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Quantum adiabatic algorithm design using reinforcement learning
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Quantum algorithm design plays a crucial role in exploiting the computational advantage of quantum devices.
Here we develop a deep-reinforcement-learning based approach for quantum adiabatic algorithm design. Our
approach is generically applicable to a class of problems with solution hard-to-find but easy-to-verify, e.g.,
searching and NP-complete problems. We benchmark this approach in Grover-search and 3-SAT problems,
and find that the adiabatic algorithm obtained by our RL approach leads to significant improvement in the
resultant success probability. In application to Grover search, our RL design automatically produces an adiabatic
quantum algorithm that has the quadratic speedup. We find for all our studied cases that quantitatively the
RL-designed algorithm has a better performance compared to the analytically constructed nonlinear Hamiltonian
path when the encoding Hamiltonian is solvable, and that this RL-design approach remains applicable even
when the nonlinear Hamiltonian path is not analytically available. In 3-SAT we find RL design has fascinating
transferability—the adiabatic algorithm obtained by training on a specific choice of clause number leads to
better performance consistently over the linear algorithm on different clause numbers. These findings suggest the
applicability of reinforcement learning for automated quantum adiabatic algorithm design. Further considering
the established complexity equivalence of circuit and adiabatic quantum algorithms, we expect the RL-designed
adiabatic algorithm to inspire novel circuit algorithms as well. Our approach is potentially applicable to different
quantum hardware from trapped ions and optical lattices to superconducting-qubit devices.
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I. INTRODUCTION

Quantum simulation and quantum computing have re-
ceived enormous efforts in the last two decades owing to
their advantageous computational power over classical ma-
chines [1–5]. In the development of quantum computing,
quantum algorithms with exponential speedups have long
been providing driving forces for the field to advance, with
the best known example from factorizing a large composite
integer [6]. In applications of quantum advantage to generic
computational problems, quantum algorithm design plays a
central role. In recent years, both threads of gate-based [7]
and adiabatic annealing models [8,9] of quantum computing
have witnessed rapid progress in hardware developments such
as superconducting [10–15], photonic [16–18], and atomic
[19–21] quantum devices. Computational complexity equiv-
alence between the two approaches have been established in
theory [22–24].

In adiabatic quantum computing, the Hamiltonian can be
written as a time-dependent combination of initial and final
Hamiltonians HB and HP [8,9] as

H = [1 − s(t/T )]HB + s(t/T )HP, (1)

with the computational problem encoded in the ground state
of HP. In this framework, the quantum algorithm design
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corresponds to the optimization of the Hamiltonian path or
more explicitly the time sequence of s(t ). Different choices
for the path could lead to algorithms having dramatically
different performance and even in the complexity scaling.
For example in Grover search, a linear function of s(t/T )
leads to an algorithm with a linear complexity scaling to the
search space dimension (N), whereas a nonlinear choice could
reduce the complexity to

√
N [25]. This implies an approach

of automated quantum adiabatic algorithm design through
searching for an optimal Hamiltonian path, which may lead to
a generic approach of automated algorithm design given the
established complexity equivalence between gate-based and
adiabatic models [22–24]. The automated quantum algorithm
design that is adaptable to moderate-qubit numbers is particu-
larly in current demand considering near term applications of
noisy intermediate size quantum devices [26].

Here we propose a deep reinforcement learning (RL) ar-
chitecture for automated design of quantum adiabatic algo-
rithm. By encoding the computation problem in a Hamiltonian
ground state problem, we find that the automated design of
quantum algorithm can be reached by RL of the optimal
Hamiltonian path. Our RL architecture is most efficient to a
class of problems with solutions easy-to-verify, e.g., search-
ing, factorization, and NP-complete problems. In application
to the Grover search and 3-SAT problems, we find that the
adiabatic algorithm designed by the machine has a better
performance than linear algorithms in terms of computing
efficiency or the success probability.
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FIG. 1. Schematic illustration of the reinforcement learning (RL)
approach for adiabatic quantum algorithm design. The RL agent
collects a reward when the adiabatic quantum computer (AQC) finds
the correct solution, whose efficiency relies on the solution being
easy-to-verify. The agent produces an action of adiabatic-path-update
of s(t ) to optimize the reward based on its Q-table represented by a
neural network (see main text).

For the Grover search, the RL design automatically pro-
duces an adiabatic algorithm that takes as much time as the
nonlinear path [25] when the Grover search Hamiltonian is
solvable and the solution of nonlinear path is analytically
available. And quantitatively, with the same amount of time
the RL-designed algorithm reaches a higher success probabil-
ity than the analytically constructed nonlinear path. When the
analytical nonlinear path is unavailable in using a nonsolvable
Grover search Hamiltonian encoding, we still find that RL
design produces an adiabatic algorithm whose time resources
scale as

√
N .

For the 3-SAT problem, the RL-designed quantum algo-
rithm is found to have emergent transferability—the algorithm
obtained by training on a subset of problem instances is
applicable to other very different ones while maintaining the
high computational performance. This transferability is not
only conceptually novel but also practically crucial in saving
computation resources for training.

II. REINFORCEMENT LEARNING ARCHITECTURE FOR
QUANTUM ADIABATIC ALGORITHM DESIGN

A. Adiabatic algorithm design as an optimization problem

Given a computational problem, e.g., Grover search or
3-SAT, the form of the Hamiltonian HP encoding the problem
is fixed. For different problem instances, for example in
targeting different states in Grover search or finding solutions
for different choices of clauses in 3-SAT, the encoding Hamil-
tonian is different. We label different problem instances by
PI , and the encoding Hamiltonian is correspondingly labeled
as HPI . The designed Hamiltonian path in general would
depend on the computational problem, for example whether
it is Grover search or 3-SAT, but it should be required that
the Hamiltonian path should be independent of the problem
instance PI , in order for this Hamiltonian path design to
make a quantum adiabatic algorithm generically applicable.
This makes it distinct from path optimization aiming for
preparation of specific quantum states [27] or for achieving
robust or fast gate operations [28–31].

We propose an approach for automated algorithm design
based on reinforcement learning (see Fig. 1 for an illustration).
In the framework of quantum adiabatic algorithm, the task
of algorithm design reduces to the exploration of the optimal
path s(t/T ), which we parametrize as

s

(
t

T

)
= t

T
+

C∑
m=1

bm sin

(
mπt

T

)
. (2)

Here C is a cutoff for high frequency components, and the
parameters bm form a vector b. This parametrization is asymp-
totically complete as the cutoff C approaches infinity.

To build an artificial intelligent agent that explores the path
space of b, we introduce a set of action a, which are defined
to update b as a(0)(b) = b and [a(2m−1)(b)]n = bn − �0δmn,
[a(2m)(b)]n = bn + �0δmn for m � 1, with �0 to be referred
to as maximal update per step and the Kronecker delta δmn.

A unit reward r is collected by the agent if the solution out
of the adiabatic quantum computer is correct. This approach
then directly applies to adiabatic quantum hardware such as
D-wave machines [32] for the class of problems with solutions
hard-to-solve but easy-to-verify. To target an optimal adiabatic
algorithm with robust performance to all problem instances,
we sample PI and average over a certain number of instances
(MI) in calculating the reward for an action a on b. In the
reinforcement learning approach, during an intermediate jth
step, the agent evaluates the action a on b according to a Q-
table Q�(b, a) = maxP E{∑∞

i=0 γ ir[b( j + i)]|P}, where γ ∈
(0, 1) is a discount factor that allows us to account for future
rewards of b( j + i), and P represents an action-selecting
policy describing the probability of performing the action a
on a path-state b.

Following the action selection, we use a protocol analogous
to simulated annealing and update the path state stochastically
according to a probability determined by the the correspond-
ing action Q-value. The path state is updated in this way be-
cause our Hamiltonian path space is continuous, distinct from
the Go-game where the reinforcement learning has already
found a great success [33]. Details of the state-update policy
are described in Sec. II C.

The Q-table can be solved by iteration according to the
Bellman equation [34].

Our method uses a deep neural network to approximate the
Q-table as Q�(b, a) ≈ Q(b, a; θ ), with θ the network param-
eters determined in an iterative learning process. To stabilize
the nonlinear iteration in learning, we adopt an experience-
replay approach [35] where the agent’s experiences (b, a, r)
are stored in a memory M with a capacity CAP. We have a
network Q(b, a; θ ) trained on-the-fly during the agent explor-
ing the path-state space. As for the training, the inputs and
outputs are b and r + γ maxa′Q[a(b), a′; θ−], respectively,
with b, r, and a drawn randomly from the memory M, and
the network parameter θ− updated to θ every W steps.

Given the limitations of quantum computing hardware
presently accessible, we simulate quantum computing on a
classical computer and generate reward to train the RL net-
work. In applications to a quantum computer, our RL architec-
ture for automated algorithm design is directly adaptable by
collecting reward generated by a quantum adiabatic computer.
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FIG. 2. Sketch of the RL architecture used in this work. Left panel shows the relationship between various quantities and functions defining
the RL framework. The “predict_net” and “target_net” are two networks having network-parameters θ and θ− (see Sec. II A and Algorithm 1),
which represent the Q-table in the reinforcement learning. In the training process, the network predict_net is trained on the fly—it is updated
in every training step. The network parameters in target_net are updated to that in predict_net every W steps by “placement” as explained in
the main text. We train the network predict_net such that its produced Q-value through the function “predict Q value” matches the reward of
the current path state plus the discounted maximal Q-value of actions performing on the next path state, produced by the delayed network
target_net and the function “target Q value.” The “loss function” is defined accordingly. The right panel illustrates the structure of the fully
connected multilayer neural networks representing the Q-table whose input is the path state and the output is the Q-values corresponding to
the different actions.

B. Neural network architecture

In Fig. 2 we show the explicit learning protocol. The left-
hand panel of Fig. 2 shows a schematic of our RL framework.
We use a two-network setup which is similar to that used in
Ref. [35]. These two networks are labeled “target_net” and
“predict_net” in the schematic. The target_net uses a previ-
ously learned set of parameters and updates the parameters
every W steps; the values of these parameters are directly
copied from predict_net. This will reduce problems such as
divergences and oscillations thus making the learning process
more stable. The loss function calculates the expectation value
of the difference between “target Q value” and “predict Q
value” over different batches. The right-hand panel shows the
multilayer fully connected neural network used to represent
the Q-table. The input to this network is the path state obtained
at some learning step, while the output are the Q-values
corresponding to the actions.

C. Details of the state-update policy in the
reinforcement learning

For the state-update policy, we used the ε greedy strategy,
where the agent selects a random action with total probability
1 − ε, and the action having the maximal Q-value with an
additional probability ε. We set the ε = 0 initially and let the
agent explore the state space with no preference. The value
of ε is increased gradually until a maximum value 90% in
the learning process. In this way we try to maintain a balance
between the agent’s current knowledge to maximize reward
and possibilities in exploring among other options, which in
turn leads to a learning process with better performance.

In order to deal with the continuous state space, we develop
a continuous state-update protocol and combine with the ε-
greedy method in the following way. In our procedure we
use the ε-greedy strategy to choose an action. After choosing
the action, the agent sets a probability to accept the action
which we calculate from an acceptance probability function
P(e, Tem) = exp ( e

Tem ), where

e = Q[a(b), a; θ ] − Q(b, a; θ )

�0
∗ �, � ∈ [0,�0], (3)

Tem is a modifiable parameter commonly identified as the
“temperature” of the system in the context of simulated
annealing methods, The temperature is annealed down ev-
ery agent-exploration step (labeled by j), following Temj =
Temj−1 × 10−CR , withe CR the cooling rate. We run cycles of
this ε-greedy learning process to ensure convergence of the
Q-table. At each step of RL exploration, the neural network
is trained by varying the θ parameters to solve an iteration
problem,

Q(b, a; θ ) = r[a(b)] + γ maxa′ {Q[a(b), a′; θ−]}. (4)

The training data is generated from the memory M that stores
the path-states b, actions a, and the corresponding rewards
r[a(b)] that the RL agent has explored. The parameters θ− are
only updated to θ every W steps (W is set to be 50 here), to
deliberately slow down the iteration process for stabilization
purpose. This approach has been used in Ref. [35], and
follows a standard approach to stabilize nonlinear iteration
problems. When the iteration converges, Q(b, a; θ ) satisfies
the Bellman equation [34].

The effect of P(e, Tem) can be better understood in context
of the annealing procedure, which we outline below. At
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intermediate step j the agent evaluates the action aj on the
path state b j , which then defines the path state b j+1 and
reward at step j + 1. At this point we perform the following
steps:

(i) Fix �0 to some constant;
(ii) Calculate (3) with values of the parameters as obtained

at step j;
(iii) Generate a random number μ ∈ [0.0, 1.0]
(iv) If μ � exp ( e

Tem )
- Accept corresponding action and accept the current value

of �.
(v) else choose action = 0 (corresponding to taking no

action).
In the learning process we store the current path, action

taken, reward resulting from action on path state and the
corresponding next path state.

When the reward reaches a threshold of 99.9%—a maxi-
mal reward is 1 in our notation, as it resembles the success
probability of the RL-designed adiabatic algorithm, the value
of εmax is set to 1, and the agent then uses the network to
choose action. In exploring the Hamiltonian path-state space,
as the iteration step increases, it gets more frequent for the
agent to find a path that gives a higher success probability.

After the Q-table converges, we let the agent update the
path-state b until it stabilizes, according to the ε-greedy
policy with ε increased from 90% to 100% slowly with fixed
annealing temperature and neural network parameters

III. PERFORMANCE ON GROVER SEARCH

A. Learning of easy Grover search

In application of our RL approach to automated adiabatic
algorithm design, we first show its performance on Grover
search compared to known quantum algorithms. This search
problem is to find an element in an array of length N as an
input to a black-box function that produces a particular output
value. This classical problem can be encoded as searching in
the Hilbert space of n = log2 N qubits for a target quantum
state. These qubits are labeled by q in the following. A circuit-
based quantum algorithm was first designed by Grover, which
shows a quadratic quantum speedup over classical computing
[36]. In adiabatic quantum computing, the Hamiltonians in
Eq. (1) for Grover search are HB = 1 − |ψ0〉〈ψ0|, and HP =
1 − |m〉〈m|, where |m〉 is a product state in Pauli-Z basis that
encodes the search target, and |ψ0〉 is a product state in the
Pauli-X basis with all n eigenvalues equal to 1. The symbols
X , Y , and Z refer to Pauli matrices in this work. A linear
choice of s(t/T ) (b = 0 in our notation) does not exhibit the
quadratic speedup. It was later pointed out in Ref. [25] that
the quantum speedup is restored with a tailored nonlinear path
choice of s(t/T ).

In the Grover search problem, different problem instances
correspond to different choices for the |m〉 states, which are
all connected to each other by a unitary transformation which
keeps HB invariant. The reward RL agent collects in the train-
ing process is thus exactly equivalent for different problem
instances, which means averaging over PI is unnecessary for
the Grover search. Figure 3 shows results of the RL-designed
adiabatic Grover search algorithm. In our RL design for an
adiabatic quantum algorithm, we scale up the adiabatic time

T as T ∝ √
N to benchmark against the best-known Grover

search algorithm. Then as expected, the linear adiabatic algo-
rithm leads to a success probability completely unsatisfactory
at large N . We find that both the nonlinear [25] and the RL-
designed adiabatic algorithms produce success probabilities
very close to 1 (larger than 99.9%). At large N � 24, the
RL-designed algorithm outperforms the nonlinear one.

In Fig. 3 a quantitative comparison shows that the required
adiabatic time T to reach a fixed success probability is shorter
from the RL-designed algorithm than the analytically con-
structed nonlinear algorithm. We want to emphasize here that
in Fig. 3 we scale up the total adiabatic time according to the√

N = √
2n scaling. Having an eventual success probability

close to 1 implies the the computational complexity of the RL-
designed adiabatic algorithm follows the

√
N scaling, because

otherwise the success probability would significantly decrease
as we increase the qubit number from 1 to 10. The

√
N scaling

is already known to be optimal for Grover search [37].
It is worth remarking that the choice of HB is made here

for comparison purposes, as the nonlinear path to achieve
the quadratic speedup is only analytically available with that
specific Hamiltonian choice [25]. For physical realization of
HB, which can be rewritten as HB = 1 − ⊗q[1 + Xq]/2, it is
experimentally challenging to construct this Hamiltonian with
quantum annealing devices. A more suitable choice for HB

in that regard is
∑

q[1 − Xq]/2, for which the analytically
obtained nonlinear path [25] is then no longer applicable,
but our RL design still produces high-performance adiabatic
algorithms. A common feature of the RL-learned path for
s(t/T ) is that there is a relatively flat region around s = 0.5
where the energy gap is minimal. This flat region has a
tendency to grow as we increase N [Fig. 4(a)].

B. Instantaneous energy spectrum for the easy Grover search

In this section we show the resultant instantaneous energy
spectrum corresponding to the RL-designed algorithm for the
easy-way Grover search.

The instantaneous energy following the RL-designed algo-
rithm lies on the time-dependent ground state for both small
and large number of qubits [Figs. 4(b) and 4(c)]. The energy
deviation is much smaller than the linear algorithm, and is
very close to the tailored nonlinear algorithm. Therefore the
RL-design approach indeed automatically reveals a quantum
adiabatic algorithm as efficient as the improved nonlinear
algorithm for Grover search [25].

C. Hard Grover search

In learning the adiabatic algorithm of the Grover search,
we choose the analytical-solvable Hamiltonian as in Ref. [25]
for comparison purpose, where the quantum dynamics during
the adiabatic procedure corresponds to an effective two-level
system.

We thus denote this as the “easy” Grover problem. Consid-
ering physical realization, a suitable choice for the encoding
Hamiltonian HB is

HB =
∑

q

[1 − Xq]/2. (5)

We denote this the “hard” Grover problem, for which the
analytically obtained nonlinear path [25] does not carry over
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FIG. 3. Performance of RL-designed quantum adiabatic algorithm in success probability for Grover search. The success probability is
obtained by taking the square of wave-function overlap of the dynamical quantum state with search-target state. Results from adiabatic
algorithms using a linear and a tailored nonlinear path [25] are shown for comparison. The total adiabatic time are chosen to be T =
22.0, 31.1, 62.2, 124.5, 248.9, 497.8 for qubit number n = 1, 2, 4, 6, 8, 10, respectively, following the

√
N = √

2n scaling. Given this choice
of scaling, an eventual success probability close to 1 by both of the nonlinear and the RL-designed algorithms implies that they both
exhibit quadratic quantum speedup because otherwise the success probability would dropdown with increasing qubit number. Comparing
the RL-designed and nonlinear algorithms quantitatively, it takes less amount of time for RL-designed algorithm to converge to the searching
target than the nonlinear algorithm.

[38,39]. We stress here that our RL approach still produces
an adiabatic algorithm with high success probability. In this
regard, our RL approach is more generic, and is particu-
larly useful considering the present limitations of quantum
hardware.

In Fig. 5 we compare results obtained from the linear
protocol with those obtained from the RL-learned protocol for
the hard Grover problem. We show the success probabilities
as obtained from the linear and RL designed path for different
numbers of qubits. Similarly to our results in Fig. 3, the

success probability is calculated by taking the square of wave
function overlap between the dynamical and targeted ground
state. Again, at large N the linear search algorithm fails to find
the targeted state (the evolution time follows the scaling of
T ∝ √

N), while the RL-designed algorithm still produces an
adiabatic algorithm with high performance. The comparison
to the nonlinear path is not shown here simply because for the
hard Grover search Hamiltonian used here, the nonlinear path
is not analytically available.

(a) (c)
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t/T t/T t/T

(b)

FIG. 4. Energy evolution from the RL-designed adiabatic path for Grover search. (a) The RL-designed path. The adiabatic time is chosen
the same way as in Fig. 2 (see the main text). (b) and (c) The energy spectrum for the ground and first excited states with 1 and 10 qubits,
respectively. The energy spectra of the instantaneous Hamiltonian are obtained by exact diagonalization (ED), shown by solid lines in (b) and
(c). The plot in (c) shares the same legend as in (b). The energy expectation values of the dynamical state following different Hamiltonian
paths are shown by dashed lines. It is evident from (c) that the RL-designed path is distinct from both of the linear and the nonlinear paths.
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FIG. 5. Success probabilities for the hard Grover problem for different number of qubits. Comparison is between a linear protocol
and our RL-designed protocol. The nonlinear protocol is not applicable here. The qubit numbers are, from top to bottom, left to right,
n = 1, 2, 4, 6, 8, 10 for the the adiabatic evolution times T = 22.0, 31.1, 62.2, 124.5, 248.9, 497.8.

In Fig. 6 we plot the energy spectrum of the instantaneous
Hamiltonian of the hard Grover problem for different numbers
of qubits. The behavior of the ground and first excited states

of the hard Grover problem is markedly different from those
of the easy Grover case (Fig. 4). As can be seen from the plots,
the linear protocol apparently starts to fail for n = 6.

E
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t/T

(a) (b) (c)

(d) (e) (f)

FIG. 6. Energy spectrum for the hard Grover problem for different number of qubits. The qubit numbers n and adiabatic evolution times
T are the same as those given in the caption of Fig. 5. The expectation value of the instantaneous Hamiltonian by ED and the dynamical state
following linear and RL-designed Hamiltonian path are shown by solid and dashed lines. We do not show the nonlinear results as they are not
applicable here.
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FIG. 7. Performance of reinforcement learning (RL) designed algorithm on 3-SAT problem. In (a) we show the comparison of the RL-
designed and linear algorithms in the averaged success probability of solving random 3-SAT problems. The success probability is defined
by projecting the final state of the adiabatic quantum evolution onto the correct solutions. (b) and (c) The distribution of the infidelity for
the RL-designed and linear algorithms, respectively. The statistics is collected from solving 105 random 3-SAT problem instances using the
corresponding quantum algorithms. The error bar represents the statistical error according to the bootstrap method. The infidelity is rescaled
by taking its average as a unit. The infidelity distribution from the linear algorithm shown in (c) empirically resembles a Wigner-Dyson type
(illustrated by the gray solid line), whereas the distribution from the RL algorithm in (b) deviates from that. In this plot we choose the adiabatic
time T = 6, and the total bit number Nb = 10.

IV. PERFORMANCE ON 3-SAT

We then apply the RL approach to the more complicated
3-SAT problem. Given a total number of Nb boolean bits
(labeled by q), the problem is to find a boolean sequence zq

to satisfy C = C1 ∧ C2 ∧ C3 ∧ C4 ∧ · · · with each Ci a clause
containing three boolean bits, say qi,k=1,2,3. The total clause
number will be denoted as NC . The satisfiability condition
of each clause Ci can be written into a truth table ziα =
{z(1), z(2), z(3)} such that the binary sequence {z(1), z(2), z(3)}
belongs to this table if and only if Ci is satisfied. We use
α to label all possibilities to satisfy the clause Ci. To solve
this problem with quantum adiabatic algorithm, we need
to introduce Nb qubits, which are then also labeled by q.
The corresponding qubit states are |z1〉 ⊗ |z2〉 ⊗ · · · ⊗ |zNb〉.
Introducing a compact notation |qi; ziα〉 for the qubits, qi,1,
qi,2, and qi,3, in the quantum state |z(1)〉 ⊗ |z(2)〉 ⊗ |z(3)〉, the
classical 3-SAT problem is formally encoded into a quantum
ground state problem with a Hamiltonian

HSAT
P = −∑NC

i=1

∑
α |qi; ziα〉〈qi; ziα|. (6)

A solution to the 3-SAT problem corresponds to a ground
state of HSAT

p with energy −NC . Different 3-SAT problem
instances correspond to different choices of clause qi and truth
table ziα . The initial quantum state and Hamiltonian HB are
set to be |ψ0〉 and HB = ∑

q[1 − Xq]/2, respectively, where
|ψ0〉 is the same initial state as in the Grover search problem.
In our RL approach to design 3-SAT quantum algorithm, the
reward RL agent collects is generated by randomly sampling
qi and ziα (see Appendix B), to make the learned algorithm
generically applicable.

In Fig. 7 we show the performance of the RL-designed al-
gorithm and compare with the linear algorithm. We put the RL
agent to work on a 10-bit 3-SAT problem. The RL-designed
algorithm is obtained by training with clause number NC = 3
only, where the stepwise reward is obtained by averaging over
100 random problem instances. We then test the RL algorithm
on random 3-SAT problem instances that contain one-to-
six clauses. The tested success probability in Fig. 7(a) is

obtained by averaging over 105 random problem instances.
It is evident that the RL-designed algorithm outperforms the
linear algorithm with higher success probability. Its advantage
becomes more significant in a systematic fashion as the clause
number is increased, although the RL algorithm is trained
on 3-SAT problems with clause number NC = 3 only. This
implies the emergent transferability of the RL-designed algo-
rithm. The success over different clause numbers implies that
this RL-learning approach has seized the intrinsic ingredients
to optimize the adiabatic quantum algorithm because other-
wise the RL-designed algorithm would not be transferable.

Besides the quantitative improvement in the RL-designed
over the linear algorithm, we also emphasize that the outcome
of the RL algorithm is qualitatively distinct in the resultant fi-
delity. In Figs. 7(b) and 7(c) we show the distribution of the in-
fidelity obtained from 105 random 3-SAT problem instances.
The statistics is taken for different clause number separately.
The infidelity is rescaled by taking its average as a unit. The
distributions of this rescaled infidelity for different clause
numbers are found to collapse onto a universal function, for
both the RL [Fig. 7(b)] and linear [Fig. 7(c)] algorithms. It
appears that infidelity distribution from the linear algorithm
is close to a Wigner-Dyson (WD) distribution—the numer-
ically obtained statistical second moment of the infidelity
agrees with the WD prediction within 10% difference. To
the contrast, the second moment of the infidelity from the
RL algorithm deviates from the WD prediction, meaning the
infidelity distribution for the RL algorithm is qualitatively
distinctive from the linear case. The physical implication of
such qualitative difference in the infidelity distribution is left
for future study.

V. SCALABILITY OF THE REINFORCEMENT LEARNING
IN QUANTUM ADIABATIC ALGORITHM DESIGN ON

GROVER SEARCH

In Fig. 8 we show the results of applying a schedule learned
on a 10-qubit easy Grover search problem to n-qubit prob-
lems with n > 10. For the linear algorithm, the schedule is
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FIG. 8. Performance of linear and machine learning designed quantum adiabatic algorithms applied to Grover search with different number
of qubits. In this plot the reinforcement learning (RL) designed schedule s(t/T ) is obtained by training on the problem with qubit number
n = 10, and then applied to problems having larger number of qubits, 11 to 16, by a simple rescaling T ∝ √

2n. The RL-designed adiabatic
algorithm systematically out-performs the linear one.

s(t/T ) = t/T , and T scales according to
√

2n as we increase
the qubit number in Fig. 8. For the RL-designed algorithm, the
schedule s(t/T ) is obtained by a training process on a problem
with qubit number n = 10, and then the schedule is applied
to problems having larger number of qubits (n = 11, . . . , 16),
following the same rescaling T ∝ √

2n as the linear case.
While the fidelity decreases as we increase the qubit number,
it is evident that the RL-designed algorithm systematically
out-performs the linear algorithm despite the simple rescaling
applied. The comparison in the infidelity is explicitly given in
Fig. 9.

To further demonstrate the scalability of the RL learning,
we provide the infidelity of the RL-designed algorithm trained
on Grover search with qubit number n, and then applied
successively on a problem with n + 1 (see Fig. 9). We use the
number of training steps to quantify the resources spent on the
RL learning. Assuming access to an actual quantum computer,
the number of training steps multiplied by the parameter MI
(see Sec. II A and Table I) would be equal to the number of
running times of the quantum computer.

We emphasize here that the number of training steps for
different qubit number n is fixed (see parameters of annealing
protocol iteration LSA and path state iteration LPS in Table I).
The resultant infidelity in this iterative procedure remains
close to 1%. This further implies the schedule trained on
relatively smaller-size problems has a rather large degree of
transferability.

Qubits Number

In
fid

el
ity

FIG. 9. Transferability of reinforcement learning designed
schedules for Grover search. The green line shows the resultant
infidelity from the linear schedule s(t/T ) = t/T as a comparison.
The blue line shows the infidelity following the schedule that is
obtained by training on the problem with qubit number n = 10. The
orange line corresponds to the schedules obtained by training on the
problem with qubit number n under a fixed number of training steps
(see parameters of annealing protocol iteration LSA and path state
iteration LPS in Table I) and then applied to the problem with qubit
number n + 1. In this plot the total adiabatic time T is chosen to scale
with the qubit number as T ∝ √

2n.
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TABLE I. Parameter list in the reinforcement learning.

���������Parameters
Problems

Easy/Hard
Grover Search 3-SAT

Neural-network layer number 2 3
Neural-network hidden-layer neurons 20 12
Neural-network learning rate 0.01 0.01
Neural-network activation function relu relu
Training bath size 32 32
Reward discount factor γ 0.9 0.9
Memory capacity CAP 500 1000
Maximal ε value in ε-greedy policy εmax 0.9 0.9
Single-step increment of ε 0.01 0.01
Target-net refreshing parameter W 50 50
Cooling rate in annealing protocol CR 0.1 0.1
Initial “temperature” in annealing Tem0 10 10
Cutoff C 6 6
Maximal update per step �0 0.1 0.1
Problem instance averaging number MI 1 100
Annealing protocol iteration LSA 80 80
Path state iteration LPS 1000 1000

In order to explicitly show that the reinforcement learning
is helpful in obtaining a new schedule from a prior guess
as we alter the problem, we provide the infidelity during the
training process in Fig. 10. We take the qubit number n = 11,
and compare two cases with and without pre-knowledge of
the schedule. In Fig. 10(a) the training process starts from a
trivial linear schedule s(t/T ) = t/T , i.e., no pre-knowledge
given, whereas in Fig. 10(b), the iteration starts from a Q-table
already obtained through training on the problem with n = 10,
i.e., with pre-knowledge. It is evident that the reinforcement
learning is indeed substantially helpful in quickly finding a
new schedule from a prior guess even when the problem is

altered—here the qubit number is changed from n = 10 to 11.
With pre-knowledge, our reinforcement learning is able to find
a proper schedule with three times smaller of iteration steps.

VI. CONCLUSION

In this work we report a reinforcement-learning-based
approach for automated quantum adiabatic algorithm design.
Our devised approach is directly applicable to problems with
solutions easy-to-verify such as searching, factorization, and
NP-complete problems. Through numerical simulations we
show that the RL approach automatically finds an adiabatic
algorithm for Grover search with quadratic speedup. In the
application to the 3-SAT problems, we find surprising trans-
ferability of the RL-designed algorithm which suggests the
algorithm trained on relatively smaller size problems is ap-
plicable to larger sizes, which is both practically useful and
theoretically inspiring in considering the complexity scaling.
The performance of our approach can be further improved by
introducing additional Hamiltonian terms, which would easily
fit into the framework proposed here.
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FIG. 10. Stepwise infidelity during the reinforcement learning process (a) without and (b) with pre-knowledge. The results in this plot
correspond to easy Grover search problem with qubit number n = 11 In (a), the training process starts from a trivial linear schedule. In (b), the
process starts from a schedule obtained for Grover search with qubit number n = 10 (rescaled according to

√
2n). In both cases, the infidelity

does not asymptotically converge to 0 during the training process, but instead the chance for the learning agent to find a low-infidelity schedule
is getting more frequent with more iteration steps. The red star in both plots marks the point where the performance reaches the threshold and
εmax in the ε-greedy policy is set to be 1. Comparing (a) and (b), at an iteration step around 8000 [at the position of red vertical dashed line in
(a) and the end of (b)], the chance for the learning agent with pre-knowledge to find a low-infidelity schedule is substantially more frequent
than that without pre-knowledge. The averaged infidelity in (b) drops down with much less iteration steps than in (a).
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Algorithm 1. RL architecture for automated adiabatic quantum algorithm design.

Initial: Initialize “temperature” in simulation annealing Tem0; Initialize memory M; Initialize path state; Initialize predict action-value Q
neural network with random weight θ ; Initialize target action-value Q neural network with weight θ− = θ ;

1: for simulation annealing iteration j = 1, LSA do
2: Set “temperature” Temj = Temj−1 ∗ 10−CR

3: for path state iteration i = 1, LPS do
4: With probability 1 − ε select a random action ai,and with probability ε select ai = argmaxaQ(bi, a; θ ).
5: Accept and execute action ai on bi with probability P(e, Temj )
6: Get the next path state ai(bi ) and the reward ri by averaging the performance of MI instances. (The number of training steps

multiplied by MI is then equal to the number of running times of the quantum computer, which is simulated in our work. The number
of training steps is thus a valid measure of computation resources spent on the RL learning.)

7: Store transition [bi, ai, ri, ai(bi )] in memory M
8: Sample a batch of transitions [b, a, r, a(b)] from memory randomly
9: Perform a stochastic gradient descent on the loss function L(θ ) = Eb,a,r,a(b){(r + γ maxa′ Q[a(b), a′; θ−)] − Q(b, a; θ )}2 with

respect to the predict network parameter θ

10: Increase ε with single step increment. Here set upper bound of ε value εmax

11: Every W steps, set θ− = θ

12: if ri � threshold then
13: Keep on path state updating iteration without training and set εmax to be 1
14: end if
15: end for
16: end for
Return: path state

APPENDIX A: PSEUDOCODE AND PARAMETERS
OF REINFORCEMENT LEARNING

For completeness, the pseudocode and the parameters used
in our RL architecture for Grover search and 3-SAT problems
are shown in Algorithm 1 and Table I.

APPENDIX B: SAMPLING OF 3-SAT
PROBLEM INSTANCES

Given a total number Nb of boolean bits zq, different 3-SAT
problem instances correspond to different choices of three-bit

combinations qi in each clause Ci, and different choices of the
truth table of each clause defined to be ziα = (z(1), z(2), z(3) ) in
the main text. Since we aim at a quantum adiabatic algorithm
generically applicable, we randomly sample the problem in-
stances {qi, zi} according to the definition of 3-SAT problem.
It is worth noting here that the choice for the truth table is
not completely random, and that for one clause in the 3-SAT
problem, there are eight possibilities of choosing the truth
table corresponding to the eight possibilities of constructing
the clause. The size of the sampling space grows polynomially
with Nb and exponentially with NC .
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