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We propose a scheme to restore spatial symmetry of Hamiltonian in the variational-quantum-eigensolver
(VQE) algorithm for which the quantum circuit structures used usually break the Hamiltonian symmetry. The
symmetry-adapted VQE scheme introduced here simply applies the projection operator, which is Hermitian but
not unitary, to restore the spatial symmetry in a desired irreducible representation of the spatial group. The
entanglement of a quantum state is still represented in a quantum circuit but the nonunitarity of the projection
operator is treated classically as postprocessing in the VQE framework. By numerical simulations for a spin-1/2
Heisenberg model on a one-dimensional ring, we demonstrate that the symmetry-adapted VQE scheme with a
shallower quantum circuit can achieve significant improvement in terms of the fidelity of the ground state and has
a great advantage in terms of the ground-state energy with decent accuracy, as compared to the non-symmetry-
adapted VQE scheme. We also demonstrate that the present scheme can approximate low-lying excited states
that can be specified by symmetry sectors, using the same circuit structure for the ground-state calculation.
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I. INTRODUCTION

Quantum computing has been attracting great interest re-
cently because of experimental realizations of quantum de-
vices [1–9]. Simulating quantum many-body systems might
be one of the most important applications of quantum comput-
ing, due to their potential capability for naturally simulating
quantum physics and quantum chemistry systems [10].

A crucial step toward simulating quantum many-body
systems on quantum computers is to develop efficient al-
gorithms that might differ from classical counterparts. The
variational-quantum-eigensolver (VQE) approach [11–13] is
likely a promising scheme for simulating quantum many-
body systems on near-term quantum devices including noisy
intermediate-scale quantum (NISQ) devices [14]. The VQE
is a so-called hybrid quantum-classical approach, where the
expectation value of a many-body Hamiltonian of interest
with respect to a trial state, represented by a parametrized
quantum circuit, is evaluated on quantum computers, while
variational parameters entering in the circuit are optimized on
classical computers by minimizing the variational energy [15].
Here, the number of the variational parameters should be
polynomial in the number of qubits and thus the optimization
on classical computers remains feasible.

Recently, quantum algorithms for simulating quantum
many-body systems are vastly proposed, developed, and ex-
tended to obtain not only ground states [16–19] but also
excited states [20,21], excitation spectrum [22–28], finite-
temperature properties [29–31], and nonequilibrium proper-
ties [32]. A method for simulating fermionic particles coupled
to bosonic fields has also been proposed [33,34]. Furthermore,
quantum circuits for preserving symmetry of the Hamilto-
nian such as total spin and time-reversal symmetry [35–38]
have been proposed. An application of the Grover’s search

algorithm for solving a basis-lookup problem of symmetrized
many-body basis states in the exact-diagonalization method
has also been proposed [39]. Moreover, error-mitigation
schemes have been developed for enabling practical applica-
tions of the VQE scheme on NISQ devices [40–42].

In this paper, we introduce a symmetry-adapted VQE
scheme, which makes use of spatial symmetry of the Hamil-
tonian when evaluating the expectation value of the Hamil-
tonian (and also other observables). Namely, to symmetrize a
quantum state, the standard projection operator [43] is applied
to a quantum circuit that does not generally preserve the
Hamiltonian symmetry. The nonunitarity of the projection
operator is treated as postprocessing on classical computers in
the VQE framework. By numerical simulations for a spin-1/2
Heisenberg ring, we show that the symmetry-adapted VQE
scheme introduced here can better approximate the ground
state with a shallower circuit, as compared to the nonsym-
metrized VQE scheme. Moreover, we demonstrate that the
symmetry-adapted VQE scheme can be used to approximate
low-lying excited states in given symmetry sectors, without
changing the circuit structure that is used for the ground-state
calculation.

The rest of the paper is organized as follows. In Sec. II,
we define a spin-1/2 Heisenberg model. In Sec. III, we briefly
review the projection operator and describe how to implement
spatial symmetry operations on a quantum circuit using SWAP

gates. In Sec. IV, we introduce the symmetry-adapted VQE
scheme. We also describe the natural-gradient-descent (NGD)
method to optimize variational parameters in a quantum cir-
cuit subject to the symmetry projection, which represents a
not normalized quantum state. In Sec. V, we demonstrate
the symmetry-adapted VQE scheme by numerical simulations
for the spin-1/2 Heisenberg model. The paper is summa-
rized in Sec. VI. Appendixes A and B provide details of a
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FIG. 1. Schematic of the one-dimensional Heisenberg model
with N = 16 sites under the periodic-boundary conditions. The ex-
change interaction J acts between nearest-neighboring sites at which
spin-1/2 spins (i.e., qubits) reside.

parametrized two-qubit gate and a trial wave function used
in the present VQE simulation, respectively. Appendix C
describes that an entangled spin-singlet pair (i.e., one of the
Bell states) formed by distant qubits can be generated by
repeatedly applying a local two-qubit gate for finite times. Fi-
nally, Appendix D illustrates a ground-state-energy evaluation
on quantum hardware. Throughout the paper, we set h̄ = 1.

II. MODEL

The Hamiltonian of the spin-1/2 Heisenberg model is
given by

Ĥ = J

4

∑
〈i, j〉

(X̂iX̂ j + ŶiŶj + ẐiẐ j )

= J

2

∑
〈i, j〉

(
P̂i j − Î

2

)
, (1)

where J > 0 is the antiferromagnetic exchange interaction,
〈i, j〉 runs over all nearest-neighbor pairs of qubits i and j
connected with the exchange interaction J , and X̂i, Ŷi, and Ẑi

are the Pauli operators acting on the ith qubit. Î is the identity
operator and P̂i j is the SWAP operator which acts on the ith
and jth qubits as P̂i j |a〉i|b〉 j = |b〉i|a〉 j . The second line in
Eq. (1) follows from the fact that the inner product of the Pauli
matrices can be written as

X̂iX̂ j + ŶiŶj + ẐiẐ j =
{

3Î (i = j),

2P̂i j − Î (i �= j).
(2)

Note that P̂i j is Hermitian, unitary, and involutory. We con-
sider Ĥ on a one-dimensional periodic chain with N = 16
sites at which qubits reside (see Fig. 1).

III. SPATIAL SYMMETRIES

In this section, we first briefly review the projection opera-
tor that can restore the Hamiltonian symmetry of an arbitrary
quantum state. The projection operator is composed of a set
of symmetry operations that do not alter the Hamiltonian. We

then discuss how to implement these symmetry operations on
a quantum circuit.

A. Projection operator and symmetrized state

In general, a quantum many-body system possesses its own
particular symmetry and the Hamiltonian describing such a
quantum many-body system is invariant under a set of sym-
metry operations that define the symmetry. These symmetry
operations form a group, the Hamiltonian symmetry group,
and the symmetry that is relevant to our study here is spatial
symmetry such as point group symmetry and translational
symmetry of a lattice where the order of the group is finite. It
is well known that an irreducible representation of any finite
group can be chosen to be unitary [43].

The projection operator for the lth basis (l = 1, . . . , dγ ) of
an irreducible representation γ in a finite group G is given by

P̂(γ )
l = dγ

|G|
∑
ĝ∈G

[D̄(γ )(ĝ)]∗ll ĝ, (3)

where dγ is the dimension of the irreducible representation
γ , |G| is the order of G, ĝ is a symmetry (unitary) operation
in the group G, and [D̄(γ )(ĝ)]ll is the lth diagonal element
of a matrix representation for the symmetry operation ĝ in
the irreducible representation γ [43,44]. Here, ĝ satisfies
ĝĤ ĝ−1 = Ĥ , or equivalently [Ĥ, ĝ] = 0. Thus, the projection
operator commutes with the Hamiltonian,[

Ĥ, P̂(γ )
l

] = 0. (4)

Note also that the projection operator is idempotent (P̂(γ )
l )2 =

P̂(γ )
l and Hermitian (P̂(γ )

l )† = P̂(γ )
l , but not unitary. Eigen-

values of P̂(γ )
l are either 0 or 1, implying that it is positive

semidefinite.
For an arbitrary quantum state |ψ〉, the symmetry-projected

state P̂(γ )
l |ψ〉 is indeed the lth basis of the irreducible repre-

sentation γ because, for a unitary operator ĝ ∈ G,

ĝ
∣∣ψ (γ )

l

〉 = ĝ
dγ

|G|
∑
ĝ′∈G

[D̄(γ )(ĝ′)]∗ll ĝ
′∣∣ψ (γ )

l

〉

= dγ

|G|
∑
ĝ′′∈G

[D̄(γ )(ĝ−1ĝ′′)]∗ll ĝ
′′∣∣ψ (γ )

l

〉

= dγ

|G|
∑

k

∑
ĝ′′∈G

[D̄(γ )(ĝ−1)]∗lk[D̄(γ )(ĝ′′)]∗kl ĝ
′′∣∣ψ (γ )

l

〉

=
∑

k

[D̄(γ )(ĝ)]kl

∣∣ψ (γ )
k

〉
, (5)

where

∣∣ψ (γ )
l

〉 = P̂(γ )
l |ψ〉√

〈ψ |P̂(γ )
l |ψ〉

. (6)

is the symmetry-projected normalized state, referred to simply
as a symmetrized state hereafter, and we used (P̂(γ )

l )2 = P̂(γ )
l

in the first line and∣∣ψ (γ )
k

〉 = dγ

|G|
∑
ĝ∈G

[D̄(γ )(ĝ)]∗kl ĝ
∣∣ψ (γ )

l

〉
(7)
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FIG. 2. Examples of symmetry operations on a six-qubit system
for (a) one-qubit translation T̂ , (b) two-qubit translation T̂ 2, and
(c) three-qubit translation T̂ 3.

in the fourth line, which is proved by using the great orthogo-
nality theorem [43].

In a one-dimensional representation (dγ = 1), which in-
cludes all representations of an Abelian group such as the
translation group and the identity representation of any point
group, the projection operator defined in Eq. (3) is simply
given as

P̂(γ ) = 1

|G|
∑
ĝ∈G

χ (γ )(ĝ)∗ĝ, (8)

where χ (γ )(ĝ) is the character (i.e., the diagonal element of
a matrix representation) for the symmetry operation ĝ in the
irreducible representation γ and we omit the subscript “l” in
P̂(γ )

l . In this case, the symmetry-projected state P̂(γ )|ψ〉 for
an arbitrary quantum state |ψ〉 is an eigenstate of a unitary
operator ĝ ∈ G with eigenvalue χ (γ )(ĝ):

ĝ(P̂(γ )|ψ〉) = χ (γ )(ĝ)(P̂(γ )|ψ〉). (9)

B. Examples of symmetry operations on a quantum circuit

Translational symmetry of a lattice is described by an ap-
propriate space group G. A symmetry operation ĝ ∈ G can be
expressed as a product of SWAP operations, because ĝ simply
represents a permutation of local (one-qubit) states, and any
permutation can be expressed as a product of transpositions.

As examples of ĝ, Figs. 2(a), 2(b), and 2(c) show
translation operations T̂ , T̂ 2, and T̂ 3, on a six-site ring,
respectively. Here, T̂ is the one-lattice-space translation such
that T̂ |a〉1|b〉2|c〉3|d〉4|e〉5| f 〉6 = | f 〉1|a〉2|b〉3|c〉4|d〉5|e〉6.
Figure 2(a) shows that T̂ can be expressed as a product of
the SWAP operators as T̂ = P̂12P̂23P̂34P̂45P̂56. Naively, one
can obtain the one-dimensional n-lattice-space translation
T̂ n by repeatedly applying the set of the gates of the
elementary translation T̂ for n times (n: integer). However,
the representation of a given permutation in terms of a product
of transpositions is not unique and such a construction of
T̂ n may not be optimal with respect to the number of the
SWAP gates. The gates shown in Figs. 2(b) and 2(c) are
simplified ones for T̂ 2 and T̂ 3, respectively, by allowing
long-range SWAP gates. Note that T̂ 4 = (T̂ 2)−1 and T̂ 5 = T̂ −1

can be obtained by reversing the order of SWAP operations in
Figs. 2(b) and 2(a), respectively.

FIG. 3. An illustration of the “Amida lottery” construction to
implement a general permutation with nearest-neighbor SWAP opera-
tions. (a) An oracle of a desired symmetry operation (permutation).
(b) A realization of the oracle in (a) with nearest-neighbor SWAP

operations. The SWAP gates are highlighted with red thick lines.
(c) The same one-qubit states in the initial and the final states are
connected by the straight line. The vertices are highlighted with red
circles. The vertical lines in panels (a) and (b) represent qubits, while
the lines in panel (c) are auxiliary. The inset describes how each
vertex in panel (c) is replaced with a SWAP gate in panel (b).

C. General implementation of symmetry operations
on a quantum circuit

As a way of implementing generic permutations, one can
make use of the “Amida lottery” (sometime also known as
“ghost leg” or “ladder climbing”) construction. Figure 3 il-
lustrates how to construct a desired permutation with nearest-
neighbor SWAP operations. Here, the qubits are depicted as
vertical lines and the time evolves forward from top to bottom,
to be compatible with the conventional two-line notation of a
permutation, such as, for example,

S ≡
(

a b c d e f
e f a b c d

)
. (10)

Figure 3(a) is an oracle ĝ which performs the permutation
S on one-qubit states,

ĝ|a〉1|b〉2|c〉3|d〉4|e〉5| f 〉6 = |e〉1| f 〉2|a〉3|b〉4|c〉5|d〉6. (11)

The oracle can be implemented as a product of nearest-
neighbor-SWAP operations shown in Fig. 3(b). The circuit
structure in Fig. 3(b) can be obtained with the following pro-
cedure [see Fig. 3(c)]: (i) draw (unwinding) lines connecting
the same one-qubit states in the initial and the final states, (ii)
find all the vertices of the lines drawn, and (iii) replace every
vertex and its associated four lines, respectively, with a SWAP

gate and two vertically aligned lines connected by the SWAP

gate (see inset of Fig. 3).
Three remarks are in order. First, drawing winding or

zigzag lines in the procedure (i) can produce the same per-
mutation, but the resulting circuit may contain unnecessary
SWAP operations. Second, one can further modify the obtained
circuit structure by introducing long-range SWAP gates. Third,
the inverse permutation, corresponding to ĝ† = ĝ−1, can be
obtained merely by inverting the diagram.

IV. SYMMETRY-ADAPTED VQE METHOD

In this section, we first introduce a spin-symmetric quan-
tum state that generally breaks spatial symmetry. This is a
fundamental step to prepare a spin-singlet state. Next, we
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describe the symmetry-adapted VQE scheme. The proce-
dure is essentially the same as the conventional VQE
scheme [11–13] except that the nonunitary projection op-
erator, applied onto a quantum state that is described by a
parametrized quantum circuit, is treated on classical comput-
ers when the variational parameters are updated for the next
iteration. To optimize the variational parameters, we employ
the NGD method, which requires the energy gradient and the
metric tensor. We derive these quantities analytically for a
symmetrized variational quantum state by taking into account
the fact that the symmetrized state is not normalized because
the projection operator is not unitary. Once the variational
parameters in the parametrized quantum circuit are optimized,
the expectation values of quantities, including those other than
the Hamiltonian, for the symmetrized state can be evaluated
using the resulting circuit by treating the nonunitary projec-
tion operator on classical computers as postprocessing.

A. Spin-symmetric trial state

The total-spin squared operator Ŝ
2

and the total mag-
netization operator Ŝz are defined, respectively, as Ŝ

2 =
1
4

∑N
i=1

∑N
j=1 (X̂iX̂ j + ŶiŶj + ẐiẐ j ) and Ŝz = 1

2

∑N
i=1 Ẑi. Since

[Ĥ, Ŝ
2
] = 0 and [Ĥ, Ŝz] = 0, any eigenstate |�n〉 of Ĥ is a

simultaneous eigenstate of Ŝ
2

and Ŝz, i.e.,

Ĥ |�n〉 = En|�n〉, (12)

Ŝ
2|�n〉 = S(S + 1)|�n〉, (13)

Ŝz|�n〉 = Sz|�n〉, (14)

where n (= 0, . . . , 2N − 1) labels the eigenstates of Ĥ , and
En, S(S + 1), and Sz are the eigenvalues of Ĥ , Ŝ

2
, and

Ŝz, respectively. Without loss of generality, we assume that
E0 � E1 � · · · � E2N −1. The ground state and the ground-state
energy of Ĥ are thus denoted by |�0〉 and E0, respectively.

It can be shown that the ground state of the Heisenberg
model is in the subspace of S = 0 [45]. To construct a varia-
tional state within this subspace, we first prepare a singlet-pair
product state

|�〉 =
N/2⊗
i=1

|s2i−1,2i〉, (15)

where |si, j〉 = (|0〉i|1〉 j − |1〉i|0〉 j )/
√

2 is the spin-singlet
state (i.e., one of the Bell states) formed between the ith and
jth qubits, and therefore |�〉 is spin singlet. Then we apply
exponential SWAP (eSWAP) gates [46–50], each of which is
equivalent to the SWAPα gate up to a two-qubit global phase
factor [51,52] and preserves the spin SU(2) symmetry [37,38].
The eSWAP gates are parametrized by a set of angles θ to
evolve the state from |�〉 to (an approximation of) the true
ground state |�0〉, while keeping the state in the subspace of
S = 0 during the evolution.

The unitary operator Ui j (θ ) corresponding to the eSWAP

gate acting on two qubits i and j with a parameter θ is

FIG. 4. The circuit structure that generates a state ĝ|�(θ)〉 =
ĝÛ(θ)|�〉. The symmetry operation ĝ can be implemented according
to the scheme described in Sec. III C. The circuit consists of N qubits
(N = 16 in the figure) with D layers of gates, each layer being
composed of N eSWAP gates (indicated by shaded blue), and the
symmetry operation gates. Here, the eSWAP gate is represented by the
SWAP gate with symbol “e.” Since each eSWAP gate contains a single
variational parameter, there exist N × D variational parameters to be
optimized in the circuit.

given by

Ûi j (θ ) ≡ exp(−iθP̂i j/2) = Î cos
θ

2
− iP̂i j sin

θ

2
, (16)

where the involutority of the SWAP operator P̂2
i j = Î is used. A

decomposition of the eSWAP gate in terms of more elementary
gates is described in Appendix A. By writing the sequence of
the eSWAP operations as

Û(θ) =
∏
〈i, j〉

Ûi j (θi j ), (17)

with the order of multiplications specified in the circuit con-
struction (see Fig. 4), our trial wave function is given by

|�(θ)〉 = Û(θ)|�〉. (18)

Note that |�(θ)〉 preserves the spin symmetry of the Hamil-
tonian but not the spatial symmetry, as apparently seen in
Fig. 4. The order of multiplication of the eSWAP gates in the
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circuit shown in Fig. 4 is motivated by an adiabatic evolution
of the state from the initial state |�〉 to the (approximate)
ground state of Ĥ in Eq. (1) [53]. A physical interpreta-
tion of the trial wave function |�(θ)〉 in conjunction with a
resonating-valence-bond (RVB) state [54–56], a superposition
of a great number of singlet-pair product states [57], known as
one of the best variational states to describe quantum many-
body states [58], is discussed in Appendix B. Note that, as
shown in Appendix C, a spin-singlet pair formed by qubits
that are separated even at the largest distance can be generated
in |�(θ)〉 with D ∼ N/4, where D is the number of layers,
each layer being composed of N eSWAP gates (see Fig. 4).

B. Energy expectation value

Although |�(θ)〉 is symmetric in the spin space, gen-
erally it breaks the spatial symmetry of Hamiltonian be-
cause of a particular structure of the circuit. As described
in Sec. III A, we apply the projection operator P̂(γ ) to sym-
metrize |�(θ)〉 [59]. The resulting symmetrized variational
state with the irreducible representation γ is

|� (γ )(θ)〉 = P̂(γ )

√
N (θ)

|�(θ)〉, (19)

where

N (θ) = 〈�(θ)|P̂(γ )|�(θ)〉. (20)

Note that N (θ) � 0 because the projection operator P̂(γ ) is a
positive semidefinite operator. The corresponding variational
energy is given by

E (γ )(θ) ≡ E [� (γ )(θ)]

≡ 〈� (γ )(θ)|Ĥ |� (γ )(θ)〉

= 〈�(θ)|ĤP̂(γ )|�(θ)〉
〈�(θ)|P̂(γ )|�(θ)〉

=
∑

ĝ∈G χ (γ )(ĝ)∗〈�(θ)|Ĥ ĝ|�(θ)〉∑
ĝ∈G χ (γ )(ĝ)∗〈�(θ)|ĝ|�(θ)〉 . (21)

In the symmetry-adapted VQE scheme, the matrix elements
in the numerator and the denominator in Eq. (21) are evalu-
ated on quantum computers by, for example, introducing one
ancilla qubit [60–63]. This can be done efficiently because
Ĥ is a sum of unitary operators and ĝ is a unitary operator
as well. The sum over the group operations ĝ, the order
of G being O(N ), is performed on classical computers as
postprocessing [64].

It should be noted that the linear combination of unitary
operators can also be implemented with a circuit described in,
e.g., Ref. [65]. The advantage of such a circuit is that it can
generate the symmetrized state P̂(γ )|�(θ)〉 directly without
introducing the postprocessing. However, one major disad-
vantage of such a circuit, particularly in the current NISQ era,
is that the circuit structure becomes much more complicated
than the one proposed here because it requires log2 |G| ancilla
qubits and |G| controlled-unitary operations, in addition to the
gates necessary to describe |�(θ)〉 shown in Fig. 4.

C. Natural-gradient-descent optimization

The variational parameters θ are optimized by minimizing
E (γ )(θ) with the NGD optimization [66]. Starting from chosen
(e.g., random) initial parameters θ1, the NGD optimization at
the kth iteration updates the variational parameters as

θk+1 = θk − α[ReG(γ )(θk )]−1∇E (γ )(θk ), (22)

where α is a parameter for tuning the step width (i.e., a
learning rate) and

[G(γ )(θ)]i j ≡ [G[� (γ )(θ)]]i j

= 〈
∂θi�

(γ )(θ)
∣∣∂θ j �

(γ )(θ)
〉

− 〈
∂θi�

(γ )(θ)
∣∣� (γ )(θ)

〉〈
� (γ )(θ)

∣∣∂θ j �
(γ )(θ)

〉
(23)

is the metric tensor [67] of the variational-parameter (θ)
space associated with the normalized state |� (γ )(θ)〉. Since
G(γ )(θ) is positive semidefinite, α has to be chosen positive to
minimize the variational energy. In the numerical simulations
shown in Sec. V, we set α = 0.1/J .

We should note that essentially the same optimization
scheme, which takes into account the geometry of the wave
function in the variational parameter space, has been in-
troduced as the stochastic-reconfiguration method and ap-
plied successfully with the variational Monte Carlo technique
for correlated electron systems [68–70]. An equivalence be-
tween the stochastic-reconfiguration method and the real-
and imaginary-time evolution of a variational state has been
pointed out [71–75]. On the other hand, very recently, as
a optimization method, the imaginary-time evolution of a
variational quantum state has been proposed in the context
of VQE approach [76–78]. This method was later recognized
to be essentially the same as the NGD optimization of a
parametrized quantum circuit [79,80].

D. Energy gradient and metric tensor

The energy gradient ∇E (γ )(θ) in Eq. (22) and the metric
tensor G(γ )(θ) in Eq. (23) are now expressed in terms of
the circuit (nonsymmetrized) state |�(θ)〉 and its derivative
|∂θi�(θ)〉. For this purpose, first we can readily show that
the derivative of the symmetrized state, |∂θi�

(γ )(θ)〉, can be
expressed as

∣∣∂θi�
(γ )(θ)

〉 = P̂(γ )

√
N (θ)

[∣∣∂θi�(θ)
〉 − ReAi(θ)|�(θ)〉] (24)

with

Ai(θ) = 〈�(θ)|P̂(γ )
∣∣∂θi�(θ)

〉
N (θ)

. (25)

Note that the real part of Ai(θ) is related to the logarithmic
derivative of the norm:

∂θi lnN (θ) = 2ReAi(θ), (26)

and the imaginary part of Ai(θ) is related to the Berry con-
nection:〈

� (γ )(θ)
∣∣∂θi�

(γ )(θ)
〉 = Ai(θ) − ReAi(θ) = iImAi(θ).

(27)
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FIG. 5. Semilog plot of the fidelity |〈�0|� (q)(θk )〉|2 of the
ground state for the spin-1/2 Heisenberg ring with N = 16 as a
function of the NGD iteration k in Eq. (22). The results with different
number of layers (D), and with (filled symbols) and without (empty
symbols) use of the translational symmetry, are shown. (b) Enlarged
figure of panel (a). |�0〉 is the exact ground state and |� (q)(θk )〉
is an approximate ground state obtained after the kth iteration of
optimizing the variational parameters in the circuit. The number of
total variational parameters is N × D. The initial parameters θ1 are
set randomly and we use the same initial parameters θ1 for all the
simulations shown here when D is the same.

From Eq. (24), the derivative of the variational energy
E (γ )(θ) can be expressed as

∂θi E
(γ )(θ) = 2Re

[
〈�(θ)|P̂(γ )Ĥ

∣∣∂θi�(θ)
〉

N (θ)
−Ai(θ)E (γ )(θ)

]
.

(28)

Similarly, by substituting Eq. (24) into Eq. (23), we can show
that the metric tensor [G(γ )(θ)]i j is now given as

[G(γ )(θ)]i j =
〈
∂θi�(θ)

∣∣P̂(γ )
∣∣∂θ j �(θ)

〉
N (θ)

−A∗
i (θ)A j (θ). (29)

Note that Eqs. (24), (25), (28), and (29) are generic forms for
the state subject to the symmetry-projection operator.

For numerical simulations, to evaluate the derivatives of
the trial state, we employ the parameter-shift rule for the
(nonsymmetrized) state∣∣∂θi�(θ)

〉 = 1
2 |�(θ + πei )〉, (30)

which readily follows from Eq. (16). Here, ei is the unit
vector whose i′th entry is given by [ei]i′ = δii′ . We should
also note that our numerical simulations in the next section
employ the NGD optimization because, as described above,
this optimization method has been repeatedly proved to be
currently the best method for optimizing a variational wave
function with many variational parameters in the variational

FIG. 6. Same as Fig. 5 but for the variational energy of the
ground state. The horizontal line in panel (b) indicates the exact
ground-state energy E0.

Monte Carlo technique for quantum many-body systems,
when up to the first-order derivative of the variational energy
is available [58]. If we employ this optimization method
in the real experiment, we have to evaluate, in addition to
the matrix elements in the numerator and the denominator
in Eq. (21), several other quantities appearing in Eqs. (28)
and (29) on quantum computers. However, the use of the NGD
optimization is not necessarily required in the symmetry-
adapted VQE scheme and we can always adopt a simpler
optimization method without even using the first derivative of
the variational energy.

V. RESULTS

Here we demonstrate the symmetry-adapted VQE ap-
proach by numerically simulating the spin-1/2 Heisenberg
ring.

A. Ground-state energy

Figures 5 and 6 show a typical behavior of the fidelity
and the variational energy E (γ )(θk ), respectively, for N = 16
as a function of the NGD iteration k in Eq. (22). Here, we
use the translational symmetry of the Hamiltonian that forms
the cyclic group G = {T̂ 1, T̂ 2, . . . , T̂ N } with |G| = N . The
character associated with the operation T̂ n is given by

χ (q)(T̂ n) = eiqn, (31)

where q = 2πm/N with m = −N/2 + 1,−N/2 +
2, . . . , N/2 − 1, N/2, corresponding to the total momentum
of the symmetrized state, and the dimension dq of the
representation q is 1. The ground state of the spin-1/2
Heisenberg ring for N = 16 is at the q = 0 sector and
spin singlet.
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Figure 5 shows the fidelity F ≡ |〈�0|� (q)(θk )〉|2 of the
ground state between the exact ground state |�0〉, calculated
with the Lanczos exact diagonalization method [81–83], and
the approximate ground state |� (q)(θk )〉 obtained after the kth
iteration of optimizing the variational parameters in the circuit
with different layer depth D. For comparison, the results for
the cases with the same circuit structure but not symmetrized
are also shown. The fidelity F for both symmetrized and
nonsymmetrized cases is less than 1% when k = 1 and rapidly
increases at k ≈ 10. However, the fidelity F is significantly
worse for the nonsymmetrized cases, even when D = 4, cor-
responding to the circuit with N × D = 64 variational param-
eters. In sharp contrast, when the symmetry is imposed, the
fidelity F becomes as large as 98.8% already for the shallow-
est circuit with D = 1 and 99.9% with D = 2, clearly demon-
strating an excellent improvement by symmetrizing the state.

Figure 6 shows the variational energy of the ground
state calculated using |� (q)(θk )〉 for both symmetrized and
nonsymmetrized cases with different layer depths D in the
circuit. As a reference, the exact ground-state energy E0

calculated with the Lanczos exact diagonalization method is
also shown. As expected from the fidelity results in Fig. 5,
the converged variational energy E (q)(θk ) for the nonsym-
metrized cases is much larger than the exact value E0 even
when D = 4. On the other hand, the symmetrized case can
obtain the decently accurate energy already for D = 1 because
E (q)(θk=103 )/JN = −0.4447. The variational energy is further
improved by increasing the number of layers to D = 2, in
which E (q)(θk=103 )/JN = −0.4461 is essentially exact.

B. Excitation energy

One of the advantages of the symmetry-adapted VQE
scheme is that it can resolve the quantum numbers of the
eigenstates simply by using the character χ (q)(T̂ n) of the
desired quantum number q. Here we demonstrate this for
the lowest magnetically excited states by calculating the vari-
ational energy in the S = 1 sector at momentum q,

E (q)
S=1(θ) ≡ E [�̃ (q)(θ)] = 〈�̃(θ)|ĤP̂(q)|�̃(θ)〉

〈�̃(θ)|P̂(q)|�̃(θ)〉 , (32)

where |�̃(θ)〉 = Û(θ)|�̃〉 with

|�̃〉 =
N/2−1⊗

i=1

|s2i−1,2i〉|tN−1,N 〉 (33)

and |ti j〉 = (|0〉i|1〉 j + |1〉i|0〉 j )/
√

2. Note that |�̃〉 has the
quantum numbers S = 1 and Sz = 0 [57] and therefore |�̃(θ)〉
also preserves these quantum numbers. The quantum state
|�̃(θ)〉 can be generated from the same circuit structure in
Fig. 4 merely by setting the initial state at, for example, the
15th qubit to |0〉15, instead of |1〉15 (see also Appendix B).
Notice also that varying the values of q does not require any
change in the circuit structure, because momentum q enters
only in the character χ (q)(T̂ n) [see Eq. (21)]. Thus, the circuit
structure for the excited-state calculation remains the same as
that for the ground-state calculation.

Figure 7 shows the spin-triplet excitation energy,

�E ≡ E (q)
S=1(θ̃

∗
) − E (0)(θ∗), (34)

FIG. 7. Momentum-resolved spin-triplet (S = 1) excitations for
the spin-1/2 Heisenberg ring with N = 16. The excitation energy
�E is calculated as the difference of the variational energies for the
excited state with S = 1 and momentum q and the ground state. D is
the number of layers in the circuit (see Fig. 4). For comparison, the
exact results are also shown.

for different momentum q, where E (0)(θ∗) is the variational
energy of the ground state discussed in Sec. V A and E (q)

S=1(θ̃
∗
)

is the variational energy at the S = 1 sector with momentum
q given in Eq. (32). θ̃

∗
and θ∗ are the optimized variational

parameters by minimizing separately the corresponding en-
ergy functional, for which we take the values at the k =
1000th iteration. As shown in Fig. 7, the calculated excitation
energies agree well with the exact results already for the
shallowest circuit with D = 1. Moreover, with increasing the
number of layers to D = 2, the accuracy improves systemati-
cally, as in the ground-state-energy calculations. These results
demonstrate that the symmetry-adapted VQE scheme can also
be used to approximate low-lying excited states.

VI. CONCLUSIONS AND DISCUSSION

We have proposed a scheme to adapt the Hamiltonian
symmetry in the hybrid quantum-classical VQE approach.
The proposed scheme is to make use of the projection operator
P̂(γ )

l to project a quantum state, which is described by a quan-
tum circuit that usually breaks the Hamiltonian symmetry
in the VQE approach, onto the lth basis of the irreducible
representation γ of the Hamiltonian symmetry groupG. In the
symmetry-adapted VQE scheme proposed here, the nonuni-
tarity of the projection operator is treated as postprocessing
on classical computers. We have also introduced the “Amida
lottery” construction to implement general symmetry opera-
tions in quantum circuits. Here, each symmetry operation ĝ
is simply represented as a different product of O(N ) SWAP

operations and therefore |G| different circuits are required in
the symmetry-adapted VQE scheme.
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FIG. 8. A decomposition of the eSWAP gate that is parametrized
with θ .

Although the symmetry-adapted VQE scheme introduced
here is probably the simplest and most direct way to im-
plement the Hamiltonian symmetry in the VQE framework,
our numerical simulations for the spin-1/2 Heisenberg ring
clearly demonstrated that the improvement is significant in
terms of both the fidelity of the ground state and the ground-
state energy by showing that the circuit with the shallowest
layer already achieves the decent accuracy. Moreover, we have
demonstrated that the symmetry-adapted VQE scheme, com-
bined with the spin-quantum-number-projected circuit state,
allows us to compute, for example, the spin-triplet excitation
energies as a function of momentum.

Recently, a VQE approach with a Jastrow-type operator,
which is an exponential of a Hermitian operator and is
nonunitary in general, has been implemented using a quantum
hardware [84]. While the symmetry projection operator P̂(γ )

l
is also Hermitian and nonunitary, it is much simpler than the
Jastrow-type operator, in the sense that P̂(γ )

l is idempotent
and composed of the finite number |G| of unitary operators.
In addition, P̂(γ )

l commutes with Ĥ , which simplifies the

evaluation of the variational energy, as in Eq. (21), and its
derivative with respect to a variational parameter. We thus
expect that the symmetry-adapted VQE approach described
here can be implemented soon with a quantum hardware
(also see Appendix D). To this end, an efficient experimental
implementation of SWAP operations is highly desirable to
perform symmetry operations.
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APPENDIX A: DECOMPOSITION OF ESWAP GATE

A decomposition of the eSWAP gate to elementary gates is
given in Fig. 8. Here, R̂X (θ ) = exp(−iθ X̂/2) and R−θ/2 is the
phase-shift gate that acts on a qubit as R̂−θ/2|0〉i = |0〉i and
R̂−θ/2|1〉i = e−iθ/2|1〉i. The decomposition in Fig. 8 can be
confirmed readily in the matrix representation as

⎡
⎢⎢⎢⎢⎣

e−iθ/2 0 0 0

0 cos θ
2 −i sin θ

2 0

0 −i sin θ
2 cos θ

2 0

0 0 0 e−iθ/2

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 e−iθ/2

0 0 0 e−iθ/2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 cos θ
2 −i sin θ

2

0 0 −i sin θ
2 cos θ

2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎤
⎥⎥⎥⎦, (A1)

where the matrix in the left-hand side represents the eSWAP

gate itself [see Eq. (16)], and the matrices in the right-hand
side represent controlled-NOT (CNOT), controlled-RX , X ⊗ I ,
R−θ/2 ⊗ I , X ⊗ I , and CNOT gates, respectively, from right
to left in Eq. (A1). Here, the matrices are represented with
respect to the conventional two-qubit basis states |0〉i|0〉 j ,
|0〉i|1〉 j , |1〉i|0〉 j , and |1〉i|1〉 j . If necessary, the controlled-RX

gate can be further decomposed into elementary gates [85].
From the matrix representation on the left-hand side of
Eq. (A1), it is obvious that the eSWAP gate is equivalent to
the SWAPα gate up to a phase factor [51,52].

APPENDIX B: RVB-TYPE STATE ON A
QUANTUM CIRCUIT

For a physical interpretation of |�(θ)〉 = Û(θ)|�〉 (see
Fig. 4), it is important to understand how the SWAP and eSWAP

gates act on the singlet-pair product state |�〉. First, it should
be noticed that P̂i j alters the sign of the wave function if it
is operated on the singlet state |si j〉 formed between qubits i
and j:

P̂i j |si j〉 = |s ji〉 = −|si j〉. (B1)

This is simply because the singlet state is antisymmetric with
respect to the permutation of i and j. In other words, |si j〉 is
an eigenstate of P̂i j with eigenvalue −1. The corresponding
eSWAP operation results in

Ûi j (θ )|si j〉 = eiθ/2|si j〉. (B2)

Thus, |si j〉 is an eigenstate of Ûi j (θ ) and operating Ûi j (θ ) is
equivalent to multiplying a phase factor on |si j〉.

If a SWAP gate is operated between two qubits, each of
them contributing separately to form different singlets, then
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FIG. 9. A schematic figure of the eSWAP operation on a four qubit
system. An ellipse enclosing two circles (solid and open circles)
represents a singlet-pair state with the sign convention that, for
example, the singlet-pair state formed by qubits 1 and 2 in the
left-most side, indicated by solid and open circles, respectively, is
|s1,2〉 = (|0〉1|1〉2 − |1〉1|0〉2)/

√
2. The eSWAP operation between the

qubits 2 and 3 results in a superposition of the different singlet-pair
product states, i.e., an RVB state.

it recombines the singlet pairs as

P̂ jk|si j〉|skl〉 = |sik〉|s jl〉. (B3)

Note that the resulting singlet pairs are not necessarily formed
between the adjacent qubits (see, for example, Refs. [86–88]).
The corresponding eSWAP operation results in

Ûjk (θ )|si j〉|skl〉 = cos
θ

2
|si j〉|skl〉 − i sin

θ

2
|sik〉|s jl〉. (B4)

A crucial feature of the eSWAP gate is that it not only recom-
bines two singlet pairs but also superposes two singlet-pair
product states with parametrized amplitudes. Namely, the re-
sulting state is a superposition of the original singlet pairs and
those generated by the SWAP operation, which is essential to
generate an RVB state from the reference singlet-pair product
state |�〉, as will be discussed below. Indeed, Eq. (B4) can
already explain how an RVB state can be generated on a four-
qubit system (see Fig. 9). Notice that the state represented by
the crossed diagram such as the one in Fig. 9 can be expressed
as a linear combination of those represented by noncrossed
diagrams [89].

The reference state |�〉 used here is a dimerized state where
the singlet pairs are located on the links between adjacent
qubits (1, 2), (3, 4), . . . , (N − 1, N ). Such a state breaks the
translational symmetry. A repeated application of the eSWAP

gates, implemented in Û(θ), on |�〉 generates a large number
of different dimer coverings (configurations of spin-singlet
pairs covering all qubits) C[�(θ)], composed of both short-
range and long-range singlet pairs [90], which are superposed
in the circuit with coefficients parametrized by θ. Thus, |�(θ)〉
might be able to restore the translational symmetry that is
broken in |�〉, if the number D of layers is large enough.
The present symmetry-adapted VQE scheme, instead, restores
the spatial symmetry by applying the projection operator
on |�(θ)〉.

The trial state generated by the circuit that is used in the
present study thus has a form

|�(θ)〉 =
∑
C[�(θ)]

w(C[�(θ)])
⊗

[i, j]∈C[�(θ)]

|si j〉, (B5)

where [i, j] denotes a pair of two qubits that form |si j〉,
C[�(θ)] indicates all possible dimer coverings generated on a
given circuit, and w(C[�(θ)]) is a coefficient for a singlet-pair
product state specified by a configuration C[�(θ)]. It is now
obvious that this state in Eq. (B5) has a form of the RVB state

|RVB〉 =
∑
C

w(C)
⊗

[i, j]∈C
|si j〉, (B6)

where C denotes all possible dimer coverings and w(C) is
the corresponding coefficient. For example, if w(C) is taken
to be equally weighted for all the configurations that consist
of only nearest-neighbor singlet pairs, |RVB〉 reduces to a
so-called short-range RVB state (see, for example, Ref. [70]
for a detailed description). However, we should emphasize
the important difference between |�(θ)〉 and |RVB〉. While
all the coefficients w(C) in |RVB〉 can be set independently
for different realizations of all possible dimer coverings C,
the coefficients w(C[�(θ)]) in |�(θ)〉 are not independent
but related to each other via the variational parameters θ in
the circuit even though the repeated application of the eSWAP

gates can eventually produce all possible dimer coverings.
The RVB state has often been used as a variational wave

function for approximating the ground states of the spin-
1/2 Heisenberg model in square [91,92], triangular [93], and
kagome lattices [94]. A numerical study on small clusters
up to 26 spins [95] has shown that, by taking into account
the Marshall’s sign rule [96], the RVB state with only a few
variational parameters can accurately represent the ground
state of the spin-1/2 Heisenberg model in a square lattice
and that the (long-range) RVB state substantially improves the
variational energy and the variational state as compared to the
short-range RVB state.

Finally, we briefly note on calculations in higher spin-
quantum-number sectors assuming that N is even. One can
derive relations similar to Eqs. (B1)–(B4) for the spin-
triplet states |ti j〉 ≡ (|0〉i|1〉 j + |1〉i|0〉 j )/

√
2, |t+

i j 〉 ≡ |0〉i|0〉 j ,
and |t−

i j 〉 ≡ |1〉i|1〉 j . A difference here from the case of |si j〉 is
that the triplet states are symmetric under the SWAP operation.
By using a product state of N/2 − 1 singlet pairs and a single
triplet pair |ti j〉, instead of |�〉, as the reference state, one can
search for the lowest-energy state within the subspace of S =
1 and Sz = 0, as demonstrated in Sec. V B (see Ref. [57] for a
detailed analysis). The calculation in the higher S sectors with
finite-Sz states is also possible simply by using |t+

i j 〉 or |t−
i j 〉 for

the reference state. Finding the lowest energy in the higher
spin sectors is useful for studying, for example, whether a
magnetic long-range order exists in the thermodynamic limit
from finite-size calculations [97–100].

Such a circuit explicitly specifies the subspace labeled by
the spin-quantum numbers S and Sz, and thus is specialized
to spin-isotropic [i.e., SU(2) symmetric] Heisenberg models.
On classical computers, with a sophisticated and elaborated
algorithm that incorporates the spatial symmetry, such as the
lattice translational symmetry, and Sz conservation [81,101],
one can obtain the numerically exact ground state of the spin-
1/2 Heisenberg model up to 50 spins [102], which is far larger
than the case of 16 qubits studied here. However, S2 conser-
vation is usually not implemented because the programming
of a total-spin-preserved code is, although possible [103,104],
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FIG. 10. Schematic figure of a long-range SWAP operation on the
singlet-pair product state |�〉 for N = 16 and r = 8. Here a singlet-
pair state is represented by a blue line ending with solid and open
circles.

not easy and often computationally demanding on classical
computers. We expect that the circuit that operates eSWAP

gates on a singlet-pair product state or on a pair-product
state with higher spin-quantum numbers might be useful for
studying spin-liquid states including the RVB state as well
as excited states on quantum computers in the near future.
Regarding excitations and dynamics, we should also note that
the eSWAP operations naturally appear also in such simulations
when a Suzuki-Trotter decomposition is applied to the time-
evolution operator e−iĤt with t being time [105,106].

APPENDIX C: GENERATION OF SPIN-SINGLET PAIRS
FORMED BY DISTANT QUBITS

In this Appendix, we show that a spin-singlet pair formed
by qubits that are separated at the largest distance can still
be generated by repeated application of the nearest-neighbor
eSWAP gates on the singlet-pair product state |�〉 with D ∼
N/4 for the one-dimensional chain of N qubits under the
periodic boundary conditions.

Let us first consider how a spin-singlet state with r-lattice
spacing, e.g.,

|s1,1+r〉, (C1)

can be generated from the singlet-pair product state |�〉.
Here, to be specific, we assume that N and r are both even.
According to Eq. (B3), a long-range SWAP operation P̂2,r+1

on two nearest-neighbor spin-singlet pairs |s1,2〉 and |sr+1,r+2〉

generates such r-distant singlet pairs:

P̂2,r+1|s1,2〉|sr+1,r+2〉 = |s1,r+1〉|s2,r+2〉. (C2)

Figure 10 illustrates the generation of spin-singlet pairs
formed by distant qubits in the case of N = 16 and r = 8.

Next, we consider how the long-range SWAP operator
P̂2,r+1 can be represented as a product of the nearest-neighbor
SWAP operators. For this purpose, we make use of the “Amida
lottery” construction introduced in Sec. III C. Figure 11 shows
that, following the Amida lottery construction, the long-range
SWAP operation can indeed be expressed as a product of the
nearest-neighbor SWAP operations that form an X-like shape
on the circuit. The number NSWAP(r) of the nearest-neighbor
SWAP gates necessary in the circuit is

NSWAP(r) = 2(r − 2) + 1 = 2r − 3, (C3)

as there are r − 2 qubits between the 2nd and (r + 1)st qubits
(see Fig. 11). One can also find that, with this construction,
the depth of the circuit or the number of “time steps” τSWAP(r)
required is

τSWAP(r) = (r − 2) + 1 = r − 1. (C4)

Noticing that Ûi j (0) = Î and Ûi j (±π ) = ∓iP̂i j in Eqs. (16)
and (17), we can now readily show that the sequence Û(θ)
of the nearest-neighbor eSWAP operations in Fig. 4 with a
particular set of parameters θ = θSWAP can produce P̂2,r+1, up
to a global phase factor, i.e.,

Û(θSWAP) = ±iP̂2,r+1. (C5)

Namely, θSWAP has θi j = ±π if 〈i, j〉 corresponds to the link
on which the nearest-neighbor SWAP operation is required for
P̂2,r+1, and θi j = 0, otherwise (see Fig. 12). The global phase
factor, which is, however, irrelevant for the purpose of this
Appendix, in Eq. (C5) appears because NSWAP(r) is odd, and
depends on how the sign of θi j = ±π is chosen. The number
D(r) of layers in Û(θSWAP) required for producing P̂2,r+1

is thus

D(r) =
⌈

τSWAP(r)

2

⌉
=

⌈
r

2
− 1

2

⌉
, (C6)

where �·� denotes the ceiling function which returns the
minimum integer larger than or equal to the argument. The
argument in Eq. (C6) is divided by 2 because each layer of
Û(θ) contains two time steps (see Fig. 12).

FIG. 11. A decomposition of a long-range SWAP gate with the Amida lottery construction. (a) The long-range SWAP gate P̂2,r+1 with
r = 8. (b) A decomposition of P̂2,r+1 to the nearest-neighbor SWAP gates. The horizontal dashed lines associated with the numbers
1, 2, . . . , τSWAP(r) = r − 1 indicate the time steps. (c) Auxiliary figure that generates the decomposition of the long-range SWAP gate into
the nearest-neighbor SWAP gates shown in panel (b).
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FIG. 12. (a) The long-range SWAP gate P̂2,r+1 with r = 8 generated by a set of the nearest-neighbor SWAP gates (see Fig. 11). (b) An
equivalent operation (up to a global phase factor) can be described by the sequence Û(θSWAP ) of the nearest-neighbor eSWAP gates, where
the rotation angles θi j are either π or −π for the eSWAP gates highlighted with red thick lines, and θi j = 0, otherwise. Each dashed box
associated with the number 1, 2, . . . , or D(r) in panel (b) corresponds to the single layer of the parametrized gates indicated by shaded blue in
Fig. 4.

Under the periodic-boundary condition, the largest dis-
tance rmax is

rmax = N/2. (C7)

Therefore, to generate a spin-singlet pair formed by qubits
separated at the largest distance, the required number of
layers is

D(rmax) =
⌈

N

4
− 1

2

⌉
, (C8)

i.e., D(rmax) ∼ N/4. However, this does not necessarily imply
that all possible dimer coverings are generated with D =
D(rmax).

Finally, we note that since θ in general takes arbitrary
values, |�(θ)〉 = Û(θ)|�〉 is a superposition of many dif-
ferent singlet-product states represented by different dimer
coverings, among which spin-singlet pairs formed by distant
qubits are certainly contained, as discussed above, although
only the nearest-neighbor eSWAP gates are applied in the
circuit.

APPENDIX D: SIMULATION ON QUANTUM HARDWARE

To validate the relevance of the RVB-type wave function as
a trial wave function on quantum computers, in this Appendix
we estimate the ground-state energy for a small system (N =
4) using the ibmqx2 chip, which consists of five qubits, avail-
able through an online quantum computing network provided
by IBM (IBM Q 5 Yorktown) [107] with the Qiskit PYTHON

API for programming the device [108].
Let us first review the ground-state properties of the spin-

1/2 Heisenberg model on the N = 4 ring. With the labeling of
qubits shown in Fig. 9, the exact ground state |�0〉 is given by

|�0〉 = 1√
3

(|s1,2〉|s3,4〉 + |s4,1〉|s2,3〉). (D1)

|�0〉 is a superposition of the two singlet-pair product
states with the same probability amplitude and is cor-
rectly normalized because these singlet-pair product states
are not orthogonal to each other but have an overlap

of (〈s4,1|〈s2,3|)(|s1,2〉|s3,4〉) = 1/2. The corresponding exact
ground-state energy is

E0 = −2J. (D2)

In terms of the expectation value of the Hamiltonian, E0 is
expressed as

E0 = J

4

N∑
i=1

〈�0|(X̂iX̂i+1 + ŶiŶi+1 + ẐiẐi+1)|�0〉, (D3)

where i + 1 should be identified as 1 if i = N because of
the periodic-boundary conditions. Since |�0〉 is spin symmet-
ric and translationally invariant, Eq. (D2) can be rephrased
in terms of the exact nearest-neighbor spin correlation
functions as

〈�0|X̂iX̂i+1|�0〉 = 〈�0|ŶiŶi+1|�0〉 = 〈�0|ẐiẐi+1|�0〉

= E0

3N (J/4)
= −2

3
(D4)

for any i.
Next we show that, up to a global phase factor, |�0〉 can

be produced by applying two eSWAP gates on the singlet-pair
product state |s1,2〉|s3,4〉. A straightforward calculation with
Eqs. (B2) and (B4) shows that

Û34(θ2)Û23(θ1)|s1,2〉|s3,4〉 = eiφ |�0〉, (D5)

where

θ1 = 2 arccos

(
−

√
2

3

)
= 1.6081734479693928π, (D6)

θ2 = 2 arccos

(
−

√
1

3

)
= 1.3918265520306072π, (D7)

and eiφ =
√

2
3 −

√
1
3 i. Hereafter, we ignore the global phase

factor eiφ because it is irrelevant for the energy estimation.
Now we consider the energy estimation on quantum com-

puters. Equation (D4) implies that evaluating one of these
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FIG. 13. The circuit used for evaluating Re〈�0|X̂1X̂2|�0〉 = Re〈�̃0|X̂1X̂2|�̃0〉 on the ibmqx2 chip. The state |�̃0〉 = Û23(θ1)|s1,2〉|s3,4〉 is
generated on the first to fourth qubits. The parts of the circuit corresponding to |s1,2〉|s3,4〉 and Û23(θ1) are highlighted with shaded green and
blue boxes, respectively. The rotation angles for RY and RZ gates are also indicated below these gates.

correlation functions suffices for estimating E0. Here, we
evaluate the correlation function 〈�0|X̂1X̂2|�0〉 by using the
Hadamard test as

Re〈�0|X̂1X̂2|�0〉 = p0 − p1, (D8)

where

p0 = 1
2 (1 + Re〈�0|X̂1X̂2|�0〉) (D9)

and

p1 = 1
2 (1 − Re〈�0|X̂1X̂2|�0〉) (D10)

are probabilities of observing 0 and 1, respectively, by mea-
suring out the ancilla (0th) qubit in Fig. 13 [109]. Among
the correlation functions, X̂1X̂2 is chosen because CNOT gate
is implemented as one of the basis gates on the ibmqx2
chip. Moreover, since X̂1X̂2 does not involve qubits 3 and
4, operation of Û34(θ2) is not necessary for measurements
of X̂1X̂2. Namely, since [X̂1X̂2, Û34(θ )] = 0 for any θ , the
correlation function can be simplified as

〈�0|X̂1X̂2|�0〉 = 〈�̃0|Û34(θ2)†X̂1X̂2Û34(θ2)|�̃0〉
= 〈�̃0|X̂1X̂2|�̃0〉, (D11)

where

|�̃0〉 = Û23(θ1)|s1,2〉|s3,4〉. (D12)

On the ibmqx2 chip, we implement a circuit that generates
|�̃0〉 for measurements. The eSWAP gate corresponding to
Û23(θ1) is implemented with the decomposition shown in
Fig. 8, where the controlled-RX gate is further decomposed
in the way described in Ref. [85].

Table I shows the probabilities p0 and p1, and esti-
mated values of Re〈�0|X̂1X̂2|�0〉 from 16 samples, each of
which consists of 1024 measurements. The negative values
of Re〈�0|X̂1X̂2|�0〉 imply the antiferromagnetic correlation
between the nearest-neighbor spins. In the ideal (noiseless)
case, the probabilities are p0 = 1/6 and p1 = 5/6. Averaging
over the results of the 16 samples yields Re〈�0|X̂1X̂2|�0〉 =
−0.66894(549) and hence E0/J = −2.00682(1647), where
the numbers in parentheses represent the standard error of
the mean for the last digits. Therefore, the exact energy is
obtained within the statistical error.

It is interesting to note that the ground-state energy ob-
tained here is significantly better than the one estimated with
the hardware-efficient ansatz reported in Ref. [13], where

the ground-state energy is approximately −1.5J [111]. The
substantial improvement found here over the circuit based
on the hardware-efficient ansatz is highly instructive and
suggests that the construction of quantum circuits based on
the RVB-type wave function, which takes into account the
spin rotational symmetry, is a better strategy to describe the
ground state (and also excited states) of the Heisenberg model
on quantum computers.

Finally, we comment on quantum simulations of the same
system with the symmetry-projection scheme. Unfortunately,
we have found it difficult to implement the symmetry op-
erators on a real quantum device at present. The difficulty
is due to controlled-SWAP (Fredkin) gates, each of which is
decomposed into many CNOT gates and one-qubit rotations,
causing formidably noisy results. An efficient implementation
of the controlled-SWAP (Fredkin) gate in a quantum device, as
demonstrated in Ref. [112], is thus highly desirable.

TABLE I. Probabilities p0 and p1 obtained from quantum sim-
ulations on the ibmqx2 chip. The values on each row are obtained
from 1024 measurements. Ideal (noiseless) results are also shown
in the bottom row. Data were obtained on 6 April 2020 (EST)
[110].

Sample p0 (%) p1 (%) Re〈�0|X̂1X̂2|�0〉
1 15.430 84.570 −0.69140
2 17.969 82.031 −0.64062
3 15.625 84.375 −0.68750
4 16.309 83.691 −0.67382
5 16.016 83.984 −0.67968
6 15.430 84.570 −0.69140
7 17.578 82.422 −0.64844
8 18.457 81.543 −0.63086
9 17.090 82.910 −0.65820
10 17.969 82.031 −0.64062
11 16.602 83.398 −0.66796
12 17.090 82.910 −0.65820
13 16.992 83.008 −0.66016
14 15.527 84.473 −0.68946
15 16.113 83.887 −0.67774
16 14.648 85.352 −0.70704
Mean 16.553(274) 83.447(274) −0.66894(549)
Ideal 16.667 83.333 −0.66667
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