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Quantum teleportation is considered a basic primitive in many quantum information processing tasks and has
been experimentally confirmed in various photonic and matter-based setups. Here, we consider teleportation of
quantum information encoded in modes of a fermionic field. In fermionic systems, superselection rules lead
to a more differentiated picture of entanglement and teleportation. In particular, one is forced to distinguish
between single-mode entanglement swapping and qubit teleportation with or without authentication via Bell
inequality violation, as we discuss here in detail. We focus on systems subject to parity superselection where the
particle number is not fixed, and contrast them with systems constrained by particle number superselection which
are relevant for possible practical implementations. Finally, we analyze the consequences for the operational
interpretation of fermionic mode entanglement and examine the usefulness of so-called mixed maximally
entangled states for teleportation.
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I. INTRODUCTION

Quantum teleportation refers to the transference of quan-
tum information encoded in the complex amplitudes of an un-
known quantum state of a localized system to a remote system
solely via initially entangled, local operations and exchange
of classical information. First proposed in [1], quantum tele-
portation was experimentally confirmed in [2], followed soon
thereafter by further experiments refining various aspects of
teleportation using photon polarization [3,4], optical coher-
ence [5], and nuclear magnetic resonance [6]. Since then,
teleportation has become a conceptual cornerstone of many
tasks in quantum communication and quantum information
processing. Among other methods [7], teleportation can be
seen as a way of detecting and certifying the usefulness of
entanglement, because the latter is necessary to achieve a
nontrivial teleportation fidelity. Practical teleportation proto-
cols have been developed for photonic degrees of freedom,
e.g., in the context of long-distance high-fidelity communi-
cation [8–11], chip-to-chip teleportation with applications to
integrated photonic quantum technologies [12], or multiparty
settings [13] relevant, e.g., for measurement-based quantum
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computation [14,15]. In parallel to advances in photonic
setups, much progress has been made for teleportation in
matter-based systems [16–19].

Information carriers that are typically used for quantum
information processing in solid-state and atomic systems (for
instance, quantum dots [20] and ions in radio-frequency traps
[21] or optical lattices [22]) are electrons, i.e., fermions, or
even the more elusive Majorana fermions [23–27]. Fermionic
systems are described by anticommuting operators and are
subject to superselection rules [28–31], both of which require
a careful approach to questions concerning correlations and
entanglement [31–41], in particular, with regard to definition
of mode subsystems [42,43]. Nonetheless, many features
known from bosonic quantum optics settings can be suc-
cessfully carried over to fermions, for instance, phase-space
methods for the description of Gaussian states and channels
[44–51]. Research in this direction has previously mostly been
confined to the domain of theoretical analysis, but impressive
technological advances in the control and manipulation of
individual electrons [52–56] as well as in the generation of
electronic mode-entangled states [57] motivate further studies
of fermionic entanglement also from a practical perspective.

A key open problem in this area concerns the assignment
of clear operational meaning to fermionic mode entanglement
and its quantifiers. That is, fermionic systems with variable or
indefinite numbers of particles (but subject to superselection
rules) allow for different ways of quantifying entanglement;
see, e.g., [30,31]. But what do these quantifiers tell us about
the usefulness of the corresponding states in practical tasks?
Consider a single fermionic excitation in an equally weighted
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superposition of two different field modes in analogy to a
single photon that is delocalized in a two-path interferometer.
Formally, such a state can be seen as being maximally entan-
gled: The state of either mode is maximally mixed. But is this
type of entanglement operationally meaningful? For instance,
can one use it to violate a Bell inequality? If a quantum
state allows such a violation then it can be unambiguously
concluded that the state is entangled. For fermionic mode
entanglement it was shown in [58] that this is indeed possible
provided that two locally processed copies of a maximally
entangled two-mode state (four modes in total) are used.
While this can be seen as a device-independent certification of
the entanglement of the state, one may nonetheless wonder to
what (further) practical use this fermionic mode entanglement
can be put. Here we therefore investigate teleportation using
fermionic mode entanglement as a resource.

Inspired by initial work in this direction [59], we review
and more closely examine the different ways of interpreting
the standard teleportation protocol [1] for the task of teleport-
ing fermionic quantum information in the presence of super-
selection rules (SSRs). Previous proposals and experiments
[60–64] leave no doubt that teleportation using fermionic
quantum systems is indeed possible. However, here we aim
to identify the minimal resources for fermionic teleportation
in order to better understand the operational meaning of
the fundamental unit of fermionic mode entanglement. In
particular, we are interested in the subtle consequences that
SSRs imply for the usefulness of fermionic entangled states
as resources for teleportation. As we discuss, the parity super-
selection rule (PSSR) imposes restrictions that require a more
differentiated specification of what is meant by “teleporting
quantum information” in the first place.

For a single fermionic mode that is not entangled with
any other mode(s), the parity SSR implies that the encoded
information is classical. Consequently, teleporting such a
state requires no shared entanglement in principle. However,
when the mode in question is entangled with an another
(auxiliary) mode, an entangled resource state is necessary
for teleportation-based entanglement swapping. When more
than one mode is considered, the equivalent of one qubit of
quantum information can be directly encoded in the teleported
state (e.g., dual-rail encoding in two modes). However, we
find that the corresponding protocols require more resources
as compared to standard qubit teleportation. To transfer the
complex amplitudes of a single qubit, one can make do with
sharing a single maximally entangled fermionic mode pair
and two bits of classical information (a fermionic single-
mode teleportation channel), but one also needs to transfer
additional information about the teleported state (the state
of the second mode) via a fermionic quantum channel. This
channel may be realized by another fermionic single-mode
teleportation channel, increasing the required resources to two
copies of maximally entangled two-mode states, along with
the usual two bits of classical information.

Within the framework of these variations of standard tele-
portation we discuss the consequences of further restrictions.
In particular, we consider the potential of fermionic Gaussian
states and operations for teleportation, as well as the limi-
tations imposed by particle number superselection, which is
highly relevant for potential experimental implementations (in

particular, using state-of-the-art methods in electron quantum
optics [65]). Finally, we apply our findings to understand
the wider implications for the quantification of fermionic
entanglement, especially with a view to the notion of “mixed
maximally entangled” (MME) fermionic states [66] and their
usefulness for teleportation.

The paper is structured as follows. In Sec. II, we briefly
discuss the mathematical framework of fermionic modes and
their entanglement. In Sec. III, we then turn to teleportation.
First, we review the standard protocol for qubit teleportation
as a backdrop and discuss how fermionic teleportation de-
viates from this well-established paradigm in Sec. III A. We
then analyze protocols for teleporting the state of a single
fermionic mode in Sec. III B, as well as their implementation
via fermionic Gaussian operations in Sec. III C, before we
turn to teleportation of states of several modes in Sec. III D.
In Sec. IV, we then discuss how the presented teleportation
schemes (and potential practical implementations in electron
quantum optics [65]) are influenced by the additional con-
straint of a SSR for the particle number. The implications
on the quantification of fermionic (mode) entanglement are
analyzed in Sec. V, with a special view to MME states.

II. FRAMEWORK

A. Fermionic modes

We consider quantum information encoded in the modes of
a fermionic field.1 To each mode labeled i we associate a pair
of fermionic mode operators bi and b†i , which satisfy

{bi , b†j}+ = δi j, {bi , b j}+ = 0 ∀i, j, (1)

where {., .}+ denotes the anticommutator. The corresponding
Fock space is constructed by the action of the creation oper-
ators b†i on the vacuum state ||0〉〉, which itself is annihilated
by all annihilation operators bi, i.e., bi||0〉〉 = 0 ∀ i. The cre-
ation operators b†i populate the vacuum with single fermions,
that is, b†i ||0〉〉 = ||1i〉〉. Due to the indistinguishability of the
particles the tensor product of single-particle states needs to
be antisymmetrized when two or more fermions are created.
Here, we use the convention

b†kb†k′ ||0〉〉 = ||1k 〉〉 ∧ ||1k′ 〉〉 = ||1k 〉〉||1k′ 〉〉, (2)

where we use double-lined notation to indicate the antisym-
metrized wedge product “∧” between two or more single-
mode state vectors with particle content (in contrast to the
notation |·〉|·〉 = |·〉 ⊗ |·〉 for a tensor product), i.e., we have
||1k〉〉||1k′〉〉 = −||1k′〉〉||1k〉〉, whereas combinations of states with
and without particle content satisfy ||0〉〉||1k〉〉 = ||1k〉〉||0〉〉 =
||1k〉〉. With this definition at hand, arbitrary pure states on the
Fock space can be written as

||�〉〉 = γ0||0〉〉 +
n∑

i=1

γi||1i〉〉 +
∑

j,k

γ jk||1 j 〉〉||1k 〉〉 + . . . . (3)

1For now, we impose no further constraints such as a particular
(half-integer) spin, fixed mass, or charge on the field excitations, but
we discuss such restrictions in Sec. IV.
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However, the parity superselection rule (see, e.g., [28–31])
implies that coherent superpositions of even and odd numbers
of fermions cannot exist. For instance, a general pure state of
two modes A and A′ of the form

||� 〉〉AA′ = γ0||0〉〉 + γA||1A 〉〉 + γA′ ||1A′ 〉〉
+ γAA′ ||1A 〉〉||1A′ 〉〉 (4)

must be an even- or odd-parity state, i.e., the probability
amplitudes must satisfy either

γA = γA′ = 0 , |γ0|2 + |γAA′ |2 = 1 (even parity),

or γ0 = γAA′ = 0 , |γA|2 + |γA′ |2 = 1 (odd parity).

While coherent superpositions of states with different parity
are thus forbidden, incoherent mixtures are still possible. In
particular, this implies that any fermionic single-mode state
must be of the form

ρA = p ||0〉〉〈〈 0 || + (1 − p) ||1A 〉〉〈〈 1A ||, (5)

for 0 � p � 1.

B. Entanglement of fermionic modes

The parity superselection rule also has interesting conse-
quences for defining entanglement between fermionic mode
subsystems. In principle, one can define subsystems contain-
ing complementary, nonoverlapping sets of fermionic modes
and consider (quantum) correlations between them; see, for
instance [30,31,35,38,42,67]. In particular, the “local” oper-
ators assigned to different subsystems need not commute as
one would usually assume, but they can also anticommute. In
fact, there is no particular reason why the modes in question
need to be spatially separated. For instance, one may consider
two spatially overlapping (but orthogonal) field modes with
different frequencies. In any case, particular care must be
taken to deal with the definition of partial traces [42,43] to
avoid ambiguities such as those discussed in [68–70]. In other
words, two-mode states like

even: ||ψe 〉〉AA′ = α ||0〉〉 + β ||1A 〉〉||1A′ 〉〉, (6a)

odd: ||ψo 〉〉AA′ = α ||1A′ 〉〉 + β ||1A 〉〉 (6b)

can be regarded as entangled (for αβ �= 0). In particular, we
can define a basis of maximally entangled two-mode states
||	±〉〉AB and ||�±〉〉AB given by

||	±〉〉AB = 1√
2
(||0〉〉 ± ||1A 〉〉||1B 〉〉), (7a)

||�±〉〉AB = 1√
2

(||1B 〉〉 ± ||1A 〉〉). (7b)

The parity superselection rule leads to some interesting
differences with respect to the corresponding two-qubit states.
First, one notes that measurements in any local single-mode
basis other than the “computational” basis {||0〉〉, ||1A〉〉} are
prevented by parity superselection. At the same time, mea-
surements in a single product basis are not sufficient to
distinguish entanglement from purely classical correlations.
Consequently, two copies of each state need to be processed
simultaneously to allow for the violation of a Bell inequality
[58] (see also Ref. [71]). Second, the superselection rule also
restricts the physically allowed pure-state decompositions for

FIG. 1. Qubit teleportation. Teleporting one qubit of quantum
information, encoded in the single-qubit state |ψ〉Ã from qubit Ã to
qubit B, requires sharing one maximally entangled two-qubit state
|ϕ〉AB (one ebit) and communicating two bits of classical information
with bit values n1 and n2, respectively.

any given mixed state, which enters in convex-roof entangle-
ment measures. For instance, consider the entanglement of
formation (EOF) [72], defined as

EoF(ρ) := inf
D(ρ)

∑
i

pi S
(
ρ

(i)
A

)
, (8)

where S(ρ) = −tr[ρlog2(ρ)] is the von Neumann entropy
and the infimum is taken over all pure-state decompositions,
that is, D(ρ) is normally taken to be the set of all sets
{(pi, |ψi〉)}i for which ρ = ∑

i pi|ψi〉〈ψi|, with
∑

i pi = 1 and
0 � pi � 1. For fermionic modes it can now be argued [66]
that the set D(ρ) should be restricted to allow only pure state
decompositions {(pi, |ψi〉)}i where the states |ψi〉 satisfy the
parity superselection rule. This assumption leads to the notion
of mixed maximally entangled (MME) states [66], i.e., mix-
tures of maximally entangled pure states from different parity
subspaces that are still as entangled (according to the value
of the superselected EOF) as the individual pure states. The
question that remains is, what is the operational significance
of the value of the fermionic EOF?

Here, we therefore want to investigate the role of super-
selection rules and fermionic entanglement in teleportation
protocols. More specifically, we aim to extend previous work
[59] in this direction and identify if and how quantum infor-
mation encoded in fermionic modes can be teleported, which
resources need to be shared, and which information needs
to be communicated, before we return to a discussion of the
implications for fermionic entanglement in Sec. V.

III. FERMIONIC TELEPORTATION

A. Fermionic versus qubit teleportation

To set the stage for explaining fermionic teleportation
scenarios, let us briefly sketch the standard protocol for tele-
porting a single qubit between two observers called Alice and
Bob, as illustrated in Fig. 1. There, to teleport an unknown
state |ψ〉Ã of qubit Ã, held by Alice, a maximally entangled
two-qubit state |	〉AB of qubits A and B is shared between Al-
ice and Bob. Then, a projective measurement in a maximally
entangled two-qubit basis is performed on qubits A and Ã by
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Alice. The result of the measurement, encoded in two classical
bits with values n1 and n2, is then sent to Bob, who applies
a corresponding unitary Un1n2 on qubit B, recovering the
state |ψ〉B.

The basic observation to understand where teleportation
of fermionic quantum information deviates from standard
teleportation of qubits [1] is that parity superselection implies
that single-mode states of fermionic fields are of the form of
Eq. (5). On the one hand, this means that a single mode can
locally only encode classical information (the equivalent of
a classical bit). Consequently, teleportation of the quantum
information stored solely in a single fermionic mode state
is trivial: One can simply measure the state, send the result
as one bit of classical information via a classical channel,
and prepare the corresponding state at the other end. On the
other hand, the entropy of the single-mode state can arise
from lack of information but also from entanglement with
another mode. That is, the state ρÃ that is to be teleported
and which is of the form of Eq. (5) may be the marginal of
a two-mode state ρÃÃ′ , for instance, as in Eqs. (6a) or (6b)
with p = |α|2, or even an incoherent mixture of the two. In
this case, a purely classical “measure and prepare” protocol
would transfer classical information stored locally in mode Ã,
but would not be able to preserve entanglement with mode Ã′.

To consider teleportation of quantum information using
fermionic modes in any nontrivial way, we hence first have
to decide what we mean by “quantum information”: If by
quantum information we mean the state of a system that itself
contains only classical information but which might be entan-
gled with another system, then we can consider teleporting the
state of a single fermionic mode, as we discuss in Sec. III B.
If, on the other hand, we require the transfer of the equivalent
of one qubit of quantum information, then we either have to
relax the rules of the teleportation protocol (see Sec. III D) or
consider the teleportation of an entangled two-mode state from
Eq. (6), since this definition implies that a single fermionic
mode cannot contain quantum information.

As in the teleportation using qubits, the teleportation of
fermionic quantum information of any kind requires two
resources:

(i) Shared entangled states: For qubits, one usually con-
siders the number of “ebits,” i.e., shared maximally entan-
gled qubit pairs. Here, we consider the number of required
fermionic ebits, i.e., maximally entangled two-mode states,
which we call “fbits.”

(ii) Sending classical information (in bits).
For qubits, the minimal amount of resources for teleporta-

tion of one qubit is one ebit and two bits. For the teleportation
of fermionic quantum information, the minimally required
resources depend on the particular scenario one considers. In
the following, we will discuss these different scenarios and the
corresponding resources, advantages, and drawbacks.

B. Fermionic single-mode teleportation

For the teleportation of fermionic quantum information, we
explore a situation where Alice wishes to teleport the state
of a single mode labeled Ã to Bob, as illustrated in Fig. 2.
The mode Ã may (potentially) be entangled with another
mode Ã′ that is itself not necessarily teleported and whose

FIG. 2. Fermionic single-mode teleportation. In this scenario,
quantum information encoded mode Ã is teleported to mode B by
sharing one maximally entangled two-mode state ||ϕ〉〉AB (one fbit)
and communicating two bits of classical information with bit values
n1 and n2. The four possible values of these bits correspond to the
four possible measurement outcomes of a measurement in the basis
{||	±〉〉ÃA, ||�±〉〉ÃA}. Finally, a unitary Un1n2 that depends on the bit
values n1 and n2 is applied to the modes B and C to recover the
teleported state in mode B. Due to the parity superselection rule,
some of the unitaries Un1n2 require changing the state of the auxiliary
mode C from ||0〉〉 to ||1C〉〉. Mode Ã may initially be in an entangled
pure state ||ψ〉〉ÃÃ′ or an arbitrary mixed state ρÃÃ′ with mode Ã′, as we
discuss in more detail in Sec. III D. The details of the teleportation
protocol do not depend on the parity sector of the state ||ψ〉〉ÃÃ′ .

role we discuss in more detail in Sec. III D. For simplicity,
let us for now assume that the two modes are prepared in
the state ||ψ〉〉ÃÃ′ as in Eq. (6). We further assume that Alice
and Bob share one maximally entangled fermionic two-mode
state ||ϕ〉〉AB, i.e., one fbit, as a resource to teleport the state of
mode Ã from Alice to Bob. Alice then performs a projective
measurement with respect to the basis {||	±〉〉ÃA, ||�±〉〉ÃA} on
the modes Ã and A.

1. Even-parity resource states

With the mentioned choice of measurement basis in mind,
we can write the joint initial state ||ψ〉〉ÃÃ′ ||ϕ〉〉AB for the specific
case where ||ψ〉〉ÃÃ′ = ||ψe〉〉ÃÃ′ and ||ϕ〉〉AB = ||	±〉〉AB, i.e., both
states have even parity. Then, we have

||ψe 〉〉ÃÃ′ ||	±〉〉AB = 1
2 [||	+〉〉ÃA(α||0〉〉 ± β||1B 〉〉||1Ã′ 〉〉)

+ ||	−〉〉ÃA(α||0〉〉 ∓ β||1B 〉〉||1Ã′ 〉〉)

± ||�+〉〉ÃA(α||1B 〉〉 ± β||1Ã′ 〉〉)

± ||�−〉〉ÃA(α||1B 〉〉 ∓ β||1Ã′ 〉〉)]. (9)

The measurement with respect to the basis
{||	±〉〉ÃA, ||�±〉〉ÃA} results in one of four possible outcomes
corresponding to the four orthogonal basis states. Alice
encodes the outcome in two classical bits, n1 and n2, and
communicates them to Bob via a classical channel. If the
outcome suggests that the modes Ã and A have been projected
onto the state ||	±〉〉ÃA, i.e., the initially shared resource
state, then the modes B and Ã′ are left in the “correct” state
||ψe〉〉BÃ′ = α||0〉〉 + β||1B〉〉||1Ã′〉〉, without any further action. If
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the obtained outcome is ||	∓〉〉ÃA, i.e., an outcome in the same
(even) parity sector as the resource state but with a relative
phase of π , then a phase flip transformation is required which
can be represented by the unitary

Uπ = exp(iπb†BbB), (10)

which maps ||1B〉〉 to −||1B〉〉 and leaves all other modes invari-
ant. When the outcome corresponds to a state in the opposite
(odd) parity sector, i.e., ||�±〉〉ÃA, then Bob needs to apply a
unitary UP to switch the parity of the state in the modes B and
Ã′. Due to parity superselection this is of course only possible
via a parity conserving operation on a larger Hilbert space.
We therefore append an auxiliary mode C that is initially not
populated and define the unitary UP as

UP = (bC + b†C )(bB − b†B), (11)

such that

UP||1B 〉〉 = b†CbB||1B 〉〉 = ||1C 〉〉, (12a)

UP||1Ã′ 〉〉 = −b†Cb†B||1Ã′ 〉〉 = −||1B 〉〉||1Ã′ 〉〉||1C 〉〉. (12b)

One can confirm that the unitarity condition U †
P UP =

UPU †
P = 1 is satisfied using the anticommutation relations of

(1). Bob may thus obtain the desired state ||ψe〉〉BÃ′ = α||0〉〉 +
β||1B〉〉||1Ã′〉〉 by applying the unitary UPUπ or just UP, if the
measurement outcome is ||�±〉〉ÃA or ||�∓〉〉ÃA, given that the
resource state was ||	±〉〉AB.

When the state to be teleported has odd parity, ||ψ〉〉ÃÃ′ =
||ψo〉〉ÃÃ′ , we have

||ψo 〉〉ÃÃ′ ||	±〉〉AB = 1
2 [||	+〉〉ÃA(α||1Ã′ 〉〉 ± β||1B 〉〉)

+ ||	−〉〉ÃA(α||1Ã′ 〉〉 ∓ β||1B 〉〉)

± ||�+〉〉ÃA (α||1B 〉〉||1Ã′ 〉〉 ± β||0〉〉)

± ||�−〉〉ÃA(α||1B 〉〉||1Ã′ 〉〉 ∓ β||0〉〉)].
(13)

For outcomes in the same parity sector as the resource state,
the applied corrections are either trivial or correspond to Uπ

from Eq. (10). When the outcomes are in the odd-parity sector,
we have to apply UP in addition, which acts as

UP||0〉〉 = −b†Cb†B||0〉〉 = ||1B 〉〉||1C 〉〉, (14a)

UP||1B 〉〉||1Ã′ 〉〉 = b†CbB||1B 〉〉||1Ã′ 〉〉 = −||1Ã′ 〉〉||1C 〉〉.
(14b)

Crucially, the combinations of outcomes and corrections,
summarized in Table I, are exactly the same as for the
even-parity state ||ψe〉〉ÃÃ′ , such that Bob is not required to
have information about the parity of the unknown state to
successfully teleport it.

2. Odd-parity resource states

We can of course also consider the cases where the entan-
gled resource state for the teleportation is an odd-parity state,

TABLE I. Correction operations for even- and odd-parity re-
source states. Depending on which of the four outcomes (rows) is
obtained, one of the four unitary corrections 1, Uπ , UP, or UPUπ

needs to be applied, depending on the resource state (columns) used.

||	+〉〉AB ||	−〉〉AB ||�+〉〉AB ||�−〉〉AB

||	+〉〉ÃA 1 Uπ UP UPUπ

||	−〉〉ÃA Uπ 1 UPUπ UP

||�+〉〉ÃA UPUπ UP Uπ 1

||�−〉〉ÃA UP UPUπ 1 Uπ

||ϕ〉〉AB = ||�±〉〉AB. For a teleported state with even parity we
then have

||ψe 〉〉ÃÃ′ ||�±〉〉AB = 1
2 [||	+〉〉ÃA(α||1B 〉〉 ∓ β||1Ã′ 〉〉)

+ ||	−〉〉ÃA(α||1B 〉〉 ± β||1Ã′ 〉〉)

± ||�+〉〉ÃA(α||0〉〉 ∓ β||1B 〉〉||1Ã′ 〉〉)

± ||�−〉〉ÃA(α||0〉〉 ± β||1B 〉〉||1Ã′ 〉〉)],
(15)

while an odd-parity state to be teleported results in

||ψo 〉〉ÃÃ′ ||�±〉〉AB = 1
2 [−||	+〉〉ÃA(α||1B 〉〉||1Ã′ 〉〉 ∓ β||0〉〉)

− ||	−〉〉ÃA(α||1B 〉〉||1Ã′ 〉〉 ± β||0〉〉)

∓ ||�+〉〉ÃA(α||1Ã′ 〉〉 ∓ β||1B 〉〉)

∓ ||�−〉〉ÃA(α||1Ã′ 〉〉 ± β||1B 〉〉)]. (16)

From Eqs. (12) and (14), we see that the corresponding
combinations of outcomes and corrections (for both ||ψe〉〉ÃÃ′

and ||ψo〉〉ÃÃ′ ) are the same regardless of the parity of the
teleported state but of course depend on the specific resource
state used, as summarized in Table I.

C. Implementation via fermionic Gaussian operations

It is interesting to note that the whole teleportation protocol
can be implemented via fermionic Gaussian operations. For
the correction operation Uπ this is easy to see since its
generator b†BbB is quadratic in the mode operators (of mode
B). For the operator UP, this is also the case, which can be
seen in the following way. First, note that UP is Hermitian,
U †

P = UP. Since this implies that U 2
P = 1, the unitary UP can

be considered to coincide with the Hamiltonian generating the
unitary up to a global phase. That is, we can define HP :=
π
2 (UP − 1) and calculate

e−i HP =
∞∑

n=0

(−i HP)n

n!
= ei

π
2

∞∑
n=0

( − i π
2 UP

)n

n!

= i

( ∞∑
n=0

( − i π
2 UP

)2n

(2n)!
+

∞∑
n=0

( − i π
2 UP

)2n+1

(2n + 1)!

)

= i

(
1

∞∑
n=0

( − i π
2

)2n

(2n)!
+ UP

∞∑
n=0

( − i π
2

)2n+1

(2n + 1)!

)

= i
[
1 cos

(
π
2

) − iUP sin
(

π
2

)] = UP. (17)
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Since both operators Uπ and UP are quadratic in the mode
operators, each individually and hence also their combination
UPUπ are fermionic Gaussian operations. And since the Bell
states are Gaussian [49] the Bell measurement is a fermionic
Gaussian operation [45]. We thus see that teleportation can
be carried out by Gaussian means: sharing 1 fbit, performing
a Gaussian measurement, sending classical information (two
bits encoding the outcome of Alice’s measurement) from
Alice to Bob, and applying fermionic Gaussian corrections
depending on the bit values.

Here, we note that the latter correction operations also
require the availability of an auxiliary mode C. We have
assumed this mode to be in the ground state initially, but no
part of the teleportation protocol depends on the particular
initial state and final state of this mode, or whether one even
knows which state it is. The preparation of this mode hence
does not require similar levels of control as the preparation
of the entangled resource states. At the same time, this means
that the auxiliary mode can be reused arbitrarily many times
without resetting it to a particular state in between. Conse-
quently, we do not consider the availability of this mode to
be a resource requirement on the same footing as the other
resources used for teleportation.

D. Teleporting “one qubit of quantum information”:
The role of mode Ã′

Let us now more carefully discuss the purpose of the
explicit inclusion of the mode Ã′ in our previous calculations.
As we have already mentioned in Sec. III A, using the telepor-
tation protocol as outlined above just to transfer information
about mode Ã could be considered to be a waste of resources.
Parity superselection constrains the state of mode Ã to be of
the form of Eq. (5), i.e., diagonal in the occupation number
basis, and hence a classical state. However, there are two
ways in which the protocol above can nonetheless be seen as
transferring quantum information, both of which rely on the
mode Ã′.

On the one hand, the fermionic single-mode teleportation
protocol can be considered as entanglement swapping from
the modes Ã and Ã′ to the modes B and Ã′, regardless of who
is controlling mode Ã′. If the modes Ã and Ã′ are initially in
an entangled state, then the modes B and Ã′ are in that very
same entangled state after the teleportation protocol. More
generally, this is true for any arbitrary state ρÃÃ′ of these
modes, since the details of the protocol (for fixed resource
state) do not depend on the parity of the teleported state, and
any state ρÃÃ′ must be a convex mixture of even- and odd-
parity states of Ã and Ã′. A fully classical information transfer
whereby the mode Ã is measured and the result is sent to Bob
via a classical channel cannot achieve this, despite the fact that
such a procedure would be able to transmit all locally avail-
able information about the mode Ã. The described fermionic
entanglement swapping protocol can thus be considered to
transfer the equivalent of one qubit of quantum information
in the sense of being able to transfer one half of a mode pair
in an arbitrary (unknown and potentially entangled) state. The
resources for this transfer are one fbit of shared fermionic
entanglement and communicating two bits of classical infor-
mation. In this sense, even individually accessible fbits are

FIG. 3. Fermionic two-mode teleportation. In this scenario, tele-
porting quantum information encoded in the two-mode state ||ψ〉〉ÃÃ′ ,
from modes Ã and Ã′ to the modes B and B′ requires two maximally
entangled states ||ϕ〉〉AB and ||ϕ〉〉A′B′ (two fbits) and communicating
four bits of classical information with values n1, n2, n3, and n4,
where the bit pairs {n1, n2} and {n3, n4} encode the outcomes of the
(independent) measurements on the mode pairs {Ã, A} and {Ã′, A′},
respectively. To complete the protocol a unitary operation Un1n2n3n4

that depends on the bit values ni for i = 1, 2, 3, 4 is applied to the
modes B and B′, and to an auxiliary mode C. This may be realized as
two consecutive operations Un1n2 and Un3n4 acting on the mode pairs
{B,C} and {B′,C}, respectively, and the state of mode C does not
need to be reset in between. The output state of the auxiliary mode
C is denoted as ||χU〉〉C and depends on the local unitary operation
Un1n2n3n4 but remains separable from the other modes. The number of
classical bits communicated from Alice to Bob can be reduced from
4 to 2, if non-Gaussian operations are used.

more useful than the corresponding classical mixtures, despite
the fact that any number of consecutive local measurements
restricted to single copies of fbits cannot distinguish between
the two.

On the other hand, one may argue that the equivalent of
one qubit of quantum information should be defined in terms
of the ability to encode the same complex amplitudes α and β

(with |α|2 + |β|2 = 1) as in a single-qubit state α|0〉 + β|1〉.
Clearly, a single fermionic mode does not provide this ability,
but two modes do. Therefore, one can realize the above single-
mode protocol on both modes Ã and Ã′ at once, in the way
that “one qubit of quantum information” can be combined
into full-fledged two-mode teleportation by the iteration of
the initially described entanglement swapping protocol. That
is, by using two fbits entanglement, transferring four bits
of classical information, and performing Gaussian operations
(as discussed in Sec. III C), one may teleport the modes Ã
and Ã′ as illustrated in Fig. 3. In this way, the complex
amplitudes α and β of any unknown two-mode state ||ψ〉〉ÃÃ′

(or, likewise, single-qubit state |ψ〉ÃÃ′ in a dual-rail encoding)
can be transferred.

Indeed, one can even perform the two-mode teleporta-
tion protocol sharing only two bits of classical informa-
tion, if non-Gaussian operation are allowed, as Alice and
Bob each locally perform a projective measurement of the
parity of the resource state. For instance, if the resource
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TABLE II. Resources and features of fermionic teleportation
protocols for transmitting states of one or two modes.

One mode Two modes

fbits 1 1 2
Classical bits 2 2 2
Quantum channel no 1 mode no

state is ||	+〉〉AB||	+〉〉A′B′ , then an “even” outcome projects
into 1√

2
(||0〉〉 + ||1A, 1B, 1A′ , 1B′〉〉), whereas an “odd” outcome

results in 1√
2
(||1A, 1B〉〉 + ||1A′ , 1B′〉〉). In either case, Alice may

then perform teleportation with a Bell measurement adapted
to the measured parity and sending the usual two classical bits
(see, e.g., the example in Sec. IV C for comparison), while
Bob learns the relevant parity from his local measurement.
Thus it may seem as if an fbit is only half as powerful as an
ebit, since two are needed to teleport a single qubit. However,
this difference (almost) disappears if one allows teleportation
of many fermionic modes at once. Then the even-parity
sector of n modes spans a 2n−1-dimensional Hilbert space
uninhibited by the PSSR in which n − 1 qubits can be en-
coded, and which can be faithfully teleported using n fbits
(whereas n − 1 ebits would suffice without SSR). The re-
source costs of all three variants are summarized in Table II.

IV. FERMIONIC TELEPORTATION SUBJECT TO
PARTICLE NUMBER SUPERSELECTION

A. Nonfundamental superselection rules

This far, we have viewed the task of fermionic teleportation
as a fundamental problem, i.e., we have taken into account
parity superselection but no other limitations. However, in
practice, other restrictions such as nonfundamental SSRs typ-
ically do apply. In particular, we now want to discuss the
influence of the particle number superselection rule (NSSR).

Let us begin by noticing that it is less clear than with the
PSSR (see, e.g,. the discussion in [28]), if the NSSR is a
fundamental restriction of Nature or not. On the one hand, we
note that superpositions of different fermion numbers are not
ruled out by charge conservation, much like superpositions
of different energy eigenstates are not excluded by energy
conservation. Instead, this can be viewed as an issue of not
having available an appropriate reference frame; see, e.g., the
discussion in Ref. [73, Sec. IV] or the argument by Aharonov
and Susskind [74]. At the same time, there does not appear to
exist any process (to the best of our knowledge) that could
result in a superposition of different electric charges. An
example for a state with indefinite particle number some-
times referred to in this context is the BCS ground state
[75]. However, the BCS ground state with indefinite electron
number can be understood as convenient approximation of
the actual physical state with fixed electron number [76].
Here, we therefore cannot conclusively answer the question
if superpositions of different charges exist or not.

However, even if one were to adopt charge superselection
axiomatically [77], one may of course consider species of un-
charged fermions (both composite and fundamental). There,
the question of the existence of pure states with indefinite

particle number is tied to the question of the existence (or
not) of Majorana fermions as fundamental objects in Nature.
Although we cannot directly answer this question either, ad-
mittedly, the prospects of creating coherent superpositions of
different numbers of fermions useful for quantum information
processing are nevertheless daunting (to say the least) either
way. For practical purposes, particle number superselection is
hence a sensible restriction for practical implementations of
fermionic teleportation such as in Ref. [65].

B. Single-mode teleportation and particle number
superselection

To begin, it is interesting to put into perspective the
usefulness of fbits as resource states for teleportation when
constraints due to the NSSR apply. In the context of the single-
mode teleportation protocol discussed in Sec. III B, particle
number superselection implies that it is not possible to create
or project into even-parity states of two fermionic modes
Ã and A other than ||0〉〉 and ||1Ã〉〉||1A〉〉. More specifically,
this means that the outset of the single-mode teleportation
protocol is the restriction to the odd-parity state ||ψo〉〉ÃÃ′ as
the state to be teleported, and ||�±〉〉AB as the shared resource
state to achieve this. In addition, let us assume that the Bell
measurement carried out by Alice can only result in states
with definite particle number, i.e., the state of modes Ã and
A will be projected into either ||�±〉〉ÃA, ||0〉〉ÃA, or ||1Ã〉〉||1A〉〉.
Consequently, it is instructive to write the initial joint state
with respect to this choice of basis as

||ψo 〉〉ÃÃ′ ||�±〉〉AB = 1
2 [−||0〉〉ÃA

√
2 α||1B 〉〉||1Ã′ 〉〉

± ||1Ã 〉〉||1A 〉〉 √
2 β||0〉〉Ã′B

∓ ||�+〉〉ÃA(α||1Ã′ 〉〉 ∓ β||1B 〉〉)

∓ ||�−〉〉ÃA(α||1Ã′ 〉〉 ± β||1B 〉〉)]. (18)

As one can clearly see from this decomposition, single-mode
teleportation can in this case only be successful if either
||�+〉〉ÃA or ||�−〉〉ÃA is obtained as the outcome on Alice’s side,
resulting in an average single-mode teleportation fidelity that
is reduced by 50% with respect to the case where no NSSR ap-
plies. In principle, one may consider a more general scenario,
where a measurement corresponding to a three-element pos-
itive operator-valued measure (POVM) {P�+ , P�− , Peven parity}
is performed. In the case of the third outcome, the quantum
information might still be present. However, it is delocalized
between Alice and Bob, and we are not aware of any way
to complete the transfer if particle number superselection
applies.

C. Two-mode teleportation and particle number superselection

Let us now consider two-mode teleportation in the pres-
ence of particle superselection. The state to be teleported in
this scenario is a two-mode state containing a single fermion,
which can be considered as dual-rail encoding of a qubit. If we
combine two fbits in the odd-parity sector (two single-fermion
states as in the implementations proposed in Ref. [65] and as
discussed in Sec. III D) as resource states and naively perform
the teleportation for each mode separately as before, then
we see that the teleportation fidelity is further reduced to
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25%, since the teleportation of either mode is only successful
half the time (on average). However, as we shall see shortly,
particle superselection does not intrinsically limit the fidelity
in this way. Using the same resource state (a pair of two
single-fermion fbits), the fidelity can be increased to 50%, and
for other resource states (subject to particle superselection)
one may even achieve 100% teleportation fidelity.

To see, this, let us consider a different resource state for
the modes A, B, A′, and B′ in a setup subject to particle
superselection. Take, for instance, the state

||�+
R 〉〉ABA′B′ = 1√

2
(||1A 〉〉||1B′ 〉〉 + ||1B 〉〉||1A′ 〉〉), (19)

and let Alice carry out a projective measurement on the modes
Ã, Ã′, A, and A′ in the “basis” given by the four states,

||	±
R 〉〉ÃÃ′AA′ = 1√

2
(||1Ã 〉〉||1A 〉〉 ± ||1Ã′ 〉〉||1A′ 〉〉), (20a)

||�±
R 〉〉ÃÃ′AA′ = 1√

2
(||1Ã 〉〉||1A′ 〉〉 ± ||1Ã′ 〉〉||1A 〉〉). (20b)

Here, we have put basis in quotation marks, since these
four states form a basis only of that subspace of the two-
fermion subspace2 of the four modes in question where there
is exactly one fermion in the modes Ã and Ã′. Consequently,
when a single-fermion state ||ψ〉〉ÃÃ′ = ||ψo〉〉ÃÃ′ is prepared for
the modes Ã and Ã′, we can write

||ψ 〉〉ÃÃ′ ||�+
R 〉〉ABA′B′ = 1

2 [||�+
R 〉〉ÃÃ′AA′ (α||1B′ 〉〉 − β||1B 〉〉)

− ||�−
R 〉〉ÃÃ′AA′ (α||1B′ 〉〉 + β||1B 〉〉)

− ||	+
R 〉〉ÃÃ′AA′ (α||1B 〉〉 − β||1B′ 〉〉)

+ ||	−
R 〉〉ÃÃ′AA′ (α||1B 〉〉 + β||1B′ 〉〉)].

We thus see that the encoding of the teleported state, the
preparation of the resource state, the Bell measurements, as
well as any correction operations required on the modes B and
B′ can all in principle be carried out while respecting particle
number (and charge) superselection, both globally and locally
(with respect to the partition ÃÃ′|AA′|BB′), achieving a tele-
portation fidelity of 100%.

However, we observe that the resource (state) for this
teleportation is not a pair of fbits anymore. This can be
understood in a simple way: Although both resource states,
||�+

R〉〉ABA′B′ and ||�+〉〉AB||�+〉〉A′B′ , are pure states with the same
particle content (two fermions), and can hence be transformed
into each other by global (on A, B, A′, B′) particle-number
conserving unitaries, this cannot be achieved by unitaries act-
ing locally with respect to the bipartition AA′|BB′. To see this,
simply note that the reduced states of the modes A and A′ have
different ranks for the different resource states. That is, both
states are entangled with respect to this cut, but (it seems) not
equally strongly (with respect to to an entanglement measure
suitable to the applicable SSR). Nevertheless, if two fbits
||�+〉〉AB||�+〉〉A′B′ are used as a resource, one may still achieve

2The two-particle sector of the Fock space of four fermionic
modes is six-dimensional, but for two of these states, ||1Ã〉〉||1Ã′〉〉 and
||1A〉〉||1A′〉〉, the particle content of the subspace of modes Ã and Ã′ is
different from 1.

50% fidelity. If Alice performs a projective measurement of
the total particle number in modes A and A′ before performing
the Bell measurement, this will result in the state ||�+

R〉〉ABA′B′

in half the cases (when there is one particle in the modes A
and A′), and in separable states ||1B, 1B′〉〉 (when there are no
particles in the modes A and A′) and ||1A, 1A′〉〉 (two particles in
the modes A and A′) otherwise.

In other words, problems arise from using resource states
whose marginals have support in different superselection sec-
tors. All restrictions disappear, of course, if all logical qubits
are locally supported in a subspace of fixed particle number.
Then NSSR does not restrict any logical operations, the pro-
jection on each of the four logical Bell states is permitted, and
standard teleportation (of logical qubits) works as usual. The
limitation of the fidelity due to particle number superselection
in potential experimental settings as discussed in detail in
Ref. [65] is hence more a practical (but nonetheless very chal-
lenging) problem of determining ways to prepare states like
||�+

R〉〉ABA′B′ from Eq. (19) directly (rather than by postselection
after preparing two fbits). In particular, the preparation of
states like ||�+

R〉〉ABA′B′ for spin systems is challenging when the
interaction between individual spins is weak. Nevertheless,
this limitation can be overcome, for instance, in experiments
based on pseudospins in double-well quantum dots, e.g., as in
Refs. [78–80].

V. IMPLICATIONS FOR FERMIONIC ENTANGLEMENT

In this section, we want to relate our previous observations
about fermionic teleportation with the quantification of entan-
glement subject to SSRs. In particular, we aim here to con-
trast the notion of superselected entanglement of formation
(EOF, as discussed in Sec. II B) with a state’s usefulness for
teleportation.

For pure states, i.e., one or two fbits, this appears to be
rather straightforward. The superselected EOF of n (pure)
fbits is equal to n, and we can refer to Table II for the
corresponding resources for different tasks. However, the
superselected EOF allows for the notion of mixed maximally
entangled (MME) fermionic states [66]. Take, for instance, the
MME state

ρMME
AB = 1

2 ||	+〉〉〈〈 	+ || + 1
2 ||�+〉〉〈〈 �+ ||. (21)

Because the two parity subspaces do not mix, one fbit is
required per copy to create ρMME

AB and the (parity) super-
selected EOF evaluates3 to EoF(ρMME

AB ) = log2(2) = 1. The
entanglement of ρMME

AB can thus be considered to be maximal
in this sense. But are MME states useful for teleportation? In
the following, we will discuss this question in more detail for
the PSSR and the NSSR.

A. Teleportation using mixed maximally entangled
states for PSSRs

Let us consider fermionic teleportation using the state
ρMME

AB as a resource state for teleporting the state of mode

3Here, we choose the logarithm to base 2 in the von Neumann
entropy.
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Ã as illustrated in Fig. 2. Note that the mode Ã may be
entangled with another single mode Ã′ (or even with multiple
other modes). If the state of modes Ã and Ã′ has even parity
and is given by ||ψe〉〉ÃÃ′ , and the outcome of the Bell mea-
surement in the basis {||	±〉〉ÃA, ||�±〉〉ÃA} gives the outcome
||	+〉〉ÃA, Eqs. (9) and (15) allow us to conclude that the state
of modes B and Ã′ prior to any corrections is an equally
weighted mixture of α||0〉〉 + β||1B〉〉||1Ã′〉〉 and α||1B〉〉 − β||1Ã′〉〉.
In particular, this means that the reduced state of mode B
is given by 1

2 ||0〉〉〈〈0|| + 1
2 ||1B〉〉〈〈1B|| and is hence maximally

mixed. This means no information whatsoever about the
teleported state is locally available in mode B. However, if
we consider the joint state of modes B and Ã′, we see that
all information about the teleported state is still available.
That is, a joint parity measurement on both modes projects
either into the state α||0〉〉 + β||1B〉〉||1Ã′〉〉, if the result was even,
or into the state α||1B〉〉 − β||1Ã′〉〉, if the result was odd. In
the former case, one has already retrieved the desired state.
In the latter case, one applies the unitary correction UP to
complete the teleportation. However, if the mode Ã′ is under
Alice’s control, then the required global parity measurement
is itself a nonlocal operation which can create entanglement
and thus the MME state is not necessary for teleportation
in this scenario. But if the mode to be teleported is known
to be only entangled with modes under Bob’s control, then
the parity measurement can be implemented locally and the
teleportation can be completed using the shared MME state.
We refer to this process as “subsystem swap” in the following.
As this example illustrates (and as can easily be confirmed for
other combinations of resource states and teleported states),
MME states can indeed be useful for teleportation, if only for
very specific tasks and keeping in mind important caveats that
we discuss in the following.

The first difference to using pure maximally entangled
states manifests in the amount of information that is available
locally about the teleported state. That is, the teleportation
protocol using the two-mode MME state (2MMES) becomes
useful only if the joint parity of the modes ÃÃ′ is known, and
one has access also to the second mode Ã′ to perform a joint
(and nondestructive as well as nonparticle number resolving)
parity measurement on the modes Ã′ and B.

Besides the subsystem swap, there is a second, more
standard teleportation related task that the 2MMES allows
us to perform, proving its value as a nonlocal resource.
That is, it allows us to locally convert an fbit into an ebit.
This state transformation from, say, ρMME

AB and ||�+〉〉A′B′ to
(||0101〉〉AA′BB′ + ||1010〉〉AA′BB′ )/

√
2 is realized if both Alice

and Bob measure their respective local parity and obtain an
even result. (For the other outcomes, the resulting final state
is also an ebit). That such a transformation is not possible
by local parity-constrained operations is confirmed by their
respective Schmidt coefficients. As analyzed by [81], for
states subject to local and global SSRs, the vector of Schmidt
coefficients governing local state transformations for bipartite
pure states of distinguishable quantum systems [82] must be
replaced by a set of several vectors, one for each SSR sector
at A, and state transformations are only possible if all (in our
case: both) Schmidt vectors of the target state majorize those
of the source state. But for the case at hand the source state has

two one-dimensional vectors {(1/2), (1/2)}, while the target
state has one two-dimensional Schmidt vector {(1/2, 1/2), ()}
and thus the transformation is impossible with local means
(respecting the SSR). Note that the 2MMES allows us to im-
plement both tasks (single-mode teleportation and conversion
of an fbit into an ebit) exactly and with probability 1 (as
before, provided that one is able to perform non-Gaussian
operations).

The remarkable aspect here is not that mixed states can
be used for (special-purpose) teleportation but that a state
which could—in the absence of SSRs—be generated by local
operations and classical communication (LOCC) allows us to
realize nontrivial entanglement transformations. Note, how-
ever, that both tasks are feasible locally in the qubit setting, but
both require operations forbidden by the SSR to achieve them
locally and the 2MMES allows us to lift these parity-imposed
restrictions without violating the SSR.

Another way to interpret the second task is to note that the
four-mode state ρMME

AB ∧ ||ϕ〉〉〈〈ϕ||A′B′ , where ||ϕ〉〉A′B′ is a pure
fbit, can be converted to an ebit encoded in four fermionic
modes by LOCC. (Note that this is not reversible, as by
the Schmidt-vector argument used before the fbit and the
fermionic ebit are incomparable). Moreover, we observe that
the latter resource state ρMME

AB ∧ ||ϕ〉〉〈〈ϕ||A′B′ is itself an MME
state of four modes, i.e., a mixture of two pure two-fbit states
in the two different parity sectors.

The second difference between pure and mixed maximally
entangled fermionic states lies in the security of the telepor-
tation. That is, two (pure) fbits allow for violating a Bell
inequality [58], and hence for authentication, whereas any
number of copies of two-mode MME states as in Eq. (21)
alone does not. To see this more clearly, note that the two-
qubit equivalent ρ̃AB (not subject to any SSRs) of ρMME

AB is sep-
arable (which can easily be checked via the Peres-Horodecki
criterion [83,84]), and therefore so are two copies of ρ̃AB.
Therefore, no Bell inequality can be violated by ρ̃AB, or by
any number of copies of ρ̃AB. This is so because SSRs further
restrict the measurable operators that may appear in a Bell
inequality. Consequently, the superselected state ρMME

AB (or
two copies of it) can also not violate a Bell inequality.

Nevertheless, authentication is possible (albeit, at a higher
price) if one uses the four-mode MME state for teleportation,
one simply has to sacrifice twice as many (as compared to the
situation using two fbits per teleported qubit) of the resource
states for authentication to retrieve the same number of fbit
pairs. Just recall that also with pure states one has to collect
statistics on measurements of sufficiently many entangled re-
source states to violate a Bell inequality. The choice between
pure and mixed maximally entangled states hence comes
down to a matter of efficiency of the authentication.

A comparison of the usefulness of MME states and fbits
is shown in Table III. In summary, we can say that for some
very specific tasks, MME states seem to have some usefulness
comparable with fbits, and this is reflected in the matching
values of EOF. However, in general they are clearly less
useful. In particular, the difference in the potential to violate
Bell inequalities is not captured by the (superselected) EOF.
Nevertheless, MME states allow us to perform some tasks
made locally impossible by superselection. Finally, let us
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TABLE III. Comparison of ebits (maximally entangled state of
four fermionic modes with fixed local parity), fbits, and MME states
in terms of entanglement of formation [EOF (in units of fbits)],
subsystem swapping capacity in terms of the number of modes
whose state can be swapped (as described in the text, cf. also Fig. 2,
but with mode Ã′ already in Bob’s possession), number of qubits
(two-dimensional subspaces) that can be teleported, and potential
for Bell inequality violation (given sufficiently many copies). The
states are strictly more entangled from left to right, since fermionic
LOCC allow us to go to the left neighbor but not to the right—except
that the fermionic ebit is incomparable with the fbit and 2MMES (no
conversion possible either way).

2-mode
MME

1 fbit
4-mode

ferm. ebit
4-mode
MME

2 fbits

EOF 1 1 2 2 2
Subsystem 1 modea 1 mode 2 modesa 2 modes

swap
Teleportation 0 0 1 1† 1

no. of qubits
Bell inequality no yesb yes yesa,b yes

violation

aRequired operations are non-Gaussian.
bRequired operations have to be performed coherently on two copies
of the state, requiring a quantum memory.

briefly discuss the extension of the ideas of MME states and
MME-based teleportation to other SSRs.

B. Teleportation using mixed maximally entangled
states for NSSRs

An obvious question that arises then concerns the useful-
ness (and existence) of MME states for other SSRs, in particu-
lar, for particle numbers superselection. The four-mode MME
states encountered in the previous section allow for a 100%
teleportation fidelity when only parity superselection applies.
The crucial element is a final projective measurement of the
system’s parity. However, when the NSSR is in place, the state
ρMME

AB is no longer allowed by the SSR. Replacing the even
Bell state by the statistical mixture of its two components ||0〉〉
and ||1A〉〉||1B〉〉 turns ρMME

AB into a state that is neither maximally
entangled nor useful for teleportation. Nevertheless, this does
not mean one cannot consider other states that correspond to
MME states in the presence of the NSSR (or, indeed, any
SSR).

Let us consider a scenario where particle number super-
selection applies and we wish to teleport the state of one
qutrit encoded in three fermionic modes labeled Ã, Ã′, and Ã′′.
This can be done by encoding the qutrit in the single-particle
sector, spanned by the vectors ||1Ã〉〉, ||1Ã′〉〉, and ||1Ã′′〉〉, or in the
two-particle sector, spanned by the vectors ||1Ã1Ã′〉〉, ||1Ã′1Ã′′〉〉,
and ||1Ã′1Ã′′〉〉. As a resource for teleportation we can then use
any six-mode state (say, of modes A, B, A′, B′, A′′, and B′′)
whose particle number is fixed both globally (to two, three, or
four particles) and locally (to either one or two particles).

For instance, let us adopt the notation ||n; j, k〉〉 for a state of
n particles of which j particles are in the subspace of A modes
A, A′, A′′, and k particles in the subspace of the B modes B, B′,

B′′. Then, for example, one of the following states can be used
for teleportation:

||2; 1, 1〉〉 = 1√
3
(||1A, 1B 〉〉 + ||1A′ , 1B′ 〉〉 + ||1A′′ , 1B′′ 〉〉),

(22a)

||3; 1, 2〉〉 = 1√
3
(||1A, 1B, 1B′ 〉〉 + ||1A′ , 1B, 1B′′ 〉〉

+ ||1A′′ , 1B′ , 1B′′ 〉〉), (22b)

||3; 2, 1〉〉 = 1√
3
(||1A, 1A′ , 1B 〉〉 + ||1A, 1A′′ , 1B′ 〉〉

+ ||1A′ , 1A′′ , 1B′′ 〉〉), (22c)

||4; 2, 2〉〉 = 1√
3
(||1A, 1A′ , 1B, 1B′ 〉〉 + ||1A, 1A′′ , 1B, 1B′′ 〉〉

+ ||1A′ , 1A′′ , 1B′ , 1B′′ 〉〉), (22d)

While any of these states can be used to teleport one qutrit,
we can also consider an arbitrary incoherent mixture of any of
these four states as a mixed entangled resource state for tele-
portation. Such a teleportation protocol works in the following
way: Alice and Bob share the mixed entangled resource state,
Alice receives the A modes, and Bob receives the B modes.
Alice then performs a projective measurement of the particle
number on the A modes before performing an appropriate Bell
measurement on the 3 × 3-dimensional subspace of the Ã and
A modes corresponding to the particle number of her encoded
state and the result of the initial projective measurement on the
A modes. The result of the Bell measurement is communicated
to Bob, who makes a similar projective measurement of the
particle number on the B modes and applies a correction
depending on the classically communicated outcome of the
Bell measurement.

As before for the parity SSR, the remarkable aspect lies
not in the fact that mixed states can be used for teleportation
in this way, but in the fact that there is no pure state of six
modes subject to particle number superselection that could
do better than teleporting a single qutrit (or log23 qubits)
with unit fidelity (whereas a six-qubit state could be used to
teleport three qubits with the same fidelity). The maximum
of log23 qubits is simply the maximum dimension dmax

SSR of
any subspace of three modes with fixed particle number. In
general, the subspace dimension corresponding to k particles
in n modes is

(n
k

)
and hence

dmax
SSR =

{( n
n/2

)
if n even( n

(n−1)/2

)
if n odd

. (23)

We thus see also for NSSRs that there exist MME states,
and that these can also be useful for teleportation in terms
of the number of transferred qubits, albeit with a reduced
ability to violate Bell inequalities, as discussed in Sec. V A.
Moreover, analogous arguments can be made for any SSR.
It is further interesting to remark that for n even and large,
log2(dmax

SSR ) approaches n (by Stirling’s formula), i.e., n modes
allow for n not-SSR-inhibited qubits asymptotically [up to
log2(n) corrections].

VI. DISCUSSION

We have reviewed quantum teleportation in a setting where
quantum information is encoded in the modes of a fermionic
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quantum field. As we have discussed, differences to standard
qubit-based teleportation arise due to parity superselection,
which influences both the encoding of quantum information
in the state space, as well as the allowed operations on given
quantum states. In particular, we have focused on understand-
ing the usefulness of pure entangled states of two modes
(fbits), which are known to allow for Bell inequality violation
only when at least two copies can be jointly processed [58].
Here, we find that single copies of such states can be useful for
swapping the state of a single mode via teleportation. How-
ever, this procedure in itself is only useful (beyond classical
notions of state transfer) when the latter mode is part of an
entangled two-mode state itself. Once two fbits are available
as a shared resource, one may teleport the entire two-mode
state encoding the complex probability amplitudes usually
encoded in a single qubit.

We have further considered how these teleportation pro-
tocols are influenced by particle-number superselection. Al-
though not a fundamental restriction of Nature, it is of prac-
tical relevance for many applications; see, e.g., Ref. [65].
Here, we conclude that also this stronger superselection rule
allows for teleportation with unit fidelity, when an appropriate
four-mode resource state is shared, but using two fbits instead
reduces the fidelity by 50%, provided that no other practical
restrictions limit the setup. Finally, we have discussed the
peculiar notion of mixed maximally entangled states in the
context of teleportation. Interestingly, such states are not
merely an artefact of evaluating convex-roof entanglement
measures under the restriction of superselection rules, but they
do have limited usefulness for teleportation as well.

In comparison to usual qubit-based quantum information
processing, fermionic systems hence provide a more differen-
tiated picture of entanglement, nonlocality, and teleportation.
In this context, it may be of future interest to identify a suit-
ably diverse set of entanglement quantifiers that can capture
these different notions of useful entanglement. Such develop-
ments may further motivate revisiting previous observations
about the energetic costs of creating correlations and entangle-
ment [85,86]. Moreover, one may even go as far as to specu-
late whether further differentiation of fermionic entanglement
and correlations could become relevant to account for other
applications, e.g., entanglement as a resource for fermionic
measurement-based computation [87] or correlations relevant
in molecular problems [88].
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