)

At this point we focus on fixing the commutators between the
elements of LX and LZ . Since the first k qudits will always
contribute 0 to the commutator we drop those columns:[

In−k | F ′
G′ | In−k

]
. (35)

We can further reduce this to[
In−k | 0

0 | In−k

]
. (36)

This trivially satisfies the following required relations:

φq(X̄i ) � φq(Z̄ j ) = δi j, (37)

φq(X̄i ) � φq(X̄ j ) = φq(Z̄i ) � φq(Z̄ j ) = 0, ∀i, j. (38)

Throughout these computations we have updated E ′ and H ′.
We now simply apply Theorem 12 to each logical operator in
turn appended to φ(S). �

Remark 24. This process does not alter our invariant stabi-
lizer form, so our bound from earlier still holds.

IV. CONCLUSION AND DISCUSSION

This work introduces and lays the groundwork for qudit
codes that can be used on systems with local dimension dif-
ferent than initially designed. This helps ease the restrictions
that some qudit codes suffer from. We showed one method for
generating these invariant codes but bring up the following
example to motivate additional work on this:

Example 25. Throughout we have considered the method
of creating invariant codes given by Theorem 12. With the
following simple example we can show that p∗ = q for this
method is not always possible. Consider the [[4, 2, 2]]2 code

generated by

� = 〈XZXX, ZXZZ〉. (39)

Following the method prescribed we obtain

φ∞(�) =
[

1 0 1 1 | 0 1 0 0
0 1 0 0 | −3 0 1 1

]
. (40)

This means that if we were to use this as a qutrit code the
distance will drop to 1. This cannot be resolved by changing
the choices of generators through compositions. If, however,
we select as our generators

�′ = 〈XZXX, ZXZZ−1〉, (41)
then �′ is an invariant code and the distance of this code
remains 2. Determining whether such a modification is always
possible and whether it’s possible to achieve this with a simple
procedure are other open problems.

In this paper we have shown that qudit codes can be
embedded into larger spaces, and at least for a sufficiently
large number of bases, all parameters of the code are at
least preserved. This result provides another tool for error-
correction schemes for qudit quantum computers by providing
immediate codes for these devices using modifications of
already known codes.

Although in this work we find some critical value, p∗,
above which all primes preserve the distance of the code, we
believe that this result carries to all primes at least as large as
the initial dimension if one uses other procedures to make the
code invariant. Proving this, or at least tightening the bound
on the critical value, seems like an important extension of this
result, since the current bound can be quite large. In addition,
there is the question of whether these results also hold for
degenerate codes.

Some additional directions to carry these results include
the following. Determining whether the prescribed method
for generating invariant codes, or some other method, allows
for transversality preservation—a crucial tool in fault-tolerant
quantum computation. We also ask whether it is possible to
take codes already known over q levels, and not a perfect code,
and preserve the distance while using the code over p < q
levels.
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