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State-dependent motional squeezing of a trapped ion: Proposed method and applications
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We show that the motion of a cold trapped ion can be squeezed by modulating the intensity of a phase-stable
optical lattice placed inside the trap. The method we propose is reversible (unitary) and state selective: it effec-
tively implements a controlled-squeeze gate. This resource could be useful for quantum information processing
with continuous variables. We show that the controlled-squeeze gate can prepare coherent superpositions of
states which are squeezed along complementary quadratures. Furthermore, we show that these states, which we
denote “X states,” exhibit a high sensitivity to small displacements along two complementary quadratures, which
makes them useful for quantum metrology.
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Cold trapped ions are one of the leading platforms for
quantum simulations [1,2], quantum metrology [3–5], and
quantum information processing [6–10]. In these devices,
the preparation, manipulation, and control of quantum states
of internal (spin) and motional degrees of freedom play a
central role. In this context, historical benchmarks have been
achieved, such as the preparation and detection of Schrödinger
cat states [11] and of squeezed states [12] and the charac-
terization of their decoherence [13]. Squeezing, an extremely
valuable resource for quantum metrology [4,5,14] and infor-
mation processing [15–17], has been generated in trapped
ions using various methods. Here, we present an alternative
one which has three main features: it is reversible, is state
selective, and can generate large squeezings.

Before describing our idea we review some aspects of
the existing methods. In a seminal paper [12], Wineland and
coworkers demonstrated the generation of a squeezed state of
motion by irradiating an ion with a pair of Raman beams. This
scheme is a variation of an older idea [18] that was later ex-
panded by Home and coworkers to generate and characterize
families of squeezed sates [5,19]. These methods are based on
the fact that squeezing is generated when an atom is placed
in a potential modulated at twice the trapping frequency.
This can be achieved with “traveling standing waves” [5,12]
or aided by dissipation as a special kind of environmental
engineering [19]. More recently Wineland and coworkers
implemented a method [4] originally proposed in [20]. In this
case, the squeezing is induced by a temporal modulation of
the trapping potential. The procedure they use is reversible.
The squeezing induced by a certain modulation can always be
undone by applying a second, appropriately chosen, temporal
driving. Using this tool, a small displacement was amplified
by interposing it between a squeezing and an antisqueezing
operation.
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Here, we present a strategy that extends the above ones.
The main idea is to place the ion in a valley (or a crest)
of an optical lattice (OL) with a time-varying intensity. This
generates a time-varying potential that depends on the internal
state of the ion, allowing us to squeeze the ion’s motion
in a state-selective way. Implementing this method requires
control of the absolute phase of the lasers forming the OL.
The ability to do this with an accuracy of better than 2% of
the lattice spacing was demonstrated recently [21] by actively
stabilizing the relative phase of the OL by monitoring the
ac-Stark shift that the same OL generates on the ion. In turn,
the state dependence of the lattice potential can be obtained
by a combination of standard OL techniques [22] and the idea
of electronic shelving [23].

We show how to use this to construct a “control-squeeze”
(C-Sqz) gate. Our method provides a tool for quantum infor-
mation processing protocols with continuous variables [15]
with ion traps. We also show how this gate can be used to
prepare a class of non-Gaussian states defined as coherent
superpositions of states with squeezing along complementary
quadratures. We denote them “X states” because their Wigner
function is positive in an X -shaped region formed by two
squeezed ellipses oriented at 90◦ from each other (these
Wigner functions display significant oscillations between the
positive-valued regions). As we show here, X states may be
useful for quantum metrology, as they are highly sensitive to
small displacements along pairs of complementary quadra-
tures (such as position and momentum). This kind of state
has been discussed theoretically [24,25]. Also, methods to
generate them in ion traps by driving of multiple sidebands
or by dissipative engineering have been proposed [26,27].

We begin by recalling that a squeezed state, |ξ 〉, of a
harmonic oscillator is such that |ξ 〉 = S(ξ ) |0〉, where |0〉
is the ground state and S(ξ ) is the squeezing operator
S(ξ ) = exp ((ξ ∗a2 − ξa†2)/2). Here, a† and a are creation
and annihilation operators satisfying [a, a†] = 1, and ξ =
reiθ defines the degree of squeezing r and the quadrature θ
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FIG. 1. (a) Optical lattice and harmonic trapping potential;
(b) electronic level scheme for 40Ca+. The phase of the OL is
stabilized so that one of its minima coincides with the minimum of
the trapping potential. The OL has λOL = 854 nm and is visible only
when the ion is in state |e〉. State-dependent squeezing is induced by
modulation of the intensity of the OL.

along which the state is squeezed. The main features of a
squeezing operation follow from the transformation law: a′ ≡
S†(ξ )aS(ξ ) = cosh(r)a − eiθ sinh(r)a†. For example, for θ =
0, we have (a′ ± a′†) = e∓r (a ± a†). This shows that squeez-
ing produces exponential stretching and exponential contrac-
tion along complementary quadratures. The expansion of |ξ 〉
in terms of energy eigenstates |n〉 involves only even values
of n and reads

|ξ 〉 = 1√
cosh(r)

∑
m�0

√
2m!

m!2m
(− tanh(r)eiθ )m |2m〉. (1)

Squeezing can be generated by varying the frequency of a
harmonic oscillator. We propose to squeeze the motion of a
trapped ion by varying the effective trapping frequency with
an optical lattice. The OL can be created by the interference
of a single laser beam reflected back onto itself [22]. The
basic ingredients, similar to the ones used in [21], are shown
in Fig. 1. We analyze here the case of 40Ca+ ions, whose
relevant internal states are shown in Fig. 1, but our protocol
is easily applicable to other ions. We use an optical qubit [28]
and choose state |g〉 as one of the Zeeman sublevels of 4S1/2

and state |e〉 as one of the states in the 3D5/2 manifold. The
OL will be generated with a laser detuned from the 3D5/2 ↔
4P3/2 transition, whose wavelength is close to λSW = 854 nm.
We consider typical detunings of a few GHz with respect to
transitions with line widths of a few MHz. In this situation
the field generates an ac-Stark shift mainly for state |e〉,
because of its coupling to the 4P3/2 manifold. Conversely, the
transitions from |g〉 to other levels are far detuned, and as a
consequence, this state remains mostly unaffected by the OL.
Thus, the Hamiltonian is the sum of the contribution of the
harmonic trap plus that of the ac-Stark shift generated by the
OL [29]. It reads

HOL = p2

2m
+ 1

2
mω2

T x2 + |e〉〈e| ⊗ V0 sin2(klx + �). (2)

Here, ωT is the trapping frequency and V0 = h̄�2
R

4δ
is the

ratio between the Rabi frequency, �R, and the detuning δ

(kl = 2π/λ is the lattice wave vector and � is a phase that
determines the position of the lattice minima with respect to
the trapping potential). As discussed above, one can actively
lock the phase to � = 0 and prepare a state well localized near
x = 0, where both the OL and the trapping potential have a

common minimum. By modulating the laser intensity (which
determines �R) we introduce an explicit time dependence in
the Hamiltonian [that is, V0 can be transformed into V0(t )].

We now analyze the evolution operators for the
system assuming a harmonic driving of the form
V0(t ) = h̄ε(1 − sin(ωdt − θ )). When the ion is in state
|g〉, it interacts only with the harmonic trap and its
Hamiltonian is H (0)

g = p2/2m + mω2
T x2/2. On the other

hand, when the state is |e〉 the ion sees the OL. For an
initial state whose wave packet is concentrated near x ≈ 0,
the OL can be approximated by a quadratic potential and
the Hamiltonian can be written as He = H (0)

e + H (int)
e ,

where H (0)
e = p2/2m + mω2

e x2/2 (with the rescaled

trapping frequency ωe =
√

ω2
T + 2k2

l h̄ε/m) and H (int)
e =

−h̄G sin(ωdt − θ )x2/σ 2
e , where the driving amplitude

is G = εk2
l σ

2
e and σe = √

h̄/mωe (this approximation is
valid in the Lamb Dicke limit where σe 
 λOL, and thus
η ≡ k2

l σ
2
e 
 1).

In parametric resonance, when ωd = 2ωe, squeezing is
generated in a constructive way. To prove this, we write
the Hamiltonian He in the interaction picture with respect
to H (0)

e (and in the rotating wave approximation) as H̃e =
i h̄G

4 (a2
ee−iθ − a†2

e eiθ ). Here ae is the canonical operator as-
sociated with H (0)

e , which can be interchanged with ag [that
of H (0)

g ] in the Lamb Dicke limit [since ae ≈ ag + O(η)].
Then the evolution operator for a time T is Ũ (T ) = S( GT

2 eiθ ),
which would generate a squeezed state with a degree of
squeezing that increases linearly with time. Clearly, this
squeezing can be inverted by an identical modulation with a
temporal phase π − θ .

To benchmark our approximation we numerically [30]
solved the Schrödinger equation considering the full nonlin-
earity of the OL potential and avoiding the rotating wave
approximation invoked above, i.e., the Hamiltonian of Eq. (2).
The results, shown in Fig. 2, agree with the above analysis:
the overlap between the numerical state and the squeezed state
with ξ = Gt/2 stays close to unity even for small variations of
the phase � consistent with experimentally achievable errors
(which can be as small as 2%). After nearly 100 driving
periods, r becomes of order unity for a modulation amplitude
ε ≈ ωT (ε > ωT was attained in [31] for an OL on an S-P
transition in calcium).

Using the above results we can write the following expres-
sion for the full evolution operator [in the interaction picture
associated with H (0)

g ],

U (T ) = |g〉〈g| ⊗ I + |e〉〈e| ⊗ Uge S(ξT ), (3)

where ξT = GT
2 ei(θ ) [note that the operator Uge =

U †
g (T )Ue(T ) maps the interaction picture associated with

H (0)
e into that of H (0)

g ]. This shows that by modulating the OL
we implement a controlled-squeezing operation, which we
denote C-Sqz(r, θ ): the motional state does not change when
the internal state is |g〉, while it is squeezed by S(ξ ) when the
internal state is |e〉 (where ξ = reiθ ).

Let us now show how to use C-Sqz(r, θ ) to prepare a
special class of non-Gaussian states. When the internal state
is either |e〉 or |g〉, this operator is Gaussian. However, when
combined with rotations of the internal state it can be used
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FIG. 2. The squeezing of an ion caused by the modulation
of the intensity of an optical lattice (OL) of the form V0(t ) =
h̄ωT [1 − sin (2ωet )]. The relative position of the OL minimum and
that of the trap is controlled by the absolute phase �, which is locked
to � = 0 up to experimental errors whose effects are shown. The
obtained state coincides with the one predicted by theory, which is
|ξ〉 with ξ = Gt/2. Deviations are seen, as expected, for long times
(when the nonlinearity of the OL potential becomes significant) or
for large values of �. Errors induce the decay of the overlap with the
ideal state and deviations from the predicted phononic population
P(n).

to prepare highly non-Gaussian states, which are an essential
requirement to achieve universality in quantum computation
with continuous variables. We prepare even and odd X states,
which are defined as the superposition of squeezed states
|X±〉 = N±( |ξ 〉 ± |ξeiπ 〉), with the normalization constant
N± = 1/

√
2 ± 2/

√
cosh(2r).

These states can be prepared using the following six-step
protocol (we consider θ = 0, i.e., ξ = r): (i) Prepare the ion
in the motional ground state and in a balanced superposition
of the internal state, 1√

2
( |g〉 + |e〉) ⊗ |0〉; (ii) apply a C-

Sqz(r,0) and generate the state 1√
2
( |g〉 ⊗ |0〉 + |e〉 ⊗ Uge |r〉);

(iii) perform a π rotation in the internal state to obtain
1√
2
( |e〉 ⊗ |0〉 + |g〉 ⊗ Uge |r〉); (iv) apply C-Sqz(r, π ) to ob-

tain 1√
2
( |e〉 ⊗ Uge |−r〉 + |g〉 ⊗ Uge |r〉); (v) perform a π/2

rotation in the internal state to obtain 1
2 ( 1

N+
|e〉 ⊗ Uge |X+〉 +

1
N−

|g〉 ⊗ Uge |X−〉); and (vi) measure the internal state and
obtain either |e〉 or |g〉. These two results appear, respectively,
with probabilities 1/4N2

±. In each case, the motional state [in
the interaction picture of H (0)

e ] is either |X+〉 or |X−〉. Note
that for large r = GT/2 both states are equally likely but for
smaller values of r the even state (which is a superposition
of n = 0, 4, 8, . . . states) is much more likely to be prepared
than the odd state (which contains only n = 2, 6, 10, . . . ).

The even and odd X states have very interesting metrolog-
ical properties. To visualize them, we analyze their Wigner
function W (α). In fact, as the X states have well-defined
parity, W (α) is proportional to the simpler characteristic func-
tion W (α) ∝ C(2α). The characteristic function is defined as
C±(α) = 〈X±| D(α) |X±〉, where D(α) = exp(αa† − α∗a) is

FIG. 3. Characteristic function for X states. Results for (a) odd
and (b) even X states for low squeezing (r = 0.5) where the X shape
is barely visible. For the odd state X− oscillations close to the origin
with negative values are seen. These make this state orthogonal to
the ground state. For higher squeezing, as in (c), where r = 2.5, the
X -shaped region is clearly visible. Also, one sees that C(x, p) rapidly
decays close to the origin, where it becomes 0 for displacements
along the diagonals with a magnitude that scales as e−r .

a displacement operator. Using α = x + ip, we found that
C(α) can be written as

W±(α/2) = C±(x, p)

= 2N2
±

(
e− (x2+p2 ) cosh(2r)

2 cosh

(
x2 − p2

2
sinh(2r)

)

± e− (x2+p2 )
2 cosh(2r)

√
cosh(2r)

cos (xp tanh(2r))

)
. (4)

The first term on the right-hand side is the sum of the two
direct terms, while the second term brings about the interfer-
ence and the oscillations. In Fig. 3 we display C(α) for X
states with small and large squeezing. For large r the result is
simple to interpret: the X region becomes exponentially large
and narrow, extending along the two main quadratures [with
a high peak in the origin, where C±(0) = 1]. The oscillations
are oriented along hyperbolas located in the four quadrants.

The behavior of |X−〉 is remarkable: As this state is orthog-
onal to the ground state, C−(α) decays very rapidly for small
|α| and becomes negative inside the unit circle (which defines
the Gaussian support of the ground state). Using Eq. (4) we
find its zeros. These indicate the displacements that are re-
quired to transform |X−〉 into an orthogonal state. Evaluating
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C−(x, p) on the diagonal lines defined by the equation x2 =
p2, we find that C−(x, p) = 0 iff

√
cosh(2r)e− x2 sinh2 (2r)

cosh(2r) =
cos(x2 tanh(2r)). For large r the solution to this equation is
close to x2 ≈ re−2r . This shows the extreme sensitivity of
|X−〉 to small displacements along both main diagonals. On
the contrary, for the X+ state, C+ vanishes only for x ≈ 1.
Similarly, the behavior along the two main quadratures (where
either x = 0 or p = 0) is such that when x ≈ e−r , C(α) rapidly
decays to half its maximum value and stays constant (until
large values of x are reached). This is different from the
behavior of an ordinary squeezed state, where there is a fast
decay along one axis (x) and a slow decay along the other one.

Finally, we note that one could also conceive X states with
more than a single ion. With two ions, for example, they are
superpositions of two-mode states which are squeezed along
complementary quadratures. To generate them we need a C-
Sqz for two modes, which can be implemented by extending
the previous idea. For example, we can trap two ions in a linear
Paul trap and orient the OL so that it affects the motion along
one of the transverse directions, illuminating both ions at once
(the two ions are placed at common minima of the trapping

and OL potentials). Then by beating the laser intensity with
two frequencies that excite the parametric resonances of both
normal modes we would generate state-dependent squeezing
of the two modes at once. In particular, a two-mode squeezed
state would be created when the two beating signals are de-
phased by π . This is a generalized C-Sqz gate for two modes
that can be used to build a simple sequence of operations that
would create a generalized X state (we omit this sequence and
simply mention that such states are superpositions of two EPR
states with complementary properties).

We have presented a method to create state-dependent
squeezing and explored one application: the generation of
displacement-sensitive non-Gaussian X states. Such tools are
critical in the development of new techniques which will allow
the use of the motional modes of trapped ions for metrological
applications as well as for realizing quantum information
protocols with continuous variables.
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UBACyT, and CONICET (Argentina) and the Alexander von
Humboldt-Stiftung/Foundation as well as discussions with
Ferdinand Schmidt-Kaler and David Wineland.
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