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As has been shown elsewhere, a reasonable model of the loss of entanglement or correlation that occurs
in quantum computations is one which assumes that they can effectively be predicted by a framework that
presupposes the presence of irreversibilities internal to the system. It is based on the steepest-entropy-ascent
principle and is used here to reproduce the behavior of a controlled-PHASE gate in good agreement with
experimental data. The results show that the loss of entanglement predicted is related to the irreversibilities in a
nontrivial way, providing a possible alternative approach that warrants exploration to that conventionally used to
predict the loss of entanglement. The results provide a means for understanding this loss in quantum protocols
from a nonequilibrium thermodynamic standpoint. This framework permits the development of strategies for
extending either the maximum fidelity of the computation or the entanglement time.
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I. INTRODUCTION

Faster speeds and the ability to solve hitherto unsolvable
problems are the motivations driving research on how to build
quantum computers. The use of information theory in quan-
tum systems goes back more than 30 years [1–6]. It has had
two principal objectives: the characterization of information
in a quantum system [3–5], and the use of a quantum system
to simulate a useful computation [6,7]. Current approaches to
quantum computation exploit the phenomena of entanglement
and superposition to create a paradigm that is more powerful
than that of classical computing for certain types of problems
[8–11]. However, one of the main problems in quantum com-
putation is the loss of entanglement or correlation, which can
take place at different timescales depending on the dynamics
of the system [12]. Thus, successful implementation of a
quantum computer requires the control of this loss.

Different experimental strategies for suppressing the loss
of entanglement have been proposed and implemented over
the last couple of decades. In Ref. [13], ultraclean and nuclear-
spin free materials are used to reduce charge and spin noise,
while in Ref. [14] dynamical decoupling through echolike
sequences is proposed to protect the information storage in
the qubit from environmental fluctuations. Another proposed
approach is to use dynamical decoupling to reduce the error
using real-time feedback [15]. Barthel et al. [16] suggest
that the loss-of-entanglement recovery in singlet-triplet qubits
can be achieved by using dynamical decoupling. Still another
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approach is to control the nuclear spin bath conditions by
suppressing the qubit dephasing with a nuclear state prepara-
tion [17]. Recent research has also explored how a quantum
computer can be controlled using electrostatically coupled
quantum dots [18–22]. This has resulted in new ways of
constructing and manipulating qubits and has increased our
understanding of the mechanisms involved in the evolution of
quantum information systems.

In addition to experimental techniques, dealing with the
loss of entanglement requires understanding how it is gen-
erated and how it is related to the system’s state evolution.
Thus, theoretical approaches are also needed to gain a clearer
understanding of this phenomenon. A common model used
to describe this loss is to assume that the system of interest
interacts with a thermal bath (reservoir or environment) and
that the loss of entanglement is a consequence of the weak
interactions that exist between the system and the bath. Using
the Markov approximation, the state evolution of the system
interacting with the bath is modeled using a linear Marko-
vian quantum master equation of the Kossakowski-Lindblad-
Gorini-Sudarshan type [23–25]. This methodology is used
in Ref. [26] to predict the loss of entanglement during the
evolution of a pair of coupled quantum dissipative oscillators,
and in Ref. [27], this methodology is used to predict the loss
of entanglement on initially entangled qubits. Another model
for predicting this loss is Milburn’s model, which assumes
that the system evolves as a sequence of random unitary
transformations for short periods of time [28]. This model
is used in Ref. [29] to study the evolution of a two-qubit
quantum swap gate.

Other recent models of decoherence due to hyperfine inter-
actions have shown some success in modeling the dephasing
and the Hahn echo revival phenomenon occurring in quantum
systems in the presence of low-magnetic fields (Bext < 3 T).
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For example in Ref. [30], the nuclear-spin-induced decoher-
ence is explained with a semiclassical model which accounts
for the dynamics of the electron and nuclear spins to predict
the effects due to nuclear hyperfine interactions. This effect is
dominant in the presence of magnetic fields under 400 mT.
The model does a good job of predicting the Hahn echo
revivals and is based on the model of Ref. [31], which is a
decoherence model for a spin qubit interacting with a nuclear
spin bath that shows some qualitative and quantitative success
in predicting the effects of the hyperfine interactions caused
by nuclear spins in the presence of low-magnetic fields and
short timescales. They propose that for these conditions, the
differences in the Zeeman energies between interacting nuclei
are the main source of decoherence. In Ref. [30], a pair-
correlation method for electron-nuclear-spin dynamics is pre-
sented as an explanation of the electron spin decoherence due
to hyperfine interactions. It offers an explanation of quantum
decoherence in terms of entanglement with a thermal bath.

Still other models describe the loss of entanglement with-
out dissipation where the only effect is that of elementary
quantum mechanics and equilibrium statistical mechanics
[32,33]. Yet another approach is that based on the frame-
work of steepest-entropy-ascent quantum thermodynamics
(SEAQT) [34–36], which has been shown to be a reasonable
approach for describing the phenomenon of the loss of entan-
glement as well as the coherence present during the evolution
of quantum composite systems [37] such as those used in
quantum gate operations.

It is this last approach, the SEATQT framework [34–46],
which is used here to model the two-qubit operation of Shul-
man et al. [19] and which shows good agreement with the
experimental results given in Ref. [19]. In doing so, it provides
an understanding of the loss of entanglement in the quantum
protocols from a quantum thermodynamic standpoint [37].

The rest of the paper is organized as follows. Section II
provides a description of the controlled-PHASE (CPHASE) gate
of Shulman et al. [19], while Sec. III provides a description
of the SEAQT model and some measures of entanglement
and the closeness of two states. Section IV then presents the
results and discussion. Section V presents a presentation of
the relationship between the dissipative time and the decay
rate for the particular CPHASE gate studied. Finally, Sec. VI
provides some conclusions.

II. CPHASE GATE

The quantum protocol is investigated by Shulman et al.
[19]. The experiments are based on the implementation of a
singlet-triplet (S-T0) qubit via the confinement of two elec-
trons to a double quantum dot (QD) in a two-dimensional
electron gas situated below a GaAs-AlGaAs heterostructure
surface [19]. The CPHASE gate protocol is shown in Fig. 1 and
is as follows. The qubits are initialized in the |S〉 state and then
a π/2 rotation around the x axis is applied using a magnetic
field gradient of �Bzi/2π = 30 MHz between the electrons
with J (ε)i = 0. After this, the qubits are allowed to evolve
during a time τ/2 with J1/2π ≈ 280 MHz and J2/2π ≈
320 MHz � �Bz, causing the qubits to rotate around the
z axis. Next, with Ji = 0, a π rotation is applied around
the x axis, which causes the qubits to decouple from the

FIG. 1. Controlled-PHASE quantum gate protocol by Shulman
et al. [19].

environment, while still maintaining the coupling with each
other. Subsequently, the qubits are allowed to evolve during
a time τ/2 after which measurements are performed on the
state of the system [19]. Several experiments are performed
in terms of the difference in energy, ε, between the levels of
the QDs, and its implications on the outcome are measured
in terms of the fidelity and concurrence, both measures of the
coherence.

The Hamiltonian of this CPHASE gate is represented by

HCPG = h̄

2
[J1(σz ⊗ I ) + J2(I ⊗ σz )

+ J12

2
(σz − I ) ⊗ (σz − I )

+�Bz,1(σx ⊗ I ) + �Bz,2(I ⊗ σx )], (1)

where σx, σy, and σz are the standard Pauli matrices; Ji (i =
1, 2) is the exchange splitting; �Bz,i (i = 1, 2) is the magnetic
field gradient; and J12 is the two-qubit coupling which is
proportional to the product of the dipole moments for each
qubit. The first two terms in Eq. (1) produce the Zeemann
effect, and, as is pointed out in Ref. [19], the third term of
the Hamiltonian is responsible for the coupling of both qubits
that produces the entangled state. The last two terms give
rise to the dynamical decoupling. In the rotational frame, the
Hamiltonian is written as

HCPG,rot = h̄
J12

4
(σz − I ) ⊗ (σz − I ), (2)

which is the relevant term in the Hamiltonian given by Eq. (1)
responsible for the entanglement.

III. MATHEMATICAL MODEL

A. The SEAQT framework

In the SEAQT framework, the dynamics of the density
or “state” operator, ρ, of a quantum system is governed by
both a symplectic (unitary) and a relaxation (nonunitary) term
that, respectively, capture both the reversible and irreversible
dynamics of state evolution. The former is the so-called von
Neumann term of quantum mechanics, while the latter is
based on the principle of steepest entropy ascent (SEA),
which at every instant of time drives the state evolution in the
direction of maximal entropy increase. Note that the view of
physical reality assumed by this framework is one in which
the nonlinear dynamics of state relaxation are intrinsic to the
system and not a consequence of interactions with an environ-
ment. This contrasts with the standard open quantum system
model presented in the next section. The SEAQT equation
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of motion for a general quantum system [35] consisting of
two-qubits is written as

dρ

dt
= − i

h̄
[H, ρ] −

(
1

τD1

D1 ⊗ ρ2 + 1

τD2

ρ1 ⊗ D2

)
, (3)

where H and ρ are the Hamiltonian and the density operator
for the composite system, the ρJ (J = 1, 2) are the density
operators for qubits 1 and 2, the τDJ (J = 1, 2) are internal-
relaxation times that are positive constants or positive func-
tionals of the ρJ , and the DJ (J = 1, 2) are the dissipation (or
relaxation) operators for each qubit. The latter are Hermitian
and written as

DJ = 1
2 [

√
ρJ D̃J + (

√
ρJ D̃J )†], (4)

where the symbol † signifies the adjoint and each D̃J for this
two-qubit system is expressed as

D̃J =

∣∣∣∣∣∣
√

ρJ (B ln ρ)J √
ρJ (I )J √

ρJ (H )J

(I, B ln ρ)J (I, I )J (I, H )J

(H, B ln ρ)J (H, I )J (H, H )J

∣∣∣∣∣∣∣∣∣∣ (I, I )J (I, H )J

(H, I )J (H, H )J

∣∣∣∣
. (5)

Here (·, ·)J is the Hilbert-Schmidt inner product defined on
Hilbert space HJ by (F, G)J = TrJ [ρJ{(F )J , (G)J}] with J =
A and B, (F )A = TrB[(IA ⊗ ρB)F ], and (F )B = TrA[(ρA ⊗
IB)F ]. In Eq. (5), B is the projector onto the range of ρ, i.e.,
the idempotent operator that results from summing up all the
eigenprojectors of ρ belonging to its nonzero eigenvalues. For
more details, the reader is referred to Refs. [34,36].

The relaxation is directly related to the entropy via the
standard von Neumann entropy given by

S = −kBTr(ρ ln ρ), (6)

where kB is the Boltzmann constant so that the rate of entropy
generation is expressed as

dS

dt
= −kB

d

dt
Tr(ρ ln ρ), (7)

dS

dt
= −

∣∣∣∣∣∣
(B ln ρ, B ln ρ)J (B ln ρ, I )J (B ln ρ, H )J

(I, B ln ρ)J (I, I )J (I, H )J

(H, B ln ρ)J (H, I )J (H, H )J

∣∣∣∣∣∣∣∣∣∣ (I, I )J (I, H )J

(H, I )J (H, H )J

∣∣∣∣
.

(8)

As indicated in Ref. [19] (Supplementary Information), the
evolution of the state of the S-T0 qubit system starts with
a Bloch vector modulus of 0.95. This value is used here as
the initial state for the evolution of the SEAQT equation of
motion.

B. The open quantum system model

An alternative approach to the one proposed above is to use
one of the equations of motion of the theory of open quantum
systems [47]. In this approach, the equation of motion uses
a reduced density operator that may be viewed as originating
from the concept of typicality as discussed in Ref. [41]. For
Markovian master equations of the Lindblad type [23,47], the

open quantum system model assumes that weak coupling, i.e.,
statistical perturbations (the so-called Born-Markov approxi-
mation), exists between the system and its surroundings. This
approach, thus, relies on a partitioning between the primary
system and the environment and assumes that the total state
evolution of the composite system-environment is unitary and
generated by a composite Hamiltonian. The evolution of the
system state alone is then based on a reduced dynamics,
which leads to the appearance of a so-called “dissipative”
state evolution. Of course, as shown by Nakatani and Ogawa
[25], a limitation of this approach is that the Born-Markov
approximation for obtaining evolution equations cannot be
used for composite systems in the strong-coupling regime.

The equation of motion of the Lindblad type used here is
expressed as

dρs

dt
= − i

h̄
[H, ρs] + γ

2

∑
j

(2LjρsL
†
j − L†

j L jρs − ρsL
†
j L j ),

(9)
where H is the Hamiltonian, ρs is the reduced density oper-
ator of the system, the Lj are the Lindblad operators which
represent the coupling of the system with the environment,
and γ is the spontaneous decay rate. Note that the right-hand
side of Eq. (9) is a linear superoperator operating on ρs

and represents a semigroup. This contrasts with the SEAQT
equation of motion which represents a full group and for
which the dynamics of its dissipation operator is nonlinear.
Furthermore, even though the open quantum system model is
based on the orthodox belief that unitary (linear) dynamics
is foundational and that as a consequence the second law
of thermodynamics emerges from quantum mechanics, this
assumption cannot, as pointed out in Refs. [48–53], rule out
the possibility of a nonlinear dynamics such as that seen in
the SEAQT formulation since “if the pure states happen to
be attractors of a nonlinear evolution, then testing the unitary
propagation of pure states alone cannot rule out a nonlinear
propagation of mixtures” [48].

Now, for the particular case studied here, the Lindblad
operators are given by [54]

L1 = I ⊗ Lphase, (10)

L2 = Lphase ⊗ I, (11)

where

Lphase =
√

λ σz (12)

and λ is the parameter defining the strength of the phase
damping.

C. Measures of entanglement and closeness

To verify the entanglement of the qubits, the concurrence
defined as

C(ρ) = max{0, λ4 − λ3 − λ2 − λ1} (13)

is used. Here the λi are the eigenvalues, sorted from smallest
to largest, of the matrix R = √√

ρρ̃
√

ρ, where ρ̃ = (σy ⊗
σy)ρ∗(σy ⊗ σy) and ρ∗ is the complex conjugate of ρ. A
positive value between 0 and 1 for C(ρ) indicates that en-
tanglement between the qubits is present, while a value of
C(ρ) � 0 means that there is no entanglement.
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To measure the closeness of the desired state, the Bell state
fidelity is used. It is expressed as

F = 〈
ent|ρ|
ent〉, (14)

where |
ent〉 = exp [iπ (I ⊗ σy + σy ⊗ I )/8]|�−〉 is a gener-
alized Bell state, while |�−〉 = 1√

2
(|SS〉 − |T0T0〉) is a Bell

state. Here σy is the y-Pauli operator, I is the identity operator,
and |S〉 = 1√

2
(|↑↓〉 − |↓↑〉) and |T0〉 = 1√

2
(|↑↓〉 + |↓↑〉) are

the basis states for the S-T0 (singlet-triplet) qubits. For all
nonentangled states, F � 0.5 [19]. Thus, the generalized Bell
state differs from the Bell state by a unitary transformation.

IV. RESULTS AND DISCUSSION

A. Concurrence and fidelity

Experimentally, it has been demonstrated that the concur-
rence decreases with time and only keeps a positive value for
short periods of time. Figure 2 shows the experimental values
reported in Ref. [19] for the concurrence and fidelity of the
final state as a function of the duration τ of the CPHASE gate
operation. Also seen in this figure are the predictions obtained
from the SEAQT formulation as well as those from the Lind-
blad and von Neumann equations. The measured data, i.e.,
each blue cross, appearing in Fig. 2 is obtained in Ref. [19]
for a maximum entanglement time, τent, corresponding to a
difference in energy, δε, of 80 μV between the levels of the
left and right QDs. As seen, the experimental data decreases
its amplitude with each successive oscillation. These results
suggest that, as time passes, the entanglement between qubits
is lost at a value of the CPHASE duration time τ greater than
about 240 ns. At this point the difference in the R matrix
eigenvalues shown in Eq. (13) becomes negative and stays
negative.

Figure 2(a) shows the results for the concurrence. The
green dashed curve is the result obtained here with the
von Neumann equation, i.e., the symplectic part only of
the SEAQT equation of motion. As seen, the results of the
von Neumann equation never decrease, oscillating between
zero and some maximum amplitude. The predictions of the
Lindblad equation are shown by the red dashed-dotted curve.
As can be seen, these predictions are in good agreement
with experimental data for the first and second oscillations
but start to deviate for subsequent oscillations (after about
600 ns). However, since only part of the first oscillation is
positive, the Lindblad equation predicts the loss of entan-
glement between the qubits well. The SEAQT predictions
are shown by the orange solid curve. These predictions are
also in good agreement with the experimental data through-
out the entire evolution. This suggests that both models
resulting from very different views of physical reality are
able to predict the concurrence and hence the entanglement
in time.

The fidelity is used here to measure how far the final state
is from the expected final state (i.e., in our case, the Bell
state) for a given protocol. Figure 2(b) presents a comparison
between the final fidelity obtained with the experimental data
of Ref. [19] and those determined by the SEAQT equation
of motion, the von Neumann equation of motion, and the
Lindblad equation. Again, the predictions made with the von
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FIG. 2. (a) Difference in the sorted eigenvalues of the R matrix
for δε = 80 μV of the final state density operator ρ(τ ) for different
values of the CPHASE gate duration time τ . A positive value indicates
entanglement. (b) The fidelity with which the final state density
operator resembles that of the Bell state for different values of the
duration time τ .

Neumann equation oscillate without any net loss of fidelity. In
contrast, the Lindblad predictions follow the decrease seen in
the experimental data, although again with some deviations
in amplitude after the first oscillation. The SEAQT predic-
tions also follow the experimental data very closely over the
entire evolution but more closely than the Lindblad predic-
tions. As before, this suggests that the SEAQT framework
is a viable approach for predicting the loss of entanglement
in time.

Figure 3 shows a comparison between the results predicted
by the SEAQT and Lindblad equations of motion for different
values of δε and the experimental results. Here, both equations
of motion, i.e., the SEAQT and Lindblad, predict that the
variation in δε to negative values increases the maximum
entanglement time τent without, however, an improvement in
the maximal value of the fidelity obtained, which is consistent
with what is observed experimentally.
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FIG. 3. Fidelity for different values of δε as a function of the
CPHASE duration time τ . The solid black line represents the SEAQT
prediction and the black dotted line represents the Lindblad predic-
tion for the different values of δε.

B. Thermodynamics of the CPHASE protocol

In Fig. 4, the final entropy and entropy generation rate
(equivalent in this case to the rate of entropy change) for the
SEAQT framework of each CPHASE gate execution as a func-
tion of the CPHASE gate duration time τ are presented for four
different values of δε. The entropy and entropy generation are
central to the SEAQT equation of motion, which determines
the unique nonequilibrium thermodynamic path of state evo-
lution based on maximal entropy generation. The direction
taken is either towards a state of stable equilibrium for which
both the symplectic and dissipative terms of the equation of
motion go to zero or towards a stationary state in which only
the latter term vanishes. As seen in Fig. 4(a), the final entropy
values are not monotonically increasing, while in Fig. 4(b) it
is observed that, for duration times greater than 1000 ns, the
entropy generation rate goes to zero indicating that a state of
stable equilibrium is reached for each value of δε. This is also
observed in Fig. 5 where the 4 × 4 matrices corresponding
to the von Neumann [Fig. 5(a)] and dissipative [Fig. 5(b)]
terms of the SEAQT equation of motion are shown for the
final state of four different values of τ with δε = 80 μV. It is
observed that for the value of τ = 1400 ns, the von Neumann
and dissipative terms are effectively zero and, thus, the final
state is that of stable equilibrium. For the other cases, i.e.,
τ = 400, 700, and 1000 ns, neither the dissipative nor the von
Neumann term is zero and, thus, continued evolution of these
final states is possible.

In looking at both Figs. 4(b) and 3 for the case of, for
example, δε = 100 μV, the points of maximum rate of en-
tropy generation at a given duration time τ are related to the
points of minimum fidelity. This is true for the other values of
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FIG. 4. Final (a) entropy and (b) entropy generation rate (or
equivalently the rate of entropy change) predicted by the SEAQT
equation of motion for different values of δε and the duration time
τ . These quantities are plotted in dimensionless form as S/kB and
dS/dt/kB.

δε as well. In other words, as the rate of entropy generation
increases, the fidelity decreases and vice versa. In a similar
fashion, the regions in Fig. 4(a) where the curves for the
entropy flatten or begin to flatten coincide with these changes
in the entropy generation rate and the fidelity, indicating a
close connection between the final entropy and fidelity of the
CPHASE gate operation.

Figure 6 shows the results for the entropy and rate of
entropy change [55] of the open system model as a function
of the CPHASE gate duration time, τ , for four different values
of δε. As can be seen in Fig. 6(a), for all values of δε, the final
entropy of the reduced system monotonically increases as a
consequence of the Lindblad operators. This contrasts with the
nonmonotonic increase of the final entropy predicted by the
nonlinear dynamics of the SEAQT equation of motion seen in
Fig. 4(a). Furthermore, with the Lindbald equation, increasing
the rate of entropy change is only a consequence of the
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FIG. 5. Final state of the CPHASE protocol in terms of the (a) von
Neumann and (b) dissipative terms of the SEAQT equation of motion
for τ = 14 ns (left panels), τ = 700 ns (middle left panels), τ =
1000 ns (middle right panels), and τ = 1400 ns (right panels). A
value of δε = 80 μV is considered. These values are normalized
using a time of 1 μs.

particular value of γ used for each δε. Figure 6(b) shows the
rate of entropy change for the same four values of δε. As seen,
this rate monotonically decreases from a maximum value to a
value that is almost zero at about τ = 1400 ns. Furthermore,
it is always non-negative. Note that this monotonic decrease
also contrasts, as it did with the final entropy, with the results
of the nonlinear dynamics of the SEAQT equation of motion
seen in Fig. 4(b).

C. Entanglement time prediction

The modeling framework presented in this paper allows
one to predict the fidelity of the CPHASE protocol without
requiring the use of an artificial noise as is typically done
(e.g., see Nichol et al. [22]). Instead, the only free parameter
required is the dissipative time that does not alter the kinetic
path predicted by the SEAQT equation of motion but instead
simply indicates how fast the state of the system moves along
this path to either a state of stable equilibrium or some other
stationary state (e.g., a Bell diagonal state). Figure 7 shows the
relationship between the variation of the electric potential δε

and the maximum entanglement time τent obtained from the
experiment (blue dashed curve) in Ref. [19] and the selected
dissipative time τD used in Eq. (3) (red dotted curve) where
it is assumed that τD1 = τD2 = τD. It is interesting to note
that both τent and τD follow an almost linear relation with
respect to the electric potential from the quantum protocol.
This behavior implies that as the electric potential is increased
the system evolves towards stable equilibrium faster. As is
observed in Fig. 4 for the case of δε = 100 μV, the entropy
evolves to stable equilibrium faster than for the case of δε =
−20 μV.

It is interesting to note that the maximum entanglement
time proposed in Ref. [19] produces the maximally entangled
final state as a function of the electric potential. However this
choice is not completely in agreement with the maximum
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FIG. 6. Final (a) entropy and (b) rate of entropy change predicted
by the Lindblad equation of motion for different values of δε and the
duration time τ . These quantities are plotted in dimensionless form
as S/kB and dS/dt/kB.

fidelity value and, thus, produces the slight deviation from
linear behavior seen in Fig. 7 between the electric potential
and the maximum entanglement time.

V. RELATION BETWEEN THE DISSIPATIVE TIME
AND THE DECAYING RATE

Even though the dissipative time τD used here is based
on experimental values, a theoretical expression can be de-
veloped for this particular application by relating it to the
transition probabilities determined with Fermi’s golden rule
(e.g., Refs. [56,57]). For time-independent Hamiltonians of
first order in perturbation theory, the transition probability is
given by

Pi j (t ) = 1

h̄2

∣∣∣∣
∫ t

0
exp

[
i

h̄
(E f − Ei )

]
Wf i(t

′)
∣∣∣∣
2

, (15)

where the Ei are the eigenvalues of the noninteracting Hamil-
tonian H0, and the Wf i are the matrix elements of the
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FIG. 7. Dissipative time τD, maximum entanglement time τent ,
and transition time ti j = 1/J12 as a function of the electrical potential
of the quantum gate.

perturbation Hamiltonian H ′. Since J1, J2 � J12 for the
CPHASE gate, the only nonzero matrix element is W44 = h̄J12

and, thus, the transition probability given by Fermi’s golden
rule reduces to Pi j (t ) = J12t , and the decay rate becomes

i j (t ) = d

dt
Pi j (t ). (16)

The inverse of this decay rate can then be identified with
the transition time, and for the CPHASE gate results in

ti j = 1

J12
, (17)

which matches in order of magnitude with the selected dissi-
pative time. Figure 7 shows the linear behavior of ti j , τD, and
τent as a function of δε. As can be seen, ti j and τD have almost
the same slope, suggesting that they are related by an average
scaling factor, which in this case is approximately 3.

VI. CONCLUSIONS

In this paper, an approach based on the principle of steepest
entropy ascent is used to predict the loss of entanglement or
correlation that takes place during the state evolution of a
CPHASE quantum gate composed of two electrons in a double
quantum dot. In addition, the maximum entanglement time is
shown to be proportional to the dissipative time, which in turn
determines how fast the system state evolves along the unique
thermodynamic path determined by the SEAQT equation of
motion. The faster it moves, the greater the loss in fidelity is,
i.e., the greater the final state’s deviation from a Bell state is.

The effects on gate behavior of electric potential are also
demonstrated, showing that increases in potential coincide
with increases in the rates of entropy generation. Thus, the
greater the two-qubit coupling J12 is, the greater the rate
of entropy generation and as a consequence the smaller the
maximum entanglement time. These results suggest that ir-
reversibilities as defined within the SEAQT framework are
directly related to the entanglement time.

As pointed out in Ref. [22], improving the maximum
fidelity can be affected via the initial preparation of the
qubits. The SEAQT model verifies this conclusion in good
agreement with the experimental results, i.e., lower rates
of entropy generation are achieved by increasing the initial
fidelity of each qubit. However, the entanglement time does
not depend on the initial states of the qubits but instead on
the qubit coupling. For the particular case presented here,
the prediction using Fermi’s golden rule suggests that the
entanglement time is related to the dissipation time so that,
as J12 increases, the dissipation time decreases, resulting in
greater irreversibilitites. Minimizing the later would, thus,
extend the entanglement time. If not possible, predicting the
latter for a given coupling would provide the basis for error
correction.

Finally, the results obtained suggest that the SEAQT
framework is a reasonable, physically (as opposed to
stochastically, e.g., Ref. [22]) based approach for predicting
the loss of entanglement of quantum computing systems. Of
course, the full extent of its capabilities to model these and
other related phenomena is still being explored and is the
subject of future work.
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APPENDIX: PROOF OF THE PRESERVATION
OF DENSITY OPERATOR POSITIVITY BY THE

SEAQT EQUATION OF MOTION

To demonstrate the preservation of density matrix pos-
itivity by the SEAQT equation of motion, two proofs are
presented here: a heuristic one and a proof based on a theorem
developed by Weinberg [58] dealing with general symmetry
transformations forming groups. The latter suggests that it is
sufficient and necessary, at least for density matrix transfor-
mations represented by compact groups, to demonstrate that a
given zero eigenvalue belonging to a particular eigenvector of
the density matrix

ρ|v〉 = 〈v|ρ = 0 (A1)

remains zero after a time perturbation. This implies that, if ρ

starts its time evolution with all its eigenvalues positive, they
will remain non-negative at all times since anyone of these
that decreases to zero will remain so from that moment on.
Thus, to first order in the perturbation, ρ preserves the zero
eigenvalue subject to the dynamics of the SEAQT equation
of motion. Now, to prove that in general a zero eigenvalue
remains zero during a time evolution, it is sufficient to prove
that it remains zero after a time perturbation of the density
matrix for the correlated and uncorrelated cases.
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For indivisible systems, the density matrix can be written,
without loss of generality, in the Pauli basis as [59]

ρ = 1
4 aμνσμ ⊗ σν, (A2)

where σμ = {I, σ1, σ2, σ3} and the coefficients aμν contain all
the physical information of the density matrix. In fact, the
components a0, j = �uT and a j,0 = �v (for j = 1, 2, 3) are the
Bloch vector components of subsystems 1 and 2, respectively,
and the terms ai j for i = {1, 2, 3} are a measure of the corre-
lations between subsystems. For the case when there are no
correlations, the elements ai j are all zero, and it is observed
that the density matrix can be written as

ρ = ρ1 ⊗ I + I ⊗ ρ2. (A3)

Here, the Hilbert space is given by H = H1 ⊗ H2, and the
eigenvector of Eq. (A1) is given by |v〉 = |v1〉 ⊗ |v2〉. To first
order, the density matrix for the uncorrelated case changes
over time t + δt as

〈v|ρ(t + δt )|v〉 = −〈v| 1

τD1

D̃1 ⊗ ρ2 + 1

τD2

ρ1 ⊗ D̃2|v〉δt

(A4)

for τDJ ∈ R+. For a large τDJ the perturbation vanishes and the
density matrix is mapped to a positive matrix, as desired. For
a nonzero perturbation, the D̃J operator can be written as

D̃J = √
ρJ (B log ρ)J + α

√
ρJ + β

√
ρJHJ (A5)

for α, β ∈ C. Thus, to maintain the positiveness of ρ it is a
sufficient condition that the term

1

τD1

(ρ1(B log ρ)1 + α∗
1ρ1 + β∗

1 H1ρ1) ⊗ ρ2|v〉

+ 1

τD2

ρ1 ⊗ (ρ2(B log ρ)2 + α∗
2ρ2 + β∗

2 H2ρ2)|v〉 = 0

(A6)

has a zero eigenvalue. Because of the factorization of the
Hilbert space for an uncorrelated system, the perturbation
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FIG. 9. Time evolution of the four eigenvalues of the density
matrix for 62 out of the 1000 cases shown in Fig. 8 using the SEAQT
equation of motion and the Hamiltonian of Shulman et al. [19].

term subsystem 1 can be written as

〈v1|(ρ1(B log ρ)1 + α∗
1ρ1 + β∗

1 H1ρ1)|v1〉 ⊗ 〈v2|ρ2|v2〉 = 0,

(A7)
which vanishes for ρi|vi〉 = 〈vi|ρi, and similarly for subsys-
tem 2.

For the case of a correlated system, the density matrix
cannot, in general, be factorized. Thus, Eq. (A6) reduces to

〈v|ρ(t + δt )|v〉 = 〈v|(ρ(B log ρ) + α∗ρ + β∗ρH )|v〉, (A8)

which vanishes by virtue of Eq. (A1).
As a heuristic support to the proof given above, the time

evolutions of the density operator using the SEAQT equation
of motion and the Hamiltonian of Shulman et al. [19] are
generated for 1000 random cases of the initial state, and the
evolutions of the four eigenvalues of each density matrix are
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FIG. 10. Time evolution of the concurrence of the density matrix
for 62 out of the 1000 cases shown in Fig. 8 using the SEAQT
equation of motion and the Hamiltonian of Shulman et al. [19].
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observed. Figure 8 presents the purity Tr ρ2 of each of the
1000 initial states considered. The figure shows a wide distri-
bution of initial conditions for the two-qubit system. Figure 9
shows the results for the evolutions of the four eigenvalues
for each density matrix of 62 representative cases out of the
1000 tested, while Fig. 10 shows their concurrence, i.e., their
level of entanglement. As can be seen, all eigenvalues remain
positive throughout the evolutions for these cases (as it does
for the remaining 938 cases not shown here), confirming
that, at least for the 1000 cases tested, the time evolution
of the density matrix is always positive within the SEAQT
framework.

Finally, two additional heuristic proofs are found in the
literature: one in Cano-Andrade et al. [37] and the other in

Holladay [60]. In the former, several thousand initial density
operators are randomly generated for a four-level correlated
system with a distribution of purities similar to that seen
above. In all cases, the positivity of the density operator is
maintained by the SEAQT equation of motion. In the latter,
entanglement evolutions of a few thousand perturbed Bell di-
agonal states (i.e., maximally entangled states) are presented.
Two different approaches—i.e., a weighted-average perturba-
tion approach and a general bipartite perturbation approach
with a constant energy constraint and alternatively constant
energy and entropy constraints—are used to randomly gener-
ate the initial states used by the SEAQT equation of motion. In
all cases, the positivity of each density operator is maintained
throughout the evolutions.
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