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In a continuous-variable quantum key distribution (CV-QKD) protocol, which is based on heterodyne
detection at the receiver, the application of a noiseless linear amplifier (NLA) on the received signal before
the detection can be emulated by the postselection of the detection outcome. Such a postselection, which is
also called a measurement-based NLA, requires a cutoff on the amplitude of the heterodyne-detection outcome
to produce a normalizable filter function. Increasing the cutoff with respect to the received signals results in a
more faithful emulation of the NLA and nearly Gaussian output statistics at the cost of discarding more data.
While recent works have shown the benefits of postselection via an asymptotic security analysis, we undertake
an investigation of such a postselection utilizing a composable security proof in the realistic finite-size regime,
where this tradeoff is extremely relevant. We show that this form of postselection offers only a small fraction
of the asymptotic improvement in the finite-size regime. This postselection can improve the secure range of a
CV-QKD over lossy thermal channels if the finite block size is sufficiently large and the optimal value for the
filter cutoff is typically in the non-Gaussian regime. The relatively modest improvement in the finite-size regime
as compared to the asymptotic case highlights the need for new tools to prove the security of non-Gaussian
cryptographic protocols. These results also represent a quantitative assessment of a measurement-based NLA
with an entangled-state input in both the Gaussian and non-Gaussian regime.
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I. INTRODUCTION

Quantum key distribution (QKD) [1–3] is the most mature
application of quantum information technologies, which al-
lows two distant trusted parties, traditionally called Alice and
Bob, to share a secret key, which is unknown to a potential
eavesdropper, Eve. In the quantum communication part of
QKD Alice encodes classical information (i.e., key informa-
tion) into conjugate quantum basis states, which are then
transmitted over an insecure quantum channel to Bob, who
measures the received quantum states in a randomly chosen
basis, to obtain classical information, which is correlated to
Alice’s data. Repeating this procedure many times, Alice and
Bob end up with two sets of correlated data, known as the
raw keys. In the classical postprocessing part of QKD Alice
and Bob proceed with the sifting (if applicable), parameter
estimation, reconciliation (or error correction), and privacy
amplification over a public but authenticated classical channel
to obtain a shared secret key [1–3]. QKD systems were first in-
troduced using discrete-variable quantum systems, where the
key information is encoded onto the degrees of freedom of sin-
gle photons, and the measurement at the receiver is realized by
single-photon detectors [4,5]. As an alternative, continuous-
variable (CV) QKD systems were introduced [6–8], where
the key information is encoded onto the amplitude and phase
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quadratures of the quantized electromagnetic field, and the
measurement relies on coherent detection, either homodyne
or heterodyne detectors [9–11], which are faster and more
efficient than single-photon detectors. CV-QKD systems can
potentially achieve higher secret key rates than their discrete-
variable counterparts, and their practical implementation is
also compatible with current telecommunication optical net-
works. Although, thanks to the reverse reconciliation [12]
(where the receiver, i.e., Bob, is the reference of the error
correction), a secret key can asymptotically be generated for a
pure loss channel over an arbitrary large distance, the practical
secure distance of CV-QKD systems is limited due to the
excess noise, imperfect classical postprocessing, and finite-
size effects.

In order to improve the transmission range of CV-QKD
systems a postselection strategy was proposed [13–17] in
which, following the measurement of all the received quantum
states, Alice and Bob discard the classical data corresponding
to those channels for which the resulting key rate is negative,
keeping only the data corresponding to those channels with a
positive key-rate contribution. In this technique the resulting
postselected data has non-Gaussian statistics. Further, it has
been shown that the application of an ideal noiseless linear
amplifier (NLA), proposed in Ref. [18], on the received signal
preceding the detection can probabilistically enhance the se-
cure range of CV-QKD systems, while preserving the Gaus-
sian statistics [19]. Also, the use of single quantum scissors
[18] as a practical candidate for an NLA has been shown to
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enhance the secure range of CV-QKD systems [20,21]. How-
ever, any physical realization of the NLA is very demanding,
requiring state-of-the-art technology, such as single-photon
sources. Moreover, the actual success probability of these
experiments is much lower than the theoretical predictions.
In Refs. [22–24] it has been shown that the physical imple-
mentation of the NLA can be substituted with a classical
data postprocessing. In particular, where the NLA directly
precedes a heterodyne detection, the noiseless amplifier can
be emulated by a Gaussian postselection of the detection
outcome via a probabilistic classical filter function [23,24].
This postselection scheme, which is also called measurement-
based NLA [24], has experimentally been demonstrated in
Ref. [24] and requires a cutoff (on the amplitude of the
heterodyne-detection outcome) for the classical filter to em-
ulate the NLA. The postselection scheme results in Gaussian
statistics for the postselected data if the filter cutoff is chosen
sufficiently large [23,24].

In the asymptotic regime it has been shown that the
Gaussian postselection can extend the maximum transmission
distance of CV-QKD systems [22–24]. However, in reality
only a finite number of signals are exchanged between Alice
and Bob. The finite-size issue becomes even more significant
when the postselection is applied as it reduces the size of data.
It is unclear whether the postselection can still improve the
CV-QKD performance in the realistic finite-size regime.

In this work we investigate the finite-size effects in the
security analysis of CV-QKD systems with the postselection
(or the measurement-based NLA) at the receiver. We show
that in the finite-size regime when the filter cutoff is large
enough to make the postselected statistics Gaussian, the max-
imum transmission distance of the CV-QKD system can be
improved providing that the block size is sufficiently large.
Considering finite blocks in a practical regime, we illustrate
that the postselection is effective when the CV-QKD system
has undergone high values of excess noise. Since reducing
the cutoff can increase the success probability of the post-
selection (at the expense of decreasing the classical mutual
information between Alice and Bob), we also investigate
the impact reducing the cutoff can have on the finite-size
key rate, illustrating that if the filter cutoff is sufficiently
reduced, the improvement of CV-QKD performance due to the
postselection can further be increased. Note that in the recent
works on measurement-based NLA [23,24], the security proof
is based on the equivalent entanglement-based scheme where
the classical filter is replaced with a quantum filter, as they
assumed a sufficiently large cutoff to emulate an ideal NLA
(with a Gaussian output). However, since reducing the cutoff
can change the statistics of the postselected data from Gaus-
sian to non-Gaussian regime, we analyze the security proof
based on the equivalent entanglement-based scheme with a
classical filter (and not a quantum filter). Thus, our results also
provide a characterization of the measurement-based NLA,
when it is applied to a mixed Gaussian entangled state, which
is an extension to a recent work on the characterization of
the measurement-based NLA with a pure coherent-state input
[25].

The structure of the remainder of this paper is as follows. In
Sec. II, the Gaussian CV-QKD system is described. In Sec. III,
the security of the CV-QKD system is analyzed in both the

asymptotic and composable finite-size regime. In Sec. IV,
the postselection of Bob’s detection outcome is discussed,
and the security of the postselection protocol is analysed in
the composable finite-size regime. In Sec. V, the numerical
results, showing the impact of the Gaussian and non-Gaussian
postselection on the CV-QKD performance in the finite-size
regime, is provided. Finally, concluding remarks are provided
in Sec. VI.

II. CV-QKD SYSTEM

Here we consider a Gaussian no-switching CV-QKD pro-
tocol [15,26], which relies on the preparation of coherent
states and heterodyne detection. In a prepare-and-measure
scheme Alice generates a pair of random real numbers, aq

and ap, chosen from two independent Gaussian distributions
of variance VA. Alice prepares coherent states by modulating
(displacing) a coherent laser source by amounts of aq and
ap, such that the variance of the imposed signals is VA.
The variance of the beam after the modulator is VA + 1 = V
(where the 1 is for the shot noise variance), hence we obtain
an average output state, which is thermal of variance V . The
prepared coherent states are then transmitted over an insecure
quantum channel with transmissivity T and excess noise ξ

(relative to the input of the quantum channel) to Bob. For each
incoming state, Bob uses heterodyne detection and measures
both the q̂ and p̂ quadratures for obtaining (bq, bp). In this
protocol, sifting is not needed, since both of the real random
variables generated by Alice are used for the generation of
the key. When the quantum communication is finished and
all the incoming quantum states have been measured by Bob,
classical postprocessing including discretization, parameter
estimation, error correction, and privacy amplification over a
public but authenticated classical channel is commenced to
produce a shared secret key.

This Gaussian CV-QKD system in the prepare-and-
measure scheme can be represented by an equivalent
entanglement-based scheme [9,10], where Alice generates a
pure Gaussian entangled state, i.e., a two-mode squeezed
vacuum state ρAB with the quadrature variance V , where V =
1+χ2

1−χ2 , and where χ = tanh(r), with r being the two-mode
squeezing parameter. Alice retains mode A, while sending
mode B to Bob. In the entanglement-based scheme, if Alice
applies a heterodyne detection to mode A, she projects mode B
onto a coherent state. At the output of the channel, Bob applies
a heterodyne detection to the received mode. As a result
of Alice and Bob’s heterodyne detection on all the shared
entangled states, they end up with two sets of correlated
classical data as the raw key, from which they can extract a
shared secret key through the classical postprocessing.

III. ASYMPTOTIC AND FINITE-SIZE SECURITY
ANALYSIS

In the asymptotic regime the secret key rate in the re-
verse reconciliation scenario, where Bob is the reference
of reconciliation, is given by K = βI (a:b) − χ (b:E ) against
Gaussian collective attacks, where I (a:b) is the mutual infor-
mation shared between Alice and Bob limited by the Shannon
bound, χ (b:E ) is the maximum mutual information shared
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between Eve and Bob limited by the Holevo bound, and
0 � β � 1 is the reconciliation efficiency. Note that in the
asymptotic regime collective attacks are as strong as coherent
attacks [9,10,27]. Furthermore, for Gaussian CV-QKD pro-
tocols, where the key encoding is performed by a Gaussian
modulation of Gaussian states and the decoding is performed
by Gaussian measurement, i.e., homodyne or heterodyne de-
tection, Gaussian attacks are asymptotically optimal among
collective attacks [28–30].

In the composable finite-size regime, the Gaussian no-
switching CV-QKD protocol acting on 2n coherent states sent
from Alice to Bob (or 2n two-mode squeezed vacuum states in
the equivalent entanglement-based scheme) is ε secure against
Gaussian collective attacks in the reverse reconciliation sce-
nario if ε=2εsm + ε̄ + εPE + εcor [31,32] and if the key length
� is chosen such that [31,32]

� � N[βI (a:b) − χ (b:E )] −
√

N� − 2 log2

(
1

2ε̄

)
, (1)

where [31,32]

� = (d + 1)2 + 4(d + 1)
√

log2

(
2
/
ε2

sm

)
+ 2 log2(2/(ε2εsm )) + 4εsmd/(ε

√
N ), (2)

and where N=2n, d is the discretization parameter, εsm is the
smoothing parameter, εcor and εPE are the maximum failure
probabilities for the error correction and parameter estimation,
respectively, and ε̄ comes from the leftover hash lemma
[31,32].

The final key rate (in bits per mode) where the key is ε

secure against Gaussian collective attacks is given by �/N .
Note that in Eq. (1) we have considered the same scenario
as Ref. [31], where almost all the raw data can be utilized to
distill the secret key (by performing the parameter estimation
after the error correction1). However, if Alice and Bob are
required to disclose a non-negligible number of data points
of size k, during the parameter estimation, a classical data of
size N ′ = N − k is used for the key extraction. As a result,
the final secure key rate is given by �/N , where � is given by
Eq. (1), but now N in Eqs. (1) and (2) has to be replaced by
N ′.

Note that according to the approach introduced in
Refs. [34,35], and numerically analyzed in Ref. [36], in
order to analyze the composable finite-size security of the
no-switching CV-QKD protocol against coherent attacks, the
security of the protocol is first analyzed against Gaussian
collective attacks with a security parameter ε [31], and then by
applying the Gaussian de Finetti reduction [34] the security is
obtained against coherent attacks with a polynomially larger
security parameter ε̃ [34], where the security loss due to the
reduction from coherent attacks to collective attacks scales
like O(N4) [34].

Note that if the security of two protocols are proven ac-
cording to a composable security definition, then the security

1It has also been shown in Ref. [33] that in CV-QKD the whole
raw keys can be used for both parameter estimation and secret
key generation, without compromising the security, and without any
requirements of doing error correction before parameter estimation.

of the combination of these two protocols can be proved based
on their individual functionalities. In fact, the security of the
combination can be proved without the need for a separate
security proof for the combined protocol. This is essential for
the actual application of QKD since the secret key must be
used in combination with the one-time pad protocol to achieve
a secure communication [31,34].

IV. POSTSELECTION

A. Noiseless linear amplifier (quantum filter)

In contrast to classical optical channels, losses in quantum
channels cannot be compensated for by usual deterministic
phase-insensitive amplifiers, as the latter would inevitably
introduce additional noise [37], making the quantum channel
insecure. To avoid this noise penalty, the idea of heralded
noiseless linear amplifier (NLA) was proposed in Ref. [18],
which enables one to probabilistically amplify the amplitude
of a coherent state without adding any extra noise. An NLA
can be represented by the unbounded amplification operator
gn̂ with the amplification gain g > 1 and the photon number
operator n̂, which realizes the following transformation on an
input coherent state |α〉 [18],

gn̂|α〉 = exp
[

1
2 (g2 − 1)|α|2]|gα〉. (3)

For a Gaussian CV-QKD system it has been shown that
the maximum transmission distance of the system can be
increased by applying an ideal NLA on the received mode
preceding Bob’s detection [19]. Explicitly, in the equivalent
entanglement-based scheme of the CV-QKD system Alice
prepares a pure two-mode Gaussian entangled state, keeps one
mode, while sending the second mode through an insecure
quantum channel to Bob, who applies an NLA to noiselessly
amplify the received mode, and distill the entanglement. Since
the amplification is probabilistic, the successfully distilled
entangled states are then used in an ordinary deterministic
CV-QKD protocol, where Alice and Bob apply Gaussian
measurements to their own shared modes.

An ideal NLA probabilistically converts a Gaussian state
into another Gaussian state. The NLA distills the entangle-
ment between Alice and Bob, hence effectively converts the
initial channel into another channel with presumably higher
associated performances. It has been shown in Ref. [19] that
for an entanglement-based scheme with an initial pure entan-
gled state with the two-mode squeezing parameter of χ , and
a quantum channel with the transmissivity T and the excess
noise ξ , the covariance matrix of the output amplified state is
equal to the covariance matrix of an equivalent system with a
two-mode squeezing parameter χg, sent through a channel of
transmissivity Tg and excess noise ξg, without using the NLA.
These effective parameters are given by [19]

χg = χ

√
(g2 − 1)(ξ − 2)T − 2

(g2 − 1)ξT − 2

Tg = g2T

(g2 − 1)T
[

1
4 (g2 − 1)(ξ − 2)ξT − ξ + 1

] + 1

ξg = ξ − 1

2
(g2 − 1)(ξ − 2)ξT . (4)
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These effective parameters can be interpreted as physical
parameters of an equivalent system if they satisfy the con-
straints 0 � χg < 1, 0 � Tg � 1, and ξg � 0. Note that the
first condition of Eq. (4) is always satisfied if χ is below a
limit value [19]

0 � χg < 1 ⇒ 0 � χ <

(√
(g2 − 1)(ξ − 2)T − 2

(g2 − 1)ξT − 2

)−1

.

(5)
Recall that Eq. (4) can only be utilized to calculate the
covariance matrix of the output amplified state of an NLA,
when the NLA can be ideally implemented to preserve the
Gaussianity of the input state.

The improvement of the performance of Gaussian CV-
QKD systems using an ideal NLA has been discussed for
different protocols and in different scenarios [38–40]. How-
ever, in all of these works the success probability has been
considered based on the theoretical predictions (which is
much higher than the actual experimental success probabil-
ity). Also, the use of quantum scissors as a practical candi-
date for an NLA has been investigated in CV-QKD systems
[20,21,41,42]. Note that all of these works have focused on
the CV-QKD performance in the asymptotic regime, which is
an unrealistic scenario.

B. Measurement-based NLA (classical filter)

Since all optical implementations of NLA are ex-
tremely challenging, the method of Gaussian postselection
or measurement-based NLA was proposed [22,23], and ex-
perimentally demonstrated [24], where the physical imple-
mentation of an NLA can be emulated with a suitable data
processing. This represents a significant advantage as the dif-
ficulty of sophisticated physical operations can be moved from
a hardware implementation to a software implementation. In
particular, it has been shown in Refs. [23,24], when an NLA
directly precedes a heterodyne detection, the NLA can be
emulated by conditioning upon the heterodyne measurement
outcome via a classical filter function. This means that in
the no-switching CV-QKD system, the probabilistic noiseless
amplification of the received signal before Bob’s heterodyne
detection can be emulated by the probabilistic postselection of
Bob’s heterodyne measurement data [23,24].

Considering the input state of an NLA as ρin, the Husimi
Q function of the amplified output state is given by

Qout (α) = 1

π
〈α|gn̂ρingn̂|α〉

= exp[(g2 − 1)|α|2]
1

π
〈gα|ρin|gα〉. (6)

Performing a change of variable, αm = gα, we obtain

Qout (αm) = exp

[(
1 − 1

g2

)
|αm|2

]
1

π
〈αm|ρin|αm〉. (7)

Having Eq. (7), we are able to determine the appropriate
classical postselection filter to approximate an ideal NLA
prior to a heterodyne detection.

Let us assume in the entanglement-based representa-
tion of the no-switching CV-QKD protocol, Alice and Bob
share a mixed Gaussian entangled state ρAB [with a zero

mean and covariance matrix M = [xI2, zZ; zZ, yI2] with I2

a 2×2 identity matrix, and Z = diag(1,−1)] before the de-
tection. When Alice and Bob apply heterodyne detection
to their own modes, obtaining the measurement values αm

and βm, respectively, the joint probability distribution of the
measurement outcomes is given by Qin(αm, βm), which is in
fact the Husimi Q function of the mixed Gaussian entangled
state ρAB. Note that the Husimi Q function of a Gaussian
two-mode state with a zero mean and covariance matrix M
can be expressed as [23],

Qin(αm, βm) =
√

det(�)

π2
exp[−x′|αm|2 − y′|βm|2

− 2z′|αm||βm| cos(φα + φβ )], (8)

where � = [x′I2, z′Z; z′Z, y′I2] = 2(M + I4)−1 with I4 a 4×4
identity matrix. Note that we have αm = |αm| exp(iφα ) and
βm = |βm| exp(iφβ ).

Postselection in the CV-QKD protocol is performed by fil-
tering of the raw key (i.e., the measurement outcomes) based
on the value of the quadrature amplitudes detected by Bob.
In fact, Bob applies a probabilistic filter to his measurement
outcomes, βm, to realize the prefactor, exp [(1 − 1

g2 )|βm|2],
in Eq. (7). Note that the filter is truncated by a real cutoff
parameter γc to make the filter probability convergent. The
filter function is [23–25]

F (βm) =
{

exp
[(

1 − 1
g2

)(|βm|2 − γ 2
c

)]
, |βm| < γc

1, |βm| � γc
, (9)

where βm = bq + ibp is constructed from Bob’s quadrature
measurement outcomes bq and bp, and the first piece of
F (βm) gives the acceptance probability, with which particular
heterodyne measurement outcomes of Bob (outcomes with
magnitude less than γc) are kept, while the others beyond the
cutoff γc are kept with unity probability.

Considering Nps as the number of accepted data points
which are kept by Bob, and N is the total number of data
points before the postselection, the success probability of the
postselection is given by

Ps = Nps

N
=

∫ ∫
d2αm

∫ ∫
d2βm F (βm)Qin(αm, βm)

=
∫ 2π

0

∫ ∞

0
dφαd|αm|

∫ 2π

0

∫ γc

0
dφβd|βm|

× exp

[(
1 − 1

g2

)(|βm|2 − γ 2
c

)]
Qin(αm, βm)|αm||βm|

+
∫ 2π

0

∫ ∞

0
dφαd|αm|

∫ 2π

0

∫ ∞

γc

dφβd|βm|

× Qin(αm, βm)|αm||βm|. (10)

The final step to emulate an NLA is a linear rescaling on
Bob’s side that realizes βm = gβ. However, the rescaling is
only applied to Bob’s measurement outcomes with magnitude
less than γc, while the others beyond the cutoff γc are kept
unaffected. The final joint probability distribution of the mea-
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surement outcomes after the rescaling is given by

Qout (α, β )

=
{

g2

Ps
exp

[(
1 − 1

g2

)(|βm|2 − γ 2
c

)]
Qin(αm, βm), |βm|<γc

1
Ps

Qin(αm, βm), |βm| � γc

,

(11)
where βm=gβ for |βm|<γc, and βm=β for |βm|�γc, while
Alice’s measurement outcomes do not need rescaling, i.e., we
always have αm=α. Note that the Q function is normalized to
unity, i.e., we require to have

∫ ∫
d2α

∫ ∫
d2β Qout (α, β ) = 1.

The normalization requirement is realized by the multiplica-
tion factor 1

Ps
. Note also that for the first piece of Qout (α, β ),

the factor g2 is further required for the normalization due to
the linear rescaling.

Thus, in the postselection, Bob first applies the filter
function, exp [(1 − 1

g2 )(|βm|2 − γ 2
c )], to his measurement out-

comes βm with magnitude less than γc, and then rescales his
filtered outcomes such that βm = gβ, while his measurement
outcomes beyond the cutoff γc are kept unaffected with unit
probability. In the CV-QKD protocol with the postselection,
for each measurement, Bob publicly reveals whether the
outcome is kept or rejected, in order for Alice to keep or
discard her corresponding measurement outcome. The filtered
raw key of size Nps is then treated as if it was the original
raw key, which means the parameter estimation (to estimate
the covariance matrix, Mps, of the postselected state shared
between Alice and Bob in the equivalent entanglement-based
scheme) should be performed on the postselected data.

Having the final probability distribution of the postselected
data, Qout (α, β ), we are able to calculate the inferred co-
variance matrix of the amplified state before the heterodyne
detection in the equivalent quantum-filter representation. The
inferred covariance matrix Mps = [xpsI2, zpsZ; zpsZ, ypsI2] is
given by

xps =
∫ ∫

d2α

∫ ∫
d2β ([2Re(α)]2 − 1)Qout (α, β ),

yps =
∫ ∫

d2α

∫ ∫
d2β ([2Re(β )]2 − 1)Qout (α, β ),

zps =
∫ ∫

d2α

∫ ∫
d2β (4Re(α)Re(β ))Qout (α, β ).

(12)

Note that in Eq. (12) only the second moment of Alice
and Bob’s quadratures has been calculated to compute the
elements of the covariance matrix of the amplified state, since
the first moment of Alice and Bob’s quadratures remain zero
after the postselection. The schematic of the postselection
protocol in the entanglement-based representation has been
shown in Fig. 1.

C. Security analysis for the postselection protocol

In the asymptotic security analysis of the CV-QKD system
with the postselection (or the measurement-based NLA), the
computed key rate must be multiplied by the success prob-
ability of the postselection, Ps, of Eq. (10). Explicitly, the
asymptotic key rate of the postselection protocol, which is
secure against Gaussian collective attacks in the reverse recon-
ciliation scenario is given by Kps = Ps[βIps(a:b) − χps(b:E )],
where Ips(a:b) is the classical mutual information between

FIG. 1. The no-switching protocol with the postselection in the
entanglement-based representation. Alice and Bob initially share a
pure Gaussian entangled state with the squeezing parameter χ . The
first mode A is kept by Alice for heterodyne detection to obtain
the measurement value αm. The second mode B is transmitted over
the insecure channel, with parameters T and ξ , to Bob, who measures
the received mode with heterodyne detection to obtain βm. At this
stage, the mixed entangled state shared between Alice and Bob is
Gaussian, given with a covariance matrix M = [xI2, zZ; zZ, yI2], and
the joint probability distribution of the measurement outcomes is
given by Qin (αm, βm ). Bob then applies the filter function, F (βm ),
to his measurement outcomes βm with magnitude less than γc, and
then rescales his filtered outcomes such that βm = gβ, while his
measurement outcomes beyond the cutoff γc are kept unaffected
with unit probability. Bob then publicly reveals whether the out-
come is kept or rejected, in order for Alice to keep or discard her
corresponding measurement outcome. The final probability distri-
bution of the postselected data is now given by Qout (α, β ), based
on which we can calculate the inferred covariance matrix, Mps =
[xpsI2, zpsZ; zpsZ, ypsI2], of the amplified state before the heterodyne
detection in the equivalent quantum-filter representation.

Alice and Bob following the postselection, and χps(b:E ) is
the Holevo bound, i.e., the upper bound on Eve’s information
on the postselected data (see Appendix A and Appendix B for
the key-rate calculation).

In the finite-size security analysis of the CV-QKD protocol
with the postselection, the size of the data contributing to the
secret key is no longer N . In fact, only the accepted data
of size Nps = PsN contributes to the final postselected key
rate, hence, in order to compute the finite-size key length,
the number N must be replaced by Nps. Explicitly, the finite-
size key length of the postselection protocol, which is secure
against Gaussian collective attacks in the reverse reconcilia-
tion scenario is given by

�ps � Nps[βIps(a:b) − χps(b:E )] − √
Nps�ps − 2 log2

(
1

2ε̄

)
,

(13)

where �ps is calculated using Eq. (2) with N being replaced
by Nps. Hence, the finite-size key rate of the postselection
protocol is given by KFS

ps = �ps/N or

KFS
ps � Ps[βIps(a:b) − χps(b:E )] −

√
Ps

N
�ps

− 2

N
log2

(
1

2ε̄

)
. (14)

Note that in contrast to the asymptotic regime, the success
probability of the postselection does not affect the finite-size
key rate as only a proportional factor. Note also that in Eq. (13)
we have again assumed almost the whole raw key of size Nps

after the postselection can be used for secret key generation.
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However, if the data points of size k are disclosed after the
postselection for the parameter estimation, a classical data of
size N ′

ps = Nps − k is used for the key extraction. In this case,
the finite-size key rate is given by �ps/N , where �ps is given by
Eq. (13), but now Nps in Eq. (13) has to be replaced by N ′

ps.
Note that in the entanglement-based representation of the

no-switching protocol, which is used for the security analysis,
the postselection protocol can be equivalently considered as a
protocol without postselection, but with effective parameters
for the initial entanglement and effective parameters for the
channel. In this equivalent protocol without postselection
Eve’s Holevo information is obtained by holding a purification
of Alice and Bob’s effective system [22–24]. Also, given that
the joint state of Alice, Bob, and Eve is pure before the
postselection, and since the postselection is just a projective
measurement, by definition, it cannot decrease the purity
of the joint state [22]. Thus, Eve’s Holevo information can
be upper bounded based on the covariance matrix of the
postselected data.

Note that for the no-switching protocol with the postse-
lection we can still use the Gaussian de Finetti reduction of
Ref. [34], to reduce coherent attacks to Gaussian collective at-
tacks in the security analysis, since the postselection protocol
in the entanglement-based representation is equivalent with
an entanglement-based protocol without postselection with
effective parameters for the initial entanglement, and effec-
tive parameters for the channel. This effective protocol with
heterodyne detection by both Alice and Bob commutes with
the action of the unitary group [34,35]. Thus, the Gaussian de
Finetti reduction can be used for the security analysis of the
equivalent protocol.

V. NUMERICAL RESULTS

A. Gaussian postselection

In the postselection scheme, when the cutoff γc is chosen
sufficiently large such that the cutoff circle can embrace the
amplified distribution, we can assume the distribution of the
postselected data remains statistically Gaussian, and the post-
selection approximates an ideal NLA (which probabilistically
converts a Gaussian state into another Gaussian state) [23,24].
Therefore, in the CV-QKD protocol with the Gaussian posts-
election, the security can be analyzed based on the equivalent
scheme, where the classical filter is replaced with a quantum
filter (or an ideal NLA) before Bob’s heterodyne detection
(as it has been analyzed in Ref. [23]), and the covariance
matrix of the amplified state shared between Alice and Bob in
the equivalent entanglement-based scheme can be calculated
using the covariance matrix of the equivalent system with the
effective parameters χg, Tg, ξg without the postselection. Note
that the covariance matrix calculated based on the effective
parameters χg, Tg, ξg of Eq. (4) is the same as the covariance
matrix Mps of Eq. (12) when the cutoff γc is chosen suffi-
ciently large.

Now we numerically simulate the effect of the Gaussian
postselection on the performance of the CV-QKD protocol in
the finite-size regime. In this work, we always consider a lossy
quantum channel with 0.2 dB losses per kilometer, and the
security parameter ε = 10−6. We consider different values of
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FIG. 2. The achievable secret key rate from reverse reconcili-
ation as a function of channel distance (km) in the no-switching
CV-QKD protocol over a lossy channel with ξ = 0.1 and with
0.2 dB losses per km, without the postselection (red lines) and with
the Gaussian postselection, where γc = 3g

√
VB (blue lines) for the

asymptotic and finite-size regime (n = 1011 and n = 1012) with the
discretization parameter of d = 5 and β = 0.95. The modulation
variance (or the squeezing parameter χ ) and the gain g are optimised
to maximize the key rate.

block size, n = 1011 and n = 1012. Note that the modulation
variance (or the squeezing parameter χ in the equivalent
entanglement-based scheme) and the gain g are optimized to
maximize the key rate (see Fig. 7 in Appendix C). We also
choose a sufficiently large cutoff, γc = 3g

√
VB (with VB the

quadrature variance of Bob’s measurement outcome before
the detection and postselection) to be able to assume the
postselected state remains Gaussian. The measure we have
used to make sure the chosen cutoff is sufficiently large is
the elements of the covariance matrix. More precisely, for
a chosen cutoff we calculate the covariance matrix using
two approaches, the covariance matrix resulted from an ideal
NLA, calculated based on the effective parameters χg, Tg, ξg

of Eq. (4), and the covariance matrix resulted from the post-
selection, Mps, calculated from Eq. (12) through the use of
Q function. In our numerical simulations we found that by
choosing γc � 3g

√
VB [25], the two approaches lead to the

same elements for the covariance matrix (the difference is less
than 0.01%), which means the chosen cutoff is large enough
for the postselection to emulate an ideal NLA. Also note that
if we consider Qin(βm) as the Q function of Bob’s measure-
ment outcome, the filtered data (before the linear rescaling)
F (βm)Qin(βm) is expected to have a distribution with variance
g2VB, then one can choose the cutoff γc equal to a few standard
deviations, i.e., γc = rg

√
VB. Larger r decreases the success

probability, while it results in a better approximation of an
ideal NLA. Hence, a compromise should be made between
the success probability and the fidelity with respect to an ideal
NLA. Here, we choose r = 3 so that 99.7% of the amplified
distribution lies within the cutoff circle [25].
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In Fig. 2 the achievable secret key rate secure against
Gaussian collective attacks is shown as a function of channel
distance (km) without the postselection and with the Gaussian
postselection for both the asymptotic and realistic finite-size
regime (n = 1011 and n = 1012), and for the realistic reconcil-
iation efficiency of β = 0.95 [43].

We can see from Fig. 2 that the Gaussian postselection
(blue lines) can be useful when the protocol is operating
close to its limit, i.e., in the waterfall region of the key
rate versus distance graph, where modest increases in the
correlation between Alice and Bob due to the postselection
(or virtual amplification) can compensate for the sacrificed
raw key, allowing the recovery of a secure key distribution
from an initially insecure situation. According to Fig. 2,
the Gaussian postselection is able to effectively extend the
maximum transmission distance of the CV-QKD protocol
in the unrealistic asymptotic regime as it has been previ-
ously illustrated in Refs. [23,24]. However, in the finite-size
regime when the block size is reduced, the improvement
of the maximum transmission distance due to the Gaussian
postselection decreases, because increases in the correlation
cannot compensate for the scarified raw key. In fact, in the
finite-size regime, the improvement of maximum transmission
distance due to the Gaussian postselection can only appear
when the block size is sufficiently large (larger than n = 1011

for the given parameters of Fig. 2), and the amount of such
an improvement increases with increasing the block size.
Note that in Fig. 2 we have considered a high-noise channel
with ξ = 0.1. We have also performed a further numerical
simulation for a lower-noise channel with ξ = 0.05 (with
the other parameters the same as Fig. 2). In this case the
maximum transmission distance of the protocol is 137.7 km,
which can be improved by the Gaussian postselection for the
block sizes larger than n = 1015. Since we are more interested
in a realistic finite-size regime with the block size in the range
of n = 108–1012 [43–46], we will consider a higher-noise
channel for the rest of our numerical results.

Note that in Fig. 2, we have considered the cutoff as
γc = 3g

√
VB, so that we can assume the postselected data has

a Gaussian distribution, which can emulate an ideal NLA.
However, if we choose higher values for the cutoff, the postse-
lection provides a better estimation of the NLA, at the expense
of lower success probability. As a result, a larger block size
will be required for the CV-QKD performance to be improved
by the Gaussian postselection.

B. Non-Gaussian postselection

In the measurement-based NLA the choice of the filter
cutoff, γc, is critical. Larger cutoff will improve the approx-
imation of the ideal NLA, however, a cutoff that is too high
will unnecessarily sacrifice raw data, and decrease the success
probability. On the other hand, a cutoff that is too low will
increase the success probability, at the expense of reducing
the mutual information between Alice and Bob. According
to our numerical results for the Gaussian postselection, the
success probability plays a significant role in the finite-size
security analysis, since the success probability determines the
size of data, which contributes to the postselected key. In this
section we investigate whether a reduction of the postselection

cutoff (which will increase the success probability) improves
the postselection performance in the finite-size regime.

When the filter cutoff decreases from γc = 3g
√

VB, the
statistics of the postselected data start changing from Gaussian
to non-Gaussian. However, based on the optimality of Gaus-
sian attacks [28–30], for all bipartite quantum states ρAB with
covariance matrix MAB, one can maximize Eve’s information
by considering ρG

AB, which is the Gaussian state having the
same covariance matrix MAB. Hence, in order to analyze the
security of the protocol in the non-Gaussian regime, we only
require to calculate the covariance matrix of the non-Gaussian
amplified state. Note that when the postselection is in the non-
Gaussian regime, we cannot use Eq. (4) anymore to calculate
the covariance matrix of the amplified state. Instead, we have
to use the Q function of the postselected state, i.e., Eq. (12)
to calculate the covariance matrix of the amplified state, and
compute a lower bound on the postselected key rate. Note
also that the technique of the measurement-based NLA with
an entangled-state input has always been investigated in the
Gaussian regime, where the filter cutoff is sufficiently large
[23,24]. However, here we investigate the characterization of
the measurement-based NLA with an entangled-state input
in the non-Gaussian regime by decreasing the filter cutoff,
and the impact this cutoff reduction can have on the related
CV-QKD performance.

Let us consider a quantum channel equivalent with an
optical fiber of 43 km, which, according to Fig. 2, is almost
the maximum transmission distance of the CV-QKD system
with the optimized Gaussian postselection, where we have the
excess noise of ξ = 0.1, β = 0.95, and the block size of n =
1012. For this channel the optimized Gaussian postselection
(with γc = 3g

√
VB) generates the finite-size key rate of KFS

ps =
3.4 × 10−6 (in bits per mode). For this quantum channel we
now investigate the effects a decrease in the postselection
cutoff, γc, can have on the CV-QKD performance.

In Fig. 3, the three top plots show the elements of the
covariance matrix, Mps, of the amplified state [i.e., xps, yps,
and zps in Eq. (12)] as a function of the postselection cutoff γc.
As it can be seen, for γc � 3g

√
VB = 4.26, the postselected

state can be assumed to be Gaussian, as the elements of the
covariance matrix Mps remain almost constant and equal to
the covariance matrix elements of the amplified state resulted
from an ideal NLA [calculated based on Eq. (4)]. We can see
the covariance matrix elements of the amplified state decrease
as the cutoff is reduced. As a result, the classical mutual
information between Alice and Bob, Ips(a:b), as well as Eve’s
information, i.e., the Holevo bound, χps(b:E ) (with both being
calculated based on the covariance matrix Mps) decrease with
the cutoff reducing (shown in the two bottom plots of Fig. 3).
Although the raw key-rate term, βIps(a:b) − χps(b:E ), also
drops with the decrease in the cutoff, the success probability
of the postselection, Ps, exponentially increases with the cutoff
decreasing according to the left plot of Fig. 4. As a result,
both the asymptotic and finite-size key rates first increase
with the cutoff decreasing up to an optimized value, and
then decrease until they disappear (see Fig. 4, right plot).
Therefore, our results show that there is an optimal value for
the cutoff in the non-Gaussian regime, which maximizes the
key rate. According to Fig. 4, the finite-size key rate can be
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FIG. 3. The elements of the covariance matrix, Mps, of the post-
selected state, (i.e., xps, yps, and zps), the classical mutual information
between Alice and Bob, Ips(a:b), and Eve’s information from reverse
reconciliation (i.e., the Holevo bound), χps(b:E ) as a function of the
filter cutoff γc for a quantum channel equivalent with an optical fiber
of 43 km, ξ = 0.1, β = 0.95, χ = 0.8379, g = 1.1, and the block
size of n = 1012.

improved up to KFS
ps = 4.3 × 10−5 (i.e., an improvement of

more than one order of magnitude) by decreasing the cutoff
from Gaussian regime to non-Gaussian regime, i.e., from
γc = 3g

√
VB = 4.26 to γc = 3.4. Note that in Figs. 3 and 4, for

γc � 3g
√

VB, the postselected state remains almost Gaussian
and the postselection can emulate an ideal NLA, while γc = 0
corresponding to no postselection.

In principle, having the transmissivity and excess noise of
the channel (which can be estimated by performing parameter
estimation over the whole ensemble before the postselection),
the optimal values of gain and cutoff can theoretically been
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FIG. 4. The postselection success probability, Ps, and the finite-
size and asymptotic key rate from reverse reconciliation as a function
of the filter cutoff γc for a quantum channel and the protocol with the
same parameters as Fig. 3.
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FIG. 5. The achievable secret key rate from reverse reconcilia-
tion as a function of channel distance (km) in the CV-QKD protocol
over a lossy channel with ξ = 0.1 and with 0.2 dB losses per km,
without postselection (red lines), with the Gaussian postselection,
i.e., γc = 3g

√
VB (blue lines), and with the non-Gaussian postselec-

tion, i.e., choosing a lower cutoff γc = 2.5g
√

VB (black lines) for the
finite-size regime (n = 1011 and n = 1012) with β = 0.95.

chosen to maximize the key rate. Note that the cutoff should
be chosen depending on the variance of Bob’s measurement
results (which is also a function of the initial squeezing and
the channel parameters), and the gain of the postselection
filter (i.e., γc = rg

√
VB). Increasing the gain and increasing

the cutoff both increase the correlation between Alice and Bob
on the postselected ensemble, at the expense of decreasing the
success probability. While, decreasing the gain and decreasing
the cutoff both decrease the correlation between Alice and
Bob, at the advantage of higher success probability.

Note that the lower bound on the key rate, which we
calculate for the postselection in the non-Gaussian regime is
not tight, and it could likely be improved using the numerical
approach of Ref. [47]. The bound is loose because it relies
on Gaussian optimality proof [28–30], which means that
χps(b:E ) is computed for the Gaussian state with the same
covariance matrix as the non-Gaussian amplified state, and
χps(b:E ) is therefore overestimated.

Now we repeat our numerical simulations for the posts-
election in Fig. 2, with a lower cutoff, γc = 2.5g

√
VB, and

compute the postselected finite-size key rate, with the results
shown in Fig. 5. We can see that decreasing the cutoff
from γc = 3g

√
VB to γc = 2.5g

√
VB has a positive impact

on the CV-QKD performance, including the improvement of
the finite-size key rate by up to an order of magnitude at
the maximum transmission distance of the protocol, as well
as the extension of the transmission distance up to a half
kilometer. We can see that for n = 1012 by decreasing the
cutoff from γc = 3g

√
VB to γc = 2.5g

√
VB the improvement

of the transmission distance due to the postselection increases.
Furthermore, we can see that while for n = 1011 there is no
improvement in the transmission distance due to the posts-
election with γc = 3g

√
VB, the transmission distance can be

improved by decreasing the cutoff to γc = 2.5g
√

VB. Recall
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again that here in our numerical simulations for γc = 2.5g
√

VB

the postselected state is not Gaussian (although it is close to
the Gaussian regime), hence we use the output Q function,
Qout(α,β ), to calculate the elements of the covariance matrix of
the postselected state, Mps. Our results show the importance of
the proper choice of the postselection cutoff in the CV-QKD
system.

Additional calculations beyond those illustrated here have
been carried out covering direct reconciliation, which results
in similar trends to those indicated here. However, direct
reconciliation is only successful when the channel loss is
below 3 dB. In the direct reconciliation, Eve’s information
should be calculated based on the mutual information between
Alice and Eve, i.e., χps(a:E ). For the numerical simulations of
the direct reconciliation see Appendix D.

According to the numerical results the Gaussian postselec-
tion is not useful for extending the secure range of the protocol
for data blocks of size 106–109 (as used in past CV-QKD
experiments [43,44]) due to its small success probability,
Ps. However, having sufficiently large data blocks of size
1010–1012 (as used in recent CV-QKD experiments [45,46]),
and optimally choosing the cutoff in the non-Gaussian regime
(which increases Ps) allows a small fraction of the asymptotic
improvement to be achieved, given current security-proof
techniques. This small improvement might be useful for direct
reconciliation protocols, where the secure distance of the
protocol is limited to only few kilometers (see Fig. 8 in
Appendix D).

Note that for both physical and measurement-based NLAs,
there is a tradeoff between the success probability and the
faithfulness with which an ideal NLA can be emulated.
However, the tradeoff is not identical, since the cutoff is
in photon number for a physical NLA, and in heterodyne
amplitude for a measurement-based NLA [25]. In principle,
using a physical NLA with higher success probability, such
as a single quantum scissor [18,20,21] (where it can act as an
ideal NLA in the regime of small χ and high loss) could be
advantageous (over measurement-based NLA) in extending
the transmission range of the finite-size CV-QKD protocol.
However, the downside is that a physical NLA introduces ex-
perimentally demanding single-photon resources to CV-QKD
systems. We should also note that because there is no free-
propagating mode after the postselection, measurement-based
NLA protocols cannot be used in CV quantum repeater setups
such as Ref. [48]. As a result, CV repeater setups require a
physical NLA.

C. Parameter estimation in the postselection protocol

Note that the no-switching CV-QKD protocol is exper-
imentally implemented in the prepare-and-measure (PM)
scheme, where for the postselection the classical filter is
applied on Bob’s heterodyne detection results, while for the
security analysis we need to know the covariance matrix, Mps,
of the amplified (or postselected) state shared between Alice
and Bob in the equivalent entanglement-based (EB) scheme.

In the case of Gaussian postselection, we can consider a
normal linear model for Alice and Bob’s postselected vari-
ables in the PM scheme, xPM

ps and yPM
ps , respectively, as yPM

ps =

tgxPM
ps + zPM

ps , where tg =
√

Tg

2 , and zPM
ps follows a centered

normal distribution with unknown variance σ 2
g = 1 + 1

2 Tgξg

(note that Alice’s variable xPM
ps has the variance V g

A ). The
maximum-likelihood estimators for the effective parameters,
tg, σ 2

g , and V g
A are given by [49,50]

t̂g =
∑k

i=1 xiyi∑k
i=1 x2

i

,

σ̂ 2
g = 1

k

k∑
i=1

(yi − t̂gxi )
2
,

V̂ g
A = 1

k

k∑
i=1

x2
i ,

(15)

with the uncertainty in the effective parameters expressed as
[49,50]

�(tg) = zεPE/2

√
σ̂ 2

g∑k
i=1 x2

i

,

�
(
σ 2

g

) = zεPE/2
σ̂ 2

g

√
2√

k
,

�
(
V g

A

) = zεPE/2
V̂ g

A

√
2√

k
,

(16)

where xi and yi are the realizations of xPM
ps and yPM

ps , respec-
tively, and k is the number of data points randomly chosen
from the postselected data for the parameter estimation.2

As a result, the covariance matrix, Mps, of the amplified
state shared between Alice and Bob in the EB scheme,
which maximizes Eve’s information [49] is given by M̂ps =
[x̂psI2, ẑpsZ; ẑpsZ, ŷpsI2], where

x̂ps = V g
A,max + 1,

ŷps = 2
(
t2
g,minV g

A,max + σ 2
g,max

) − 1,

ẑps =
√

2 tg,min

√
V g

A,max
2 + 2V g

A,max,

(17)

and where

tg,min = t̂g − �(tg)

σ 2
g,max = σ̂ 2

g + �
(
σ 2

g

)
,

V g
A,max = V̂ g

A + �
(
V g

A

)
.

(18)

However, in the case of non-Gaussian postselection, the
relation between the cross-correlation term, zps, of the co-
variance matrix Mps in the EB scheme is not directly re-
lated to the cross-correlation term of the data observed by
Alice and Bob in the PM scheme, i.e., 1

k

∑k
i=1 xiyi. Hence,

instead of calculating Mps from the data observed in the PM
scheme, Alice and Bob can first reconstruct the equivalent
data in the EB scheme based on the whole data from the
PM scheme preceding the postselection. Considering Alice

2Note that zεPE/2 is such that 1 − erf (
zεPE/2√

2
)/2 = εPE/2.
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and Bob’s variables in the PM scheme preceding the post-
selection as xPM and yPM, Alice and Bob’s variables in the
equivalent EB scheme preceding the postselection would be
xEB =

√
VA+2√
2VA

xPM and yEB = yPM, with VA is the initial mod-
ulation variance in the PM scheme preceding the postselec-
tion. Next, Bob applies the classical filter on his data and
publicly reveals whether the data is kept or rejected. Finally,
Alice and Bob perform parameter estimation over a randomly
chosen subset (of size k) of their postselected data, xEB

ps as

yEB
ps , to directly estimate Mps via 1

k

∑k
i=1 x′

i
2, 1

k

∑k
i=1 y′

i
2, and

1
k

∑k
i=1 x′

iy
′
i, where x′

i and y′
i are the realizations of xEB

ps and yEB
ps ,

respectively.
Note that an appropriate way to determine the optimized

filter function (i.e., the optimized values of g and γc) in an
experiment, is to perform parameter estimation over the whole
ensemble before the postselection to estimate the parameters
of the channel, based on which Alice and Bob can theoreti-
cally determine what would be the optimized values for the
gain and cutoff.

VI. CONCLUSIONS

In this work we have investigated the impact postselection
or measurement-based NLA can have on the performance
of the no-switching CV-QKD protocol (when it is applied
to the outcome of Bob’s heterodyne detection) in the com-
posable finite-size regime. We illustrated that the Gaussian
postselection (with a sufficiently large cutoff in the heterodyne
amplitude that can emulate an ideal NLA) can extend the
maximum transmission distance of the CV-QKD protocol
in the finite-size regime providing the finite block size is
sufficiently large (1010–1012). We found Gaussian postselec-
tion offers a relatively modest improvement in the finite-size
regime in comparison with improvement predicted by an
asymptotic analysis. Further, we analyzed the performance
of the measurement-based NLA on the entangled-state input
in the non-Gaussian regime by decreasing the postselection
cutoff (which increases the success probability at the ex-
pense of reducing the fidelity with respect to an ideal NLA),
thereby illustrating that there is an optimal value for the
postselection cutoff in the non-Gaussian regime that optimizes
the CV-QKD performance in terms of both the finite key
rate and transmission range. Future work could investigate
numerical key estimation approaches such as in Ref. [47],
which may lead to tighter bounds in the non-Gaussian regime.
Techniques that provide tighter bounds for non-Gaussian
statistics would therefore result in a smaller value for the
optimal cutoff, which, given the exponential improvement in
the fraction of data kept, could significantly improve the key
rates.
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APPENDIX A: CALCULATION OF MUTUAL
INFORMATION AND HOLEVO BOUND

In the entanglement-based scheme of the no-switching CV-
QKD protocol, Alice generates a pure two-mode Gaussian
entangled state, i.e., a two-mode squeezed vacuum state with
the quadrature variance V . Alice keeps the first mode and
transmits the second mode through a quantum channel with
transmissivity T and excess noise ξ . The covariance matrix
of the mixed state ρAB at the output of the channel before the
detection is given by

M =
[

V I2

√
T

√
V 2 − 1 Z√

T
√

V 2 − 1 Z (T (V + χline )) I2

]
, (A1)

where χline = ξ + 1
T − 1. Having the covariance matrix M,

we are able to compute the Q function, Qin(αm, βm), of the
state shared between Alice and Bob preceding the postselec-
tion using Eq. (8). Then, following Eqs. (10) and (11) we can
compute the postselection success probability Ps as well as the
Q function, Qout (α, β ), of the postselected state, from which
we can compute the inferred covariance matrix, Mps, of the
amplified state using Eq. (12).

Following the postselection, the mutual information be-
tween Alice and Bob, Ips(a:b), can be calculated as (see
Appendix B for the actual mutual information)

Ips(a:b) = log2
xps + 1

xps + 1 − z2
ps

yps+1

. (A2)

In the collective attack, the Holevo mutual information
χ (b:E ) is given by χ (b:E ) = S(ρE ) − S(ρE |b), where S(ρ)
is the von Neumann entropy of the state ρ. Note that S(ρE )
is given by the von Neumann entropy of the amplified state,
which can be calculated through the symplectic eigenvalues
λ1,2 of covariance matrix Mps

3. The second entropy S(ρE |b)
is given by the von Neumann entropy of Alice’s state condi-
tioned on Bob’s detection, which can be calculated through
the symplectic eigenvalue of the covariance matrix of the
conditional state MA|b = Aps − Cps (Bps + I2)−1 CT

ps, where
Aps = xpsI2, Bps = ypsI2, and Cps = zpsZ.

APPENDIX B: ACTUAL MUTUAL INFORMATION

In the case of Gaussian postselection, when the postse-
lected state has Gaussian statistics, the actual mutual infor-
mation between Alice and Bob can be calculated using the
covariance matrix, Mps, of the amplified (or postselected)
state via Eq. (A2). However, in the case of non-Gaussian

3The von Neumann entropy of an n-mode Gaussian state ρ with
the covariance matrix M is given by S(ρ ) = ∑n

i=1 G( λi−1
2 ), where

λi are the symplectic eigenvalues of the covariance matrix M, and
G(x) = (x + 1)log2(x + 1) − xlog2(x).
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FIG. 6. The classical mutual information between Alice and Bob
following the postselection, Ips(a:b), using the covariance matrix,
Mps, of the amplified state via Eq. (A2) (solid line), and using the
Q function of the postselected state via Eq. (B1) (dashed line), as a
function of the filter cutoff γc for a quantum channel equivalent with
an optical fiber of 43 km, ξ = 0.1, χ = 0.8379, g = 1.1.

postselection, when the postselected state has non-Gaussian
statistics, the actual mutual information can be calculated
using

Ips(a:b) = Hps(a) + Hps(b) − Hps(a, b), (B1)

where Hps(a) is the Shannon entropy of Alice’s classi-
cal variable (or Alice’s heterodyne-measurement result in
the entanglement-based scheme) following the postselec-
tion, Hps(b) is the Shannon entropy of Bob’s heterodyne-
measurement result following the postselection, and Hps(a, b)
is the joint entropy of Alice and Bob’s classical variables fol-
lowing the postselection. In Eq. (B1), Hps(a, b) is calculated
as

Hps(a, b) = −
∫ ∫

d2α

∫ ∫
d2β Qout (α, β ) log2[Qout (α, β )],

(B2)
where Qout (α, β ) is the Q function of the postselected state
given by Eq. (11). In Eq. (B1), Hps(b) is calculated as

Hps(b) = −
∫ ∫

d2β Qout (β ) log2[Qout (β )], (B3)

where Qout (β ) is the Q function of Bob’s postselected state,
given by

Qout (β ) =
∫ ∫

d2α Qout (α, β ). (B4)

In Eq. (B1), Hps(a) is calculated as

Hps(a) = −
∫ ∫

d2α Qout (α) log2[Qout (α)], (B5)

where Qout (α) is the Q function of Alice’s postselected state,
given by

Qout (α) =
∫ ∫

d2β Qout (α, β ). (B6)
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FIG. 7. The optimal value of the initial squeezing χ and the
optimal value of gain g to maximize the finite-size key rate for the
Gaussian postselection protocol with n = 1012, ξ = 0.1, β = 0.95,
and for the range of distance that the postselection is effective.

Note that while we can have analytical forms for Qout (α, β )
and Qout (β ), from which we can calculate Hps(a, b) and
Hps(b) using Eqs. (B2) and (B3), respectively, no closed-form
solution for Qout (α) could be used, so Eqs. (B5) and (B6)
should be numerically determined.

Now, we calculate the mutual information between Alice
and Bob for the parameters of Fig. 3 using two approaches;
first using the covariance matrix, Mps, of the amplified (or
postselected) state via Eq. (A2), and also using the Q function
of the postselected state via Eq. (B1), with the results shown in
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FIG. 8. The achievable secret key rate from direct reconciliation
as a function of channel distance (km) in the CV-QKD protocol over
a lossy channel with ξ = 0.1 and with 0.2 dB losses per km, without
postselection (red lines), with the Gaussian postselection, i.e., γc =
3g

√
VB (blue lines), and with the non-Gaussian postselection, i.e.,

choosing a lower cutoff γc = 2g
√

VB (black lines) for the finite-size
regime (n = 1010) with β = 0.95.
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Fig. 6. Note that for the numerical integration of Eqs. (B5) and
(B6), we divide the integration interval into m = 1000 equal
subintervals. As can be seen from Fig. 6, there is a very small
gap between Ips(a:b) calculated using the two approaches.
More precisely, for γc < 3, the mutual information calculated
using the covariance matrix, i.e., Eq. (A2) is less than that
calculated using the output Q function, i.e., Eq. (B1), while
for γc > 3, the mutual information calculated from Eq. (A2)
is higher than that calculated from Eq. (B1). Note that by
increasing the number of subintervals, the numerical integra-
tion becomes more precise, and the gap becomes smaller.
Note also that since the gap between Ips(a:b) calculated using
the two approaches is very small (less than 0.8% even for
m = 1000), for our numerical simulation we have calculated
Ips(a:b) using the covariance matrix, Mps, of the amplified
state via Eq. (A2).

APPENDIX C: OPTIMAL VALUES OF THE INITIAL
SQUEEZING AND GAIN

Here we show in Fig. 7 the optimal value for the initial
squeezing χ and the gain g, which maximizes the finite-size

key rate for the Gaussian postselection protocol of Fig. 2 with
n = 1012, and for the transmission range that the postselection
is effective.

APPENDIX D: POSTSELECTION IN THE DIRECT
RECONCILIATION SCENARIO

Here, we show the effectiveness of the postselection in
the finite-size regime for the direct reconciliation. Figure 8
shows the achievable secret key rate secure against Gaussian
collective attacks in the direct reconciliation scenario as a
function of channel distance without the postselection, and
with the Gaussian postselection (where the cutoff is suffi-
ciently large, i.e., γc = 3g

√
VB) in the finite-size regime. We

found if the block size is sufficiently large, here larger than
n = 1010, the transmission range of the direct reconciliation
scheme can be improved by the postselection, with the im-
provement increasing with increasing the block size. Now,
by keeping the block size fixed, we decrease the postse-
lection cutoff to γc = 2g

√
VB, where the postselected data

has a non-Gaussian statistics. As it can be seen, this non-
Gaussian postselection is more effective than the Gaussian
postselection, increasing the transmission range from 3.7 km
to 4.7 km.
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