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Optimized fast gates for quantum computing with trapped ions
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We present an efficient approach to optimizing pulse sequences for implementing fast entangling two-qubit
gates on trapped ion quantum information processors. We employ a two-phase procedure for optimizing gate
fidelity, which we demonstrate for multi-ion systems in linear Paul trap and microtrap architectures. The first
phase involves a global optimization over a computationally inexpensive cost function constructed under strong
approximations of the gate dynamics. The second phase involves local optimizations that utilize a more precise
ordinary differential equation description of the gate dynamics, which captures the nonlinearity of the Coulomb
interaction and the effects of finite laser repetition rate. We propose two gate schemes that are compatible with
this approach, and we demonstrate that they outperform existing schemes in terms of achievable gate speed and
fidelity for feasible laser repetition rates. In optimizing sub-microsecond gates in microtrap architectures, the
proposed schemes achieve orders-of-magnitude-higher fidelities than previous proposals. Finally, we investigate
the impact of pulse imperfections on gate fidelity and evaluate error bounds for a range of gate speeds.
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I. INTRODUCTION

A scalable quantum information processing (QIP) architec-
ture would allow for the simulation of quantum systems that
are too large to be tractable using classical computers [1–3].
This would have significant benefits to the fields of quantum
chemistry and fundamental physics [4,5], with these benefits
flowing to the many fields that make use of these techniques
and that study more complex compound systems. Numerous
physical systems have been proposed for QIP architectures
[6], including photons [7], nuclear magnetic resonance [8],
quantum dots [9], nitrogen-vacancy centers in diamond [10],
superconducting circuits [11], and trapped ions [12].

Trapped ion platforms are one of the most promising
candidates for scalable QIP [12–16]. They have demonstrated
excellent coherence properties [17], near-perfect measure-
ment readout [18], and efficient implementation of entan-
gling gates with low cross talk [19]. Recent experiments
have demonstrated single-qubit rotations and multiple-qubit
entangling gates capable of conducting fault-tolerant quantum
computation [20–22], and a fully programmable five-qubit
trapped ion quantum computer has been achieved [23]. While
ion traps are capable of holding large numbers of qubits, their
usefulness for quantum computation is fundamentally limited
by the number of entangling operations that can be performed
within the timescale for decoherence [24]. Therefore, the
development of mechanisms for implementing high-speed and
high-fidelity entangling gates is essential to realizing large-
scale computation on trapped ion platforms.

In this manuscript, we present methods for effective opti-
mization of pulse sequences that implement fast high-fidelity
entangling gates on trapped ion quantum computers. In
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Sec. II, we describe the background of these gate mechanisms
and existing approaches to their optimization. In Sec. III, we
outline two gate schemes and propose methods for global
optimization of these pulse sequences. These schemes are
applied to two-ion and multi-ion systems, which are compared
to existing schemes in Sec. IV. In Sec. V, we outline the
secondary phase of optimizations, which provides a more
complete description of the gate dynamics, including the non-
linearity of the Coulomb interaction and discretization of the
laser pulse timings. This two-phase procedure is summarized
in Fig. 2. Finally, in Sec. VI we investigate the impact of pulse
imperfections on gate fidelity and evaluate the corresponding
errors.

II. BACKGROUND: ENTANGLING GATES IN
TRAPPED ION QIP

In ion trap experiments, ions are confined in a pseudo-
harmonic potential generated by an oscillating electric field.
The most common trapping architecture used is a radio-
frequency Paul trap, in which multiple ions can be trapped
in a linear array. Microtrap arrays are an alternative trapping
architecture in which ions are confined in individual wells
[25–27]. The internal electronic states of the ions act as the
qubits and are controlled through ion-light interactions with
lasers. Entangling gates can be implemented by exploiting the
connectivity of ions through the Coulomb interaction via the
motional states of the ions.

Almost all entangling gates that have been demonstrated
to date involve addressing the motional sideband transi-
tions, such as the Cirac-Zoller (CZ) [28–31] and Mølmer-
Sørensen (MS) [32–34] gate schemes. However, sideband-
resolving mechanisms require an adiabatic timescale to per-
form; the gate operation time must be significantly longer
than the trapping period. Moreover, the presence of additional
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FIG. 1. (a) Diagram of the pulse train for a general N-group fast gate pulse scheme, where z j represents the number of pulse pairs in the
pulse group arriving at the ion at time t j . Each vertical line represents a single state-dependent kick. The sign of z j corresponds to which pulse
of the counterpropagating pair arrives at the ion first, as shown in (b) and (c). This ultimately amounts to a sign change of the state-dependent
momentum kick imparted on the ion. Adapted with permission from the Supplementary Material of Ratcliffe et al. [25].

motional modes in systems of more than two ions results
in sideband transitions that are harder to address, and thus
lead to longer gate times as the number of ions is scaled
[35]. Additionally, as more ions are added to a Paul trap, the
trapping potential must be reduced along the longitudinal axis
to prevent buckling of the linear ion chain [14]. This increases
the trapping period and in turn results in longer operation
times for sideband-resolving entangling gates.

A. Fast (nonadiabatic) entangling gates

There have been a variety of proposals on alternate entan-
gling gate mechanisms that are not subject to the adiabatic
timescales that limit sideband-resolving gates. Originally pro-
posed by García-Ripoll, Zoller, and Cirac (GZC) [36,37],
these mechanisms excite multiple motional modes during
gate operation, as opposed to targeting individual sideband
transitions. As a result, the gates can be implemented with
speeds faster than the trapping period, for which they are
often dubbed “fast gates.” This proposal has recently been
experimentally demonstrated by Schäfer et al. [38], who used
an amplitude-shaped pulse to drive state-dependent displace-
ments of both the common-motional and breathing modes
of a two-ion system [39]. They were able to demonstrate
a high-fidelity (99.8%) gate in 1.6 μs, and a subtrap period
480-ns gate, albeit with lower fidelity (∼60%).

There have also been proposals for implementing fast gates
using ultrafast resonant laser pulses [25,36,40–45], which
have not yet been experimentally demonstrated and are the
main focus of this manuscript. In these fast gate schemes,
counterpropagating pairs of ultrafast laser pulses impart state-
dependent momentum kicks on pairs of ions. We assume that
each counterpropagating pair is split from the same pulse
with a very short delay engineered between the forward and
counterpropagating pulses, although this is not strictly re-
quired. Sequences of these state-dependent kicks, interspersed

with free evolution (see Fig. 1), orchestrate state-dependent
trajectories of the ions through phase space. The difference
in the areas enclosed in the phase-space trajectories of the
{|00〉, |11〉} states and the {|10〉, |01〉} states leads to acqui-
sition of a relative phase. If this relative phase is π

2 and the
motional states are disentangled by the end of the operation,
the controlled-phase (CPH) gate is implemented. This gate has
the unitary

ÛCPH = ei π
4 Ẑ1⊗Ẑ2 , (1)

where Ẑk is the Pauli-Z operator acting on the kth ion. This
is a maximally entangling two-qubit gate and is equivalent to
a CNOT operation, up to local rotations. To realize this ideal
unitary operation on two qubits (labeled A and B) with a series
of state-dependent kicks from N pulse groups, the following
conditions must be satisfied:∑

p

8η2 ωt

ωp
bA

pbB
p

∑
i �= j

ziz j sin(ωp|ti − t j |) = π

4
, (2)

2η

√
ωt

ωp

N∑
k=1

zke−iωptk = 0 , (3)

where zk is the number of pulse pairs in the kth pulse group,
which arrives at the ion at some time tk , and ωp is the angular
frequency of the pth motional mode [42]. The element bi

p
corresponds to the coupling of the position of the ith ion to
the pth motional mode, i.e.,

x̂i =
∑

p

bi
pQ̂p , (4)

where Q̂p is the operator for the pth motional mode. Equation
(4) is a normal-mode expansion and describes small excur-
sions of the ions from their equilibrium positions [14]. We
have defined the Lamb-Dicke parameter to be independent of
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the motional mode,

η ≡
√

h̄

2Mωt
, (5)

where M is the mass of the ion species, and ωt is the angu-
lar trap frequency associated with the axis along which the
gate is performed. Equation (2) expresses the desired phase
acquisition, while Eq. (3) describes the disentangling of each
motional mode from the internal states of the ions. Since
all motional modes must be disentangled by the end of the
operation, Eq. (3) forms a set of NP conditions, where NP is the
number of excited motional modes. Each of these conditions
needs to be addressed in order to realize a fast gate, which can
be achieved by approaching the pulse sequence design as an
optimization problem [46].

Designing a particular pulse sequence to implement an
entangling gate using this approach involves two sets of free
parameters: the number of pulse pairs in each pulse group
zk , and the timings tk describing the arrival of the kth pulse
group at the ions. For a gate composed of N pulse groups, this
constitutes a 2N-dimensional parameter space,

�z = {z1, z2, z3, . . . , zN } ,

�t = {t1, t2, t3, . . . , tN } .
(6)

The elements of �z are integers and are able to take negative
values. The sign of each zk corresponds to the direction of the
state-dependent kick, i.e., the choice of which pulse arrives
first in the counterpropagating pair, as shown in Fig. 1. In
general, optimization over this unconstrained parameter space
is intractable. For effective gate optimization, constraints must
be placed on these parameters to reduce the dimensionality of
the search space.

B. Constraining fast gate optimizations

Previous studies of these fast gate mechanisms have shown
that arbitrarily fast two-qubit gate speeds can be achieved
with high fidelity, given arbitrarily high laser repetition rates
[40,42,47]. Currently lasers can reach repetition rates on the
order of 300 MHz [44], although 5-GHz repetition rates have
also recently been demonstrated [45]. For achieving gate
speeds faster than the trap period, the difficulty is choosing
the sequence of state-dependent kicks such that Eqs. (2) and
(3) are satisfied, with pulse sequences that are compatible with
available laser repetition rates.

For a given set of constraints (e.g., gate speed, total number
of pulses) there is no known analytic solution for the optimal
pulse sequence that best satisfies these equations. Instead,
pulse sequences are identified through numerical optimiza-
tion, which can be done by minimizing a cost function. We
choose this cost function to be the infidelity of the gate,
1 − F , where F is the state-averaged fidelity measure [48].
In previous work [25], we have presented a truncated form of
the infidelity, assuming the motional modes initially start in a
thermal product state [47],

1 − F � 2

3
�φ2 + 4

3

∑
p

(
1

2
+ n̄p

)[(
bA

p

)2 + (
bB

p

)2]
�P2

p ,

(7)

where n̄p is the average occupation number of the pth mo-
tional mode. Here, �φ is the phase mismatch and �Pp is the
unrestored motion of the pth motional mode:

�φ =
∣∣∣∣∣∣8η2

∑
p

ωt

ωp
bA

pbB
p

∑
i �= j

ziz j sin(ωp

∣∣ti − t j

∣∣)
∣∣∣∣∣∣ − π

4
, (8)

�Pp = 2η

√
ωt

ωp

∣∣∣∣∣
N∑

k=1

zke−iωptk

∣∣∣∣∣ . (9)

Equation (7) provides a good approximation of the true infi-
delity and converges rapidly for high-fidelity gates. The ex-
pression is computationally cheap to evaluate and is therefore
a suitable cost function for numerical optimization proce-
dures. In the case of perfect phase acquisition (�φ = 0) and
perfect motional restoration (�Pp = 0, ∀p), the ideal gate
is implemented (F = 1). However, Eqs. (8) and (9) assume
an infinite laser repetition rate and a Coulomb interaction
truncated to second order. These are strong assumptions that
allow Eq. (7) to be computed inexpensively but will damage
gate fidelity if not corrected for. In Sec. V, we describe a
method that corrects for these assumptions as part of our
proposed optimization procedure.

The GZC scheme [36,37], as well as the fast robust anti-
symmetric gate (FRAG) scheme proposed by Bentley et al.
[41–43], constrained the parameter space for a gate with N =
6 pulse groups by imposing fixed, antisymmetric ratios for
zk . Both the GZC and FRAG schemes can be written in the
form

�z = n{−a, −b, −c, c, b, a} ,

�t = {−τ1, −τ2, −τ3, τ3, τ2, τ1} ,
(10)

where (a, b, c) = (2,−3, 2) for the GZC scheme, and
(a, b, c) = (1,−2, 2) for the FRAG scheme. These con-
straints reduce a naïve optimization over a 12-dimensional
space to just four dimensions (n, τ1, τ2, τ3), which is far less
expensive to search over. In the original FRAG scheme, a
strict ordering of the pulse groups was imposed, i.e., τ1 >

τ2 > τ3. This restriction was lifted in later analyses [25,47],
which allowed high-fidelity solutions to be found for a wider
range of gate times and experimental parameters.

As both the GZC and FRAG schemes have three free
parameters in time, gate solutions can be found that exactly
satisfy the phase condition (2) and the restoration of the two
motional modes (3). However, when there are more than
two relevant motional modes (e.g., in systems of more
than two ions), the GZC and FRAG schemes are no longer
capable of finding solutions that exactly satisfy Eqs. (2) and
(3). As a result, these schemes are not well suited for gate
optimizations of multi-ion systems.

Furthermore, the infidelity expression is sinusoidal in the
space of pulse group timings, i.e., 1 − F ∼ sin2 (ωpt ), which
is computationally expensive and thus ill-suited for use as
a cost function for global optimization. An additional con-
sequence of searching over pulse timings is that there is no
intrinsic cost of pulse groups being arbitrarily close together
in time, which may result in pulse sequences that require
restrictively large repetition rates to implement.
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FIG. 2. Schematic overview of the proposed two-phase optimization procedure for a simple pulse sequence with N = 6 pulse groups.
(a) In the first phase of the optimization (red), a global optimization over the number of pulse pairs in each group is implemented using an
approximated form of the infidelity, Eq. (7), as the cost function. Here, TG is the total gate time, and zk is the number of pulse pairs in the kth
pulse group; a negative value corresponds to a change of sign in the pulse wave number. In this stage it is assumed that the timing between pairs
of pulses in each group is negligible (i.e., infinite laser repetition rate). These elements are allowed to take noninteger values during global
optimization, after which (b) they are rounded to integer values. (c) In the second phase of the optimization procedure (blue), the timings of
the pulse groups are locally optimized using an ODE description of the motion of the ions, which includes the nonlinearity of the Coulomb
interaction. (d) The pulse groups are broken up into their constituent pairs, the timings of which are snapped to a grid defined by the laser
repetition rate 1/ frep.

An alternative gate scheme proposed by Duan [40] sep-
arates each pulse group out into individual pulse pairs, i.e.,
|zk| = 1 ∀k, with the periods of free evolution given only by
the finite repetition period trep = 1/ frep of the laser. The signs
of the zk elements are chosen in clusters such that closed loops
are created by phase-space trajectories. In the simplest form
of the Duan scheme, a single loop through phase space is
orchestrated, resembling a triangular shape [42]. Formally, the
optimization of the Duan scheme involves only a single free
variable in time (determined by the total number of pulses
used), which is typically chosen to satisfy the phase condition
(2). In order to achieve high-fidelity motional restoration,
multiple loops through phase space are required, which in turn
requires larger numbers of pulses and leads to longer gate
times [40]. In the limit of infinite repetition rate, the Duan
scheme is optimal as it utilizes all laser pulses. However, the
GZC and FRAG schemes generally result in faster and higher-
fidelity gates for experimentally feasible laser repetition rates
[42].

In this manuscript we present an efficient two-phase op-
timization procedure for designing fast two-qubit entangling
gates. In the first phase, global optimization is implemented
over elements of �z, with constraints placed on the pulse
group timings tk using the linearized cost function (7). This
is followed by a second phase of local optimizations on the
pulse timings using an ordinary differential equation (ODE)
description of the gate dynamics that accounts for the nonlin-
ear effects of the Coulomb interaction and the finite repetition

rate of the laser. An overview of our approach is presented in
Fig. 2.

III. GLOBAL OPTIMIZATION METHODS WITH
ARBITRARY PULSE GROUPS

We propose an alternative method for global optimization
of the cost function (7), where constraints are placed on the
elements of �t and the optimization is performed over the
elements zk . The cost function is quartic in this space, i.e.,
1 − F ∼ O (z4

k ), and is thus computationally cheaper than the
sinusoidal infidelity function involved in the FRAG and GZC
schemes. Formally, this is an integer-programming problem,
as the parameters zk are integers corresponding to the discrete
number of pulse pairs in each group. However, it is sufficient
to treat these elements as continuous variables for the first
phase of global optimization and round to the nearest integer
values (see Fig. 2). Further details of our numerical approach
to global optimization are provided in Appendix B.

Specifically, we propose a scheme in which we initially
assume that the pulse groups arrive at the ions at regularly
spaced time intervals. For N pulse groups, this scheme is
written as

�zN = {z1, z2, z3, . . . , zN−1, zN } ,

�tN = TG

N
{1, 2, . . . , N − 1, N} ,

(11)

where TG is the gate operation time. We call this the gener-
alized pulse group scheme, denoted as GPG(N ) for N pulse
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(a) Generalized pulse group (GPG) scheme (b) Anti-symmetric pulse group (APG) scheme

FIG. 3. Trajectories through rotating phase space of the common-motional (blue, solid) and breathing (red, dotted) modes of a fast gate,
exciting the motional modes along the longitudinal axis of a microtrap array. This is shown for a gate optimized with the (a) generalized pulse
group (GPG) scheme, and (b) antisymmetric pulse group (APG) scheme. In each case, both modes are clearly restored to the phase-space
origin by the end of the gate operation.

groups. The regular spacing of pulse group timings in the
GPG scheme ensures that resulting gate solutions are robust
to finite laser repetition rates, as it minimizes chances of
pulse groups overlapping. It is unlikely that optimal fast gate
schemes always conform to regularly spaced pulse groups, but
this can be overcome with further local optimizations on the
pulse group timings. These local optimizations are performed
with an ODE description of the classical motion of the ions,
which has the benefit of being able to include nonlinearities
of the Coulomb interaction and effects of finite repetition rate.
We investigate this further in Sec. V.

Where the parameter space has additional complexity, it
is convenient to impose further restrictions for computational
ease. For example, in a system of three or more ions, or where
the number of pulse groups is larger than N ∼ 14, reimposing
antisymmetric constraints (similar to GZC and FRAG) can be
particularly useful. We propose a second set of constraints for
global optimization, which we call the antisymmetric pulse
group (APG) scheme; it has the form

�zN = {−zN/2, . . . , −z2, −z1, z1, z2, . . . , zN/2
}
,

�tN = TG

N

{
−N

2
, . . . , −2, −1, 1, 2, . . . ,

N

2

}
. (12)

These constraints reduce not only the dimensionality of the
search space but also the complexity of the cost function since
momentum restoration of each motional mode is guaranteed.
When antisymmetric constraints are imposed, the general
expression for motional restoration is

�Pp = 2η

√
ωt

ωp

N∑
k=1

zk sin(ωptk ) , (13)

which is computationally cheaper than the full expression
given in Eq. (3). Phase-space trajectories for exemplary gates
optimized under the GPG and APG schemes are visualized
in Fig. 3. Formally, as the APG scheme is a restriction of the
more general GPG scheme, it is unlikely to find higher-fidelity
solutions than the GPG scheme given sufficient computa-
tional resources. However, given the simplifications of the
antisymmetric constraints, the APG scheme is well suited to

optimizations where the cost function is sufficiently complex
that it cannot be effectively sampled in the allowed parameter
space. We therefore use the APG scheme to optimize gates
in ion chains with more than two ions, which we consider in
Sec. IV B.

During the optimization procedure, we assume a noiseless
ion trap and neglect motional heating and dephasing as poten-
tial sources of error. These mechanisms are typically much
slower than typical fast gate dynamics which occur on the
timescale set by the trapping period (∼1 μs) and are highly
unlikely to affect the dynamics of a single gate operation
[47]. The optimization method does not take into account
imperfections in the laser control, which are of more concern
to fast gate dynamics. Errors in pulse area arising from laser
intensity fluctuations are particularly damaging to fast gate
implementations, which we investigate in depth in Sec. VI.

IV. OPTIMIZATION RESULTS

In this section we present results of the global optimization
of fast gates using the GPG and APG schemes, which we
compare to results of optimizations under the GZC and FRAG
schemes. The speed of fast gate operations is limited by
the available laser repetition rate due to the scaling relation
TG ∝ f −2/5

rep [41], so we report the state-averaged infidelities
against the minimum laser repetition rate fmin. This is the
minimum repetition rate required to ensure that individual
pulse groups in a given pulse scheme do not overlap in time,
which is required for fast gates to be robust to the effects of
finite repetition rates [25,42,47]. We investigate the explicit
inclusion of finite repetition rate in the following section.

For all calculations presented in this manuscript, we con-
sider 40Ca+ as the candidate ion species, with corresponding
parameters detailed in Appendix A. We focus on gate speeds
of the same order as, or faster than, the trapping period; in
general, this requires repetition rates on the order of the state
of the art (5 GHz [45]) to resolve. The results of this section
can be extrapolated to slower gate speeds, which have lower
repetition rate requirements via the aforementioned relation
TG ∝ f −2/5

rep .
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FIG. 4. Comparison of the FRAG, GZC, GPG(10), and APG(16) schemes for optimized fast gates between two ions in a linear microtrap
chain for different gate times. We report the infidelities, calculated by the truncated cost function (7), with respect to the minimum repetition
rate fmin required to resolve the pulse groups, i.e., such that the pulse pairs do not overlap. The black dashed line marks an indicative infidelity
threshold of 10−4.

A. Two-ion systems

For a simple two-ion system, fast gate dynamics can be en-
tirely captured by the normalized difference between the two
motional modes of the system, as given by the dimensionless
parameter

χ ≡ ωb − ωc

ωt
, (14)

where ωc = ωt and ωb are the frequencies of the common-
motional and breathing modes, respectively. The parameter χ

can be calculated directly from fundamental trap parameters,
as described in the supplementary material of Ratcliffe et al.
[25]. We will first consider fast gates between two ions in
a linear microtrap design, with counterpropagating pulses
parallel to the ion chain. This geometry is characterized by
χ = 1.8 × 10−4, roughly corresponding to 90-μm separation
between the minima of microtraps with ωt = 2π × 1.2 NHz.
In Fig. 4, we present global optimizations of fast gates in this
microtrap architecture for gate times of 0.45, 1.0, and 1.75
trap periods.

For submicrosecond gates in a linear microtrap array, the
FRAG and GZC schemes are only able to find low-infidelity
solutions with restrictively high repetition rates. Therefore,

Fig. 4(a) provides a means to compare the GPG and APG
schemes against the worst of FRAG and GZC. Figure 4 clearly
shows that the GPG scheme in particular is able to find gate
solutions with infidelities around 10−4 that can be resolved
with ∼2 -GHz repetition rates (assuming ωt

2π
∼ 1 MHz), which

falls well within experimental feasibility.
Another useful comparison is at one trap period, shown

in Fig. 4(b). FRAG and GZC optimizations are able to find
solutions with high fidelity but only with repetition rates larger
than ∼1500 2π

ωt
. Both the GPG and APG schemes are able

to reach very high fidelities for much lower repetition rates
of 500–1000 2π

ωt
. Figure 4(c) shows that at a gate time of

1.75 trap periods, FRAG and GZC are able to find extremely
high-fidelity gate solutions that are comparable to those found
by APG and GPG optimizations, requiring repetition rates of
only ∼100–500 MHz to resolve. However, only the APG and
GPG schemes are able to find solutions that are resolvable
with repetition rates lower than 200 2π

ωt
.

Much faster gate times are achievable for gates be-
tween ions in a common linear Paul trap, given the faster
phase acquisition due to the significantly stronger Coulomb
interaction at small interion separation [42]. The state-
dependent kicks given to the ions during gate operation can
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threshold of 10−4.

be performed parallel or perpendicular to the ion chain, de-
pending on the orientation of the laser pulses, which leads
to excitation of the longitudinal and radial motional modes,
respectively.

In Fig. 5 we present optimizations for two ions in a
linear Paul trap for a gate time of 0.25 trap periods. This is
presented for gates performed both on the longitudinal modes
(χ = √

3 − 1) and on the radial modes (χ = −1.4 × 10−2) in
Fig. 5. In both cases, the APG and GPG schemes are shown
to find high-fidelity solutions for lower laser repetition rates,
which is particularly evident for gates on the radial modes.

We have omitted the contributions from micromotion that
typically complicate the use of the radial mode. However,
recent work by Ratcliffe et al. [49] has demonstrated that
micromotion can be included in optimizations of the FRAG
scheme to enhance fast gate operations. We expect to see a
similar enhancement when micromotion is included in opti-
mizations of the GPG and APG schemes.

For all global optimizations presented here, the APG and
GPG schemes outperform the FRAG and GZC schemes,
either in terms of required repetition rate, achievable fidelities,
or both. For longer gate times, all four gate schemes are able
to find high-fidelity solutions that have only modest repetition
rate requirements. In general, it is preferable to use the APG
and GPG schemes over FRAG or GZC, as they are compatible
with a second phase of optimization over pulse group timings,
which we describe in Sec. V.

B. Ion scaling in a linear Paul trap

While gates optimized for a simple two-ion system are
robust to the presence of surrounding ions in a microtrap
array [25], the same is not true of ion chains in a linear
Paul trap, except in the limit of infinitely fast gate speeds
[42]. Therefore, it is necessary to include the motional modes
of all of the ions in the chain when optimizing for a linear
Paul trap architecture. Bentley et al. [42] performed this
analysis, comparing the FRAG, GZC, and Duan schemes, and
determined that the FRAG scheme was the best performing.

We repeat these calculations here and compare the FRAG
scheme to the GPG(10) and APG(16) schemes.

In Fig. 6 we report infidelities of gates optimized for
different numbers of ions in a common Paul trap with fixed
axial frequency ωt = 2π × 1.2 MHz. For a given number of
ions, optimizations under the different schemes were each
allowed comparable computational time. For all numbers of
ions, the GPG and APG optimizations clearly outperform
the FRAG scheme, achieving orders-of-magnitude lower in-
fidelities for given repetition rates. We attribute this to the
fact that the FRAG scheme has only three free parame-
ters to optimize over, which is well suited to two-ion sys-
tems, where only three conditions need to be satisfied (one
phase condition and restoration of two motional modes).
As more ions are added, the increased motional modes result
in more restoration conditions that need to be satisfied, and
thus the FRAG scheme no longer exactly solves Eqs. (2) and
(3).

Number of ions

In
fid

el
it
y

10-3

10-5

10-7

10-9

FRAG GPG(10) APG(16)

FIG. 6. Infidelities of FRAG, GPG(10), and APG(16) gates for
increasing numbers of ions in a single Paul trap is increased, for
fixed axial frequency of ωt = 2π × 1.2 MHz. Gates were optimized
for each multi-ion system with gate times capped at TG = 0.6 trap
periods. The infidelities reported here are for minimum resolving
repetition rates of 1 GHz (solid) and 10 GHz (dashed), respectively.
The FRAG optimization for 15 ions was not able to find gates that
are resolvable by 1-GHz repetition rate.
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In contrast, the APG and GPG schemes have an increased
number of free variables (in this case, eight and ten, respec-
tively) and thus have more freedom to find solutions that
satisfy all motional conditions. In particular, the APG scheme
appears best suited for multi-ion systems, which is likely
due to the antisymmetric constraints guaranteeing momentum
restoration of each motional mode (13). The trends in Fig. 6
are not monotonic, which suggests the optimization is not
fully convergent due to an undersampled search space, as
the cost function becomes increasingly complex for large
numbers of ions.

V. LOCAL OPTIMIZATIONS WITH ODE DESCRIPTION
OF GATE DYNAMICS

The gate solutions found by the global optimization phase
described in previous sections can be further improved by
locally optimizing the timings of individual pulse groups.
While this can be done inexpensively with the truncated cost
function (7), it is preferable to utilize an ODE description
of the classical motion of the ions for each state-dependent
trajectory. This allows for the inclusion of nonlinear contri-
butions of the Coulomb interaction and can be extended to
include trap anharmonicities. The ODEs themselves can be
derived from the potential energy of the trapped ion system
using either Euler-Lagrange equations or simply from the
force equation − ∂V

∂xi
= mẍi.

For a two-ion system in a microtrap array with intertrap
distance d , this is given by the following pair of coupled
differential equations:

− e2

4πε0

1

[d + x1(t ) − x2(t )]2
+ Mω2

t x1(t ) = −Mẍ1(t ) ,

e2

4πε0

1

[d + x1(t ) − x2(t )]2
+ Mω2

t x2(t ) = −Mẍ2(t ) ,

(15)

which describes free evolution of the motional state between
state-dependent kicks. Here, xi(t ) is the deviation of the
ith ion’s position from its equilibrium. In this description,
momentum kicks can be modeled as instantaneously trans-
forming the velocities ẋi → ẋi ± zk ( h̄k

M ), which amount to new
initial conditions for integration in Eq. (15). The sign of
this transformation depends on the initial two-qubit state. To
capture the full dynamics of the gate operation, the above
equations must be numerically integrated separately for each
initial state. The acquired phase difference can be calculated
from the areas enclosed by the state-dependent trajectories
through phase space [37,50] or equivalently from the ac-
tion of the classical motion of the ions. Calculations of the
phase difference and motional restoration are described in
Appendix C.

Importantly, the ODE expression can be used to explicitly
include the effect of finite repetition rate by expanding pulse
groups into their constituent pairs (as in the Duan scheme
[40]) and fixing their timings to integer multiples of the
laser repetition period, 1/ frep. Each pulse pair gives a state-
dependent kick of magnitude 2h̄k. A lower bound on the
infidelity can then be determined by evaluating the ODE for
every permutation of the grid-snapped pulse timings. This

approach allows for the local optimization state to be done
explicitly for a given laser repetition rate.

We exemplify this process using a gate solution found from
global optimization under the GPG(8) scheme, which has a
fidelity of 1–2.2 × 10−6 (without considering Coulomb non-
linearities). By numerically solving the ODEs (15), we visu-
alize the motional dynamics of the operation in Fig. 7. When
the full Coulomb potential is included in the calculation, the
fidelity falls to approximately 1 − 1.9 × 10−5. This drop in
fidelity is due to the linearization around the ion equilibrium
position failing when the large state-dependent momentum
kicks are applied during the gate operation. When the gate is
locally optimized for a finite repetition rate of 1 GHz, the gate
fidelity increases to 1–2.4 × 10−6, demonstrating the damage
to the fidelity caused by the Coulomb nonlinearity can be
corrected. In the local reoptimization we allow the total op-
eration time to be slightly longer than the gate time specified
in the global optimization, which provides more freedom in
the timings. We find that allowing the gate time to be a factor
of ∼25% longer is an effective constraint on the parameter
space, after which we do not notice significant improvements
in fidelity. For different trapped ion architectures or different
gate schemes, this boundary will need to be tuned.

For a fast gate between two ions in a common Paul trap, the
Coulomb nonlinearity does not strongly impact gate fidelity,
as fewer state-dependent kicks are required to perform a
gate between ions that are closer together [42], and thus
the linearization around the ions’ equilibrium positions is
typically robust. Consider one of the gate solutions found
during global optimization of the GPG(10) scheme for a gate
time of 0.25 trap periods, chosen from Fig. 5(a), initially
with a calculated fidelity of 1–5.6 × 10−6. When the gate
scheme is simulated using the ODEs (15) (setting d = 0), the
resulting fidelity calculated with the full Coulomb potential
is 1–7.7 × 10−6, which is a much smaller difference than the
microtrap example above.

VI. EFFECT OF PULSE IMPERFECTIONS

In several previous analyses, it has been identified that
errors in pulse area is a limiting factor to experimental im-
plementations of fast gates [25,36,43,47]. These errors are
typically due to intensity fluctuations of the pulsed laser
and lead to individual pulses performing imperfect � �= π

rotations on the Bloch sphere. The errors can also arise due to
the broadband laser pulses not being resonant with the target
atomic transition, which can result from level splitting due to
stray magnetic fields or an AC Stark effect. The imperfect
pulse areas lead to incorrect rotations of the qubits on the
Bloch sphere, which in turn lead to unwanted internal state
populations, as well as incorrect motional states that do not
disentangle at the end of the gate operation.

We present a worst-case analysis of this error, where
we suppose each pulse performs an imperfect rotation on
the Bloch sphere and investigate systematic effects on gate
fidelity. We will assume that each counterpropagating pulse
pair is split from a single pulse using a simple pulse-splitting
technique [41], and thus the laser phase has no contribution to
the gate dynamics.
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FIG. 7. Motional restoration of a GPG(8) gate for a two-ion microtrap array. The motion of the common-motional (blue) and breathing
(red) modes has been plotted by numerically solving the ODEs (15). For visualization here we assume symmetric trajectories for the qubit
states |↑↑〉 and |↓↓〉, and the pair |↑↓〉 and |↓↑〉. Fidelity calculations take into account asymmetry between these trajectories, as outlined in
Appendix C. The solid line represents the motion of a gate solution found from global optimization, initially with 1 − F = 1.9 × 10−5. The
dashed lines correspond to a local optimization of that gate solution, including Coulomb nonlinearities and a finite repetition rate of 1 GHz,
giving 1 − F = 2.4 × 10−6. Motional restoration is clearly demonstrated as both the position and velocity trajectories return to the origin by
the end of the gate operation. For effective local reoptimization, the gate time is allowed to be slightly longer than fixed in global optimization.

The unitary for a rotation of an imperfect pulse can be
written as

Ûk = (σ̂+e−ikx̂ + σ̂−eikx̂ ) cos θ + i sin θ 1̂ , (16)

where k is the wave number of the laser and θ is a parametriza-
tion of a typical rotation error, with this form chosen to
enforce unitarity (ideal case has θ = 0). From this expression,
sin θ can be understood as a probability amplitude for the part
of the unitary that generates an errant orthogonal state to the
desired target state. To second order in θ , the unitary for a
counterpropagating pulse pair can then be written as

Ûpair = ÛkÛ−k (17)

= (1 − θ2)Û0 + 2θ Ûerr − θ2 1̂ + O(θ3). (18)

Here, Û0 is the ideal unitary for a state-dependent kick

Û0 =
(

e2ikx̂ 0
0 e−2ikx̂

)
, (19)

and Ûerr is an errant unitary which describes an unrestored
internal state and an incorrect motional state,

Ûerr =
(

0 i cos(kx̂)
i cos(kx̂) 0

)
. (20)

While the identity operation 1̂ correctly restores the internal
state, the motional state produced is incorrect. The total
unitary for a fast gate composed of Np pulse pairs can be
approximated simply by a product of Ûpair,

Ûgate ≈ (1 − Npθ
2) ÛN + 2Npθ Û⊥ , (21)

where ÛN ≡ Û
Np

0 and all nonideal elements have been grouped
into Û⊥. We assume Û⊥ always produces states orthogonal to
those produced by ÛN. This is a conservative approximation,
as it neglects terms that result in an incorrect motional state
but includes those that correctly restore the internal state. In
general, these terms will have a small overlap with the ideal
final state because the Lamb-Dicke parameter η has a finite
value.

Equation (21) can be used to calculate the effect of θ on
the gate fidelity. For some initial state |ψ0〉, the representative-
state fidelity becomes

F = |〈ψ0|Û †
idealÛgate|ψ0〉|2 (22)

= |(1 − Npθ
2)〈ψ0|Û †

idealÛN|ψ0〉|2. (23)

Defining ε ≡ |θ |2 to be the transition error and F0 ≡
|〈ψ0|Û †

idealÛN|ψ0〉|2 to be the theoretical gate fidelity assuming
perfect π rotations (θ = 0), the gate fidelity is

F ≈ ∣∣1 − 2Npε + N2
pε2

∣∣F0 . (24)

This expression forms a lower bound on the realistic fidelity
for a gate with Np pulse pairs and characteristic transition error
ε. For square pulses, this transition error is determined by the
magnitude of relative intensity fluctuations �I/I ,

εsquare = π2

8

�I

I
. (25)

The fidelity for a range of gate speeds and magnitudes of ε

is tabulated in Table I, for both microtrap and linear Paul
trap architectures. Clearly, in order to achieve submicrosecond
gates with fidelities greater than 99.9%, transition errors on
the order of 10−6 are required. While single-qubit rotations
have been demonstrated with this level of precision [20], the
current state of the art with ultrafast pulses (tens of picosecond
pulses) have only been able to achieve errors of around 10−2

[45,51]. Table I suggests that if error rates of 10−3 can be
reached, subtrap period gates between two ions in a Paul trap
with fidelities of around 99% can be achieved.

This error can be significantly reduced in future experi-
ments by replacing each individual pulse with a composite
pulse sequence that is robust to first- or higher-order intensity
fluctuations, such as a BB1 pulse sequence [52]. Further
improvement may be achieved through use of rapid adiabatic
passage with chirped laser pulses or simple pulse shaping
schemes [53,54]. It has previously been stated that the tran-
sition error can be reduced by engineering a π -phase shift
between the pulses in each counterpropagating pair to reduce
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TABLE I. Realistic infidelities (1 − F ) including worst-case pulse error effects for entangling gates on the longitudinal modes of (a) a
two-ion linear microtrap chain (χ = 1.8 × 10−4), and (b) two ions in a single linear Paul trap (χ = √

3 − 1). This is reported for a range of
gate times TG (in trap periods) and different values of the transition error ε. Here, F0 is the infidelity of the optimized gate not including pulse
errors, and N is the number of pulse pairs in the gate. The empty entries correspond to gate errors too large to be described by Eq. (24).

ε = 10−2 ε = 10−3 ε = 10−4 ε = 10−5 ε = 10−6 ε = 10−7

TG 1 − F0 N 1 − F

0.45 1.0 × 10−4 1552 – 7.0 × 10−1 2.9 × 10−1 3.1 × 10−2 3.2 × 10−3 4.1 × 10−4

(a) 1.0 6.3 × 10−9 640 – 8.7 × 10−1 1.2 × 10−1 1.3 × 10−2 1.3 × 10−3 1.3 × 10−4

1.75 2.4 × 10−7 191 1.7 × 10−1 3.5 × 10−1 3.8 × 10−2 3.8 × 10−3 3.8 × 10−4 3.8 × 10−5

0.25 1.8 × 10−4 1088 – 9.9 × 10−1 2.1 × 10−1 2.2 × 10−2 2.4 × 10−3 4.0 × 10−4

(b) 0.65 3.2 × 10−5 64 8.7 × 10−1 1.2 × 10−1 1.3 × 10−2 1.3 × 10−3 1.6 × 10−4 4.5 × 10−5

1.25 2.2 × 10−6 46 7.1 × 10−1 9.0 × 10−2 9.2 × 10−3 9.2 × 10−4 9.4 × 10−5 1.1 × 10−5

unwanted residual population transfer [44,47]. However, this
generally will not result in any significant improvement, as it
does not correct for errant motional states.

VII. CONCLUSION

We have presented a general two-phase approach for opti-
mization of pulse schemes for implementing fast entangling
gate operations on trapped ion platforms. These schemes sig-
nificantly outperform previous schemes in terms of achievable
gate time and/or fidelity. These benefits are particularly im-
portant for systems with large numbers of qubits. The scheme
design begins with an initial global optimization phase over
the number of pulse pairs in each pulse group and is followed
by a second phase of local optimizations over the pulse
timings. These local optimizations include the nonlinearity
of the Coulomb interaction and explicitly account for the
finite repetition rate of the laser. Since the local optimizations
utilize the full ODE description of the ion motion, they can
be used to include all known measurable quantities of the
trapped ion system, such as trap nonlinearities. Aspects of
the experiment that are not known a priori can be accounted
for by an online optimization on the trapped ion machine
itself.
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APPENDIX A: PARAMETER CHOICES

We consider 40Ca+ as the candidate ion species for all
calculations presented in this manuscript, with the 393-nm
S1/2 → P3/2 transition used for the state-dependent kicks. We
use a Lamb-Dicke parameter of η = 0.16, which corresponds
to a trap frequency of ωt � 2π × 1.2 MHz. Furthermore, we
assume an average mode occupation of n̄ = 0.1 for each
motional mode, which is well within experimental capability
[55]. By inspection of Eq. (7), we can see that as the infidelity
is approximately linear with n̄, and because of the very
low infidelities we report, significantly higher mode occupa-
tions are compatible with high-fidelity gate operations. These

parameters are chosen for fair comparison to previous work,
namely, Ratcliffe et al. [25] and Bentley et al. [42].

APPENDIX B: GLOBAL OPTIMIZATION METHODS

In our approach to global optimization, we seek to min-
imize gate infidelity over a parameter space of pulse group
timings (FRAG and GZC schemes) or the numbers of pulse
pairs in each group (GPG and APG schemes). For the calcula-
tions presented in this manuscript, we use the limited-memory
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [56]
to minimize the cost function given in Eq. (7), under the
assumption of infinite laser repetition rate and a linearized
Coulomb potential. Specifically, we apply the L-BFGS-B al-
gorithm [57], where sets of local optimizations are conducted
within strict boundaries of the parameter space. In each of
these local optimizations the solution with the lowest infi-
delity is identified as the optimal gate within the restricted re-
gion of parameter space. This optimal solution is then chosen
as the initial condition for the next local optimization where
the boundaries are slightly widened. This process is repeated
until an optimal gate solution is found for a desired range
of allowed parameters. For the GPG and APG optimization
procedures, each local optimization continuously searches
over the zk parameters, which are then rounded to integer
values when identifying the optimal solution for a given local
optimization.

APPENDIX C: INFIDELITY CALCULATION
WITH ODE DESCRIPTION

As described in Sec. V, we perform local optimizations of
the pulse timings using an ODE description of the classical
state-dependent trajectories of the ions. The ODEs given
in Eq. (15) are numerically integrated using a fourth-order
Runge-Kutta algorithm on XMDS2 [58]. The classical trajec-
tories are simulated for all basis states {|00〉, |01〉, |10〉, |11〉}
and for an unperturbed trajectory with no state-dependent
kicks. It is necessary to integrate trajectories for the |01〉
and |10〉 states separately, as the nonlinearity of the Coulomb
potential breaks the symmetry in the ion motions.

To calculate the gate infidelity, we use the following trun-
cated expression:

1 − F � 2
3�φ2 + 4

3

(
1
2 + n̄p

)(
�P2

1 + �P2
2

)
, (C1)
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where �Pi is the unrestored motion of the ith ion and �φ is
the phase mismatch. This expression resembles Eq. (7), except
that we have converted from the mode basis to the position
of the individual ions. Equation (C1) gives an upper bound
on the infidelity (i.e., under-reports achievable fidelity) as the
next-order terms in the expansion are negative.

The motional restoration terms (�Pi ) are calculated
by subtracting the unperturbed trajectory from each state-
dependent trajectory in phase space and then calculating the
nondimensional distance from the origin,

�Pi =
√

Mωt

2h̄
�xi(TG)2 + M

2h̄ωt
�ẋi(TG)2 , (C2)

where �xi = xi − x0
i , and x0

i is the unperturbed trajectory
(with no state-dependent kicks) of the ith ion with TG as the
gate time. The position and velocity have been nondimen-
sionalized by corresponding factors. Each state-dependent
trajectory gives a different value of �Pi, which we choose
for the worst case when we calculate the infidelity using
Eq. (C1).

To calculate the phase mismatch (�φ), we use the classical
action as a measure of the phase accumulated along each
state-dependent trajectory. This is given by the integral over

the classical Lagrangian,

� jk = 1

h̄

∫
| jk〉

(
1

2
M

(
ẋ2

1 + ẋ2
2

) − V (x1, x2)

)
dt , (C3)

where j, k = {0, 1}, and
∫
| jk〉 denotes an integral over the

trajectory of the | jk〉 state. Ideal phase acquisition, up to a
global phase (i.e., one that is common to all � jk), can be
expressed as

�ideal
00 = π

4
, �ideal

10 = −π

4
,

�ideal
11 = π

4
, �ideal

01 = −π

4
.

(C4)

The phase mismatch �φ can then be calculated as the worst-
case deviation from the ideal case:

�φ = max
j,k

∣∣� jk − �ideal
jk

∣∣. (C5)

For efficient calculation of the phase accumulated along each
state-dependent trajectory, we write Eq. (C3) as an ODE given
by

h̄
d�

dt
= 1

2
M

(
ẋ2

1 + ẋ2
2

) − V (x1, x2), (C6)

which we integrate with Eq. (15) along each trajectory.
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