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Topological phase induced by distinguishing parameter regimes in a cavity
optomechanical system with multiple mechanical resonators
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We propose two kinds of distinguishing parameter regimes to induce a topological Su-Schrieffer-Heeger
(SSH) phase in a one-dimensional (1D) multiresonator cavity optomechanical system via modulation of the
frequencies of both cavity fields and resonators. The introduction of frequency modulations allows us to eliminate
the Stokes heating process for mapping of the tight-binding Hamiltonian without the usual rotating-wave
approximation, which is totally different from the traditional mapping of the topological tight-binding model.
We find that the tight-binding Hamiltonian can be mapped into a topological SSH phase via modification of
the Bessel function originating from the frequency modulations of cavity fields and resonators, and the induced
SSH phase is independent of the effective optomechanical coupling strength. On the other hand, the insensitivity
of the system to the effective optomechanical coupling provides us another new path to induce the topological
SSH phase based on the present 1D cavity optomechanical system. And we show that the system can exhibit
a topological SSH phase via variation of the effective optomechanical coupling strength in an alternative way,
which is much easier to achieve in experiments. Furthermore, we also construct an analogous bosonic Kitaev
model with trivial topology by keeping the Stokes heating processes. Our scheme provides a steerable platform
for investigation of the effects of next-nearest-neighbor interactions on the topology of the system.
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I. INTRODUCTION

Over the past decades, the cavity optomechanical system
[1,2], which is composed of mechanical and optical modes,
is becoming a fast-developing and appealing field for the
investigation of fundamental quantum physics on the macro-
scopic scale. In the context of the optomechanical system,
various questions have been explored, such as entanglement
between mechanical modes and cavity fields [3–5], normal-
mode splitting [6,7], optomechanical-induced transparency
[8,9], squeezing of light or resonators [10–15], and cooling
of resonators via feedback control [16]. Especially, more and
more attention has been focused on modulated optomechani-
cal systems [17–23] in recent years, for which abundant physi-
cal phenomena have been reported. A scheme of optomechan-
ical cooling by utilization of the periodical modulations of fre-
quency and damping of the resonator has been proposed [24].
Another cooling scheme of breaking the quantum backaction
limit has also been proposed based on an optomechanical
system by modulation of the frequencies of both the optical
and the mechanical components [25], in which the Stokes
heating processes can be safely and completely suppressed.
The method of frequency modulation provides an effective
path to eliminate the Stokes heating terms perfectly, which
is essential to simulations of all kinds of topological matters.
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The multiresonator cavity optomechanical system [26,27],
as the assemblage of a set of single optomechanical systems,
is also widely used to investigate diverse quantum questions
[28–33]. de Moraes Neto et al. [34] designed a scheme for
robust quantum-state transfer based on a one-dimensional
(1D) optomechanical array by using the decoupling method.
Akram et al. [35] proposed a scheme to achieve photon-
phonon entanglement in coupled optomechanical arrays. Wan
et al. [36] realized controllable photon and phonon local-
ization induced by path interference in an optomechanical
Lieb lattice. Simulations of the Z2 topological insulator [37]
and topological bosonic Majorana chains [38] have also been
illustrated based on a 1D optomechanical array. Especially,
in these previous studies, the derivation of the effective
Hamiltonian in the optomechanical chain has mainly used
the rotating-wave approximation to remove the Stokes heating
processes. The topological Su-Schrieffer-Heeger (SSH) phase
in a 1D multiresonator optomechanical system, in which the
Stokes heating processes are eliminated via modulation of the
frequencies of the cavity fields and resonators, has rarely been
investigated to date.

In this paper, we propose a scheme to induce the topolog-
ical SSH phase by dint of two different parameter regimes
based on a 1D multiresonator cavity optomechanical system
with time-dependent frequency modulations of both cavity
fields and mechanical modes. We find that, after eliminating
the Stokes heating terms via the Bessel function, the 1D tight-
binding Hamiltonian can be obtained to induce a topological
SSH phase. There exist two parameter regimes for inducing
the SSH phase. One is the effective nearest-neighbor (NN)
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FIG. 1. Schematic of the 1D multiresonator optomechanical sys-
tem, which contains N + 1 cavity modes and N resonators. Each
cavity mode is driven by a laser field and the coupling between
resonator bn and cavity field an (an+1) is gn.

hopping strength, which is modulated to satisfy the staggered
dimerized hopping strength of the SSH model by means of
the Bessel function originating from frequency modulations.
The other is the effective optomechanical coupling, which is
varied alternately to induce a topological SSH phase after
complete removal of the resonant Stokes heating processes.
Furthermore, we also propose to build a bosonic Kitaev model
based on the present 1D multiresonator cavity optomechan-
ical system, in which the system possesses a continuous
energy spectrum corresponding to the arbitrary strength of
analogous pairing terms. In addition, we find that the next-
nearest-neighbor (NNN) interactions between two adjacent
cavity fields can be flexibly adjusted and even completely
suppressed, which provides a novel and controllable platform
for investigation of the effect of NNN hopping on the topology
of the system.

The paper is organized as follows: In Sec. II, we derive
the effective linearized Hamiltonian of the 1D multiresonator
optomechanical system with time-dependent frequency mod-
ulations. In Sec. III, we remove the Stocks heating terms
from the Hamiltonian and induce a topological SSH phase
via two different kinds of parameter regimes. Subsequently,
an analogous bosonic Kitaev model is obtained via frequency
modulations. Also, we investigate the effect of NNN hopping
on the topology of the system. Finally, a conclusion is given
in Sec. IV.

II. SYSTEM AND HAMILTONIAN

Consider a 1D multiresonator cavity optomechanical sys-
tem composed of N + 1 cavity fields and N resonators, in
which the frequencies of the cavity fields and resonators can
be modulated, as shown in Fig. 1. In this array, each cavity
field is driven by a laser with frequency ωd,n and strength �n.
The two adjacent cavity fields possess direct coupling with
hopping strength T and the single-phonon optomechanical
coupling strength between resonator bn and cavity field an

(an+1) is gn. In this way the system is dominated by the
Hamiltonian

H =
N+1∑
n=1

[ωa,n + λnν cos(νt + φ)]a†
nan

+
N∑

n=1

[ωb,n + γnν cos(νt + φ)]b†
nbn

+
N+1∑
n=1

(�na†
ne−iωd,nt + �∗

naneiωd,nt )

−
N∑

n=1

gn(a†
nan − a†

n+1an+1)(b†
n + bn)

+
N∑

n=1

T (a†
n+1an + a†

nan+1), (1)

where a†
n (b†

n) is the creation operator of the optical cavity
field (mechanical resonator) and an (bn) is its corresponding
annihilation operator. The first two terms represent the mod-
ulated free energy of cavity fields and resonators with the
modulated strength λn (γn), frequency ν, and phase φ. The
frequency modulations of the cavity field and resonator can be
realized experimentally via a laser irradiated onto the cavity
field [39] and a gate electrode applied on the resonator [40],
respectively. The third term describes the interaction between
the cavity field and the external driving laser field. The fourth
term represents the interaction between the cavity field an

(an+1) and the mechanical resonator bn. And the last term
denotes the direct interaction between two adjacent cavity
fields.

Under the condition of strong laser driving, we choose to
work in a rotating frame with respect to the driving frequency
and rewrite the operators as an = αn + δan (bn = βn + δbn).
After dropping the notation δ for all the fluctuation operators
δan (δbn), the Hamiltonian is given by

HL =
N+1∑
n=1

[�′
a,n + λnν cos(νt + φ)]a†

nan

+
N∑

n=1

[ωb,n + γnν cos(νt + φ)]b†
nbn

−
N∑

n=1

gn(α∗
nan + αna†

n

−α∗
n+1an+1 − αn+1a†

n+1)(b†
n + bn)

+
N∑

n=1

T (a†
n+1an + a†

nan+1), (2)

where �′
a,n is the effective detuning originating from

optomechanical coupling with �′
a,1 = �a,1 − g1[β∗

1 + β1],
�′

a,N+1 = �a,N+1 + gN [β∗
N + βN ], and �′

a,n=2...N = �a,n +
gn−1(β∗

n−1 + βn−1) − gn(β∗
n + βn), and �a,n = ωa,n − ωd,n is

the detuning between cavity fields and driving fields. We
stress that effective detuning �′

a,n satisfies �′
a,n ≈ �a,n due to

the existence of the extremely weak optomechanical coupling.
Thus, under the red-detuning regime with �′

a,n ≈ �a,n =
ωb,n, the system may reach steady state accompanied by the
final periodically time-dependent steady cavity field αn due
to the existence of the periodically time-dependent frequency
of the cavity field and resonator (see Appendix A for more
discussion). The steady-state dynamics of the present op-
tomechanical system is the basis for investigation of various
quantum optical issues. To clarify it further, we perform the
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rotating transformation defined by

V = exp

{
N+1∑
n=1

−i�′
a,nta†

nan − iλn sin(νt + φ)a†
nan

+
N∑

n=1

−iωb,ntb†
nbn − iγn sin(νt + φ)b†

nbn

}
. (3)

After this, the Hamiltonian becomes

H ′
L =

∑
n

{−Gna†
nbnei[(�′

a,n−ωb,n )t+(λn−γn ) sin(νt+φ)]

− Gna†
nb†

nei[(�′
a,n+ωb,n )t+(λn+γn ) sin(νt+φ)]

+ Gn+1a†
n+1bnei[(�′

a,n+1−ωb,n )t+(λn+1−γn ) sin(νt+φ)]

+ Gn+1a†
n+1b†

nei[(�′
a,n+1+ωb,n )t+(λn+1+γn ) sin(νt+φ)]

+ Ta†
n+1anei(λn+1−λn ) sin(νt+φ)} + H.c., (4)

where the first and third terms represent the anti-Stokes terms
for cooling of the resonators, the second and fourth terms
describe the Stokes heating processes of the resonators, and
Gn = gnαn (Gn+1 = gnαn+1) is the effective optomechanical
coupling. The Stokes heating terms of the resonators are usu-
ally useless to the system, which means that the Stokes heating
terms should be removed via diverse parameter regimes.
Apparently, the existence of frequency modulations of the
cavity fields and resonators may provide us a new way to deal

with the Stokes heating terms. At the same time, note that the
entire above derivation is based on an optomechanical system
with N + 1 cavity fields and N resonators. We stress that an
optomechanical system with N cavity fields and N resonators
has a similar final effective Hamiltonian (see Appendix B for
the case of N cavity fields and N resonators), which means
that our scheme is also valid for an optomechanical system
with N cavity fields and N resonators.

III. TOPOLOGICAL PHASE AND PHASE TRANSITION
INDUCED BY DIFFERENT PARAMETER REGIMES

The crucial issue in the process of inducing an usual topo-
logical phase is to derive the tight-binding Hamiltonian, which
implies that the Stokes heating terms should be eliminated. In
Sec. III A below we use the frequency modulations to remove
the Stokes heating terms and induce a topological SSH phase
in terms of two different parameter regimes.

A. Topological SSH phases induced by frequency modulations

To obtain the necessary tight-binding Hamiltonian for sim-
ulation of the standard SSH model, we consider the case
where the system does not possess direct coupling between
two adjacent cavity fields (T = 0) and take the phase of
frequency modulations as φ = 0. After performance of the
Jacobi-Anger expansions eiκ sin νt = ∑∞

m=−∞ Jm(κ )eimνt , the
Hamiltonian in Eq. (4) can be rewritten as

HL,A1 =
∑

n

{
−

∞∑
m1=−∞

GnJm1 (κ1,n)a†
nbnei[(�′

a,n−ωb,n )+m1ν]t −
∞∑

m2=−∞
GnJm2 (κ2,n)a†

nb†
nei[(�′

a,n+ωb,n )+m2ν]t

+
∞∑

m3=−∞
Gn+1Jm3 (κ3,n)a†

n+1bnei[(�′
a,n+1−ωb,n )+m3ν]t +

∞∑
m4=−∞

Gn+1Jm4 (κ4,n)a†
n+1b†

nei[(�′
a,n+1+ωb,n )+m4ν]t

}
+ H.c., (5)

where κ1,n = λn − γn, κ2,n = λn + γn, κ3,n = λn+1 − γn,
κ4,n = λn+1 + γn, and Jmj (κ j,n) is the mj th order of the first
kind of Bessel function with j = 1, 2, 3, 4.

When the frequency modulation parameters satisfy �′
a,n =

�′
a,n+1 = ωb,n, ν = ωb,n (see Appendix C for the rationale),

m1 = m3 = 0, and m2 = m4 = −2, we find that the system
possesses resonant anti-Stokes terms and Stokes heating terms
simultaneously. Then the Hamiltonian in Eq. (5) becomes

HL,A2 =
∑

n

{−GnJ0(κ1,n)a†
nbn − GnJ−2(κ2,n)a†

nb†
n

+ Gn+1J0(κ3,n)a
†
n+1bn+Gn+1J−2(κ4,n)a†

n+1b†
n}+H.c.

(6)

Obviously, the resonant Stokes heating terms in Eq. (6) are
useless in the usual mapping of the tight-binding Hamil-
tonian. In previous investigations with respect to mapping
of the bosonic topological tight-binding Hamiltonian, the
Stokes heating terms have been removed mainly by use of
the rotating-wave approximation [37,41,42]. Here we apply
the frequency modulation method to deal with the Stokes
heating processes. By choosing the Bessel coefficients to

satisfy J−2(κ2,n) = J−3(κ4,n) = 0, the Stokes heating terms
can be suppressed and even eliminated completely, and the
tight-binding Hamiltonian is expressed as

HL,A =
∑

n

[−GnJ0(κ1,n)a†
nbn + Gn+1J0(κ3,n)a†

n+1bn] + H.c.

(7)

Obviously, the above Hamiltonian is equivalent to an SSH-
type Hamiltonian if we map the cavity field an and resonator
bn as two sites of the SSH model. Theoretically, the condition
J−2(κ2,n) = J−2(κ4,n) = 0 can be easily achieved by choosing
the parameters to satisfy κ2,n ∼ ∞, κ4,n ∼ ∞, and κ2,n ≈ κ4,n.
In experiments, we can choose frequency modulations strong
enough to make the Bessel coefficients satisfy J−2(κ2,n) =
J−2(κ4,n) = 0 approximately. Previous investigations on in-
duction of a topological phase based on the 1D multiresonator
optomechanical system have mainly depended on the periodic
modulation of the effective optomechanical coupling strength
[37]. We here propose a new way to induce a topological SSH
phase via the Bessel function originating from the frequency
modulations of cavity fields and resonators. The condition
of strong enough frequency modulations (κ2,n ≈ κ4,n ∼ ∞)
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FIG. 2. Energy spectra and distributions of edge states. (a) En-
ergy spectrum corresponding to J0(κ1,n) > J0(κ3,n); the size of the
cavity optomechanical lattice chain system is L = 100. (b) Energy
spectrum corresponding to J0(κ1,n) < J0(κ3,n), L = 100. (c) Energy
spectrum corresponding to J0(κ1,n) > J0(κ3,n), L = 101. (d) Energy
spectrum corresponding to J0(κ1,n) < J0(κ3,n), L = 101. (e) Distribu-
tions of edge states in (b)–(d). (f) Schematic of the odd-even effect
of the SSH chain. Red, purple, and dashed lines represent strong
hopping bonds, weak hopping bonds, and decoupling of the edge site,
respectively. When the size of the cavity optomechanical lattice chain
system is an odd number, the last site will decouple from the lattice
chain when −GnJ−1(κ1,n) > Gn+1J−1(κ3,n) and the first site will
separate from the lattice chain when −GnJ−1(κ1,n) < Gn+1J−1(κ3,n).
Other parameters are taken as −Gn = Gn+1.

means that the other two Bessel parameters should satisfy
κ1,n �= κ3,n. Thus we can obtain different values of the ze-
roth Bessel function [such as J0(κ1,n) < J0(κ3,n) or J0(κ1,n) >

J0(κ3,n)] by choosing different values of κ1,n and κ3,n. To
emphasize the impact of the Bessel coefficients J0(κ1,n)

and J0(κ3,n), we take the effective optomechanical coupling
strength to satisfy −Gn = Gn+1 (see Appendix D for more
discussion). Then the topological properties of the system can
be identified by the values of J0(κ1,n) and J0(κ3,n). When
the Bessel function is chosen to satisfy J0(κ1,n) > J0(κ3,n),
the multiresonator optomechanical system exhibits a topolog-
ically trivial phase corresponding to a lattice chain with an
even number of sites, as illustrated in Fig. 2(a). Conversely,
when it satisfies J0(κ1,n) < J0(κ3,n), the system possesses two
degenerate edge states located at both ends of the system with
an even number of sites, as shown in Fig. 2(b). For the case
where the size of the multiresonator optomechanical system is
taken as an odd number, we find that the system possesses an
edge state located at the rightmost end [J0(κ1,n) > J0(κ3,n)] or
the leftmost end [J0(κ1,n) < J0(κ3,n)] of the optomechanical
array, which is induced by the odd-even effect of the SSH
model, as shown in Figs. 2(c) and 2(d). To further clarify the
topological edge states, we plot the distributions of edge states
corresponding to an even-number and an odd-number lattice
size, respectively, as shown in Fig. 2(e). Also, a schematic of
the odd-even effect of the SSH chain is depicted in Fig. 2(f).

We should stress that the topological SSH phase can also
be induced corresponding to −Gn �= Gn+1 and even with
−Gn > Gn+1. Due to the selectivity of the values of the
Bessel function, we can always find a set of J0(κ1,n) and
J0(κ3,n) to make the effective hopping parameters between an
adjacent cavity field and the resonator satisfy −GnJ0(κ1,n) <

Gn+1J0(κ3,n) in a certain range even when −Gn > Gn+1. This
weak-strong alternating effective hopping strength is the cru-
cial condition for induction of the SSH phase. Apparently, the
method we use to induce the SSH phase is independent of the
effective optomechancal coupling strength. The insensitivity
of the present scheme to the optomechancal coupling strength
provides a new path to induction of a topological SSH phase
in the 1D multiresonator optomechanical system. Meanwhile,
we clarify that this method requires strong enough frequency
modulations, which may cause certain difficulties in exper-
iments. In order to avoid this obstacle in the experimental
simulation of a nontrivial SSH phase based on the present
cavity optomechanical system, in Sec. III B we propose
another parameter regime to induce the SSH phase.

B. Topological SSH phases induced via strong effective
optomechanical coupling

Here we propose how to eliminate the resonant Stokes
heating terms using the effective optomechanical coupling
parameter regime and show that the topological phase can
be induced successfully and effectively. Choosing the mod-
ulation strengths of the cavity field and resonator to satisfy
λn+1 = λn = γn and T = φ = 0, the Hamiltonian in Eq. (4)
becomes

HL,B1 =
∑

n

{−Gna†
nbnei(�′

a,n−ωb,n )t − Gna†
nb†

nei[(�′
a,n+ωb,n )t+2λn sin(νt )] + Gn+1a†

n+1bnei(�′
a,n+1−ωb,n )t

+ Gn+1a†
n+1b†

nei[(�′
a,n+1+ωb,n )t+(λn+1+λn ) sin(νt )]} + H.c. (8)
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After exploiting the Jacobi-Anger expansions, the Hamiltonian is expressed as

HL,B2 =
∑

n

{
−Gna†

nbnei(�′
a,n−ωb,n )t + Gn+1a†

n+1bnei(�′
a,n+1−ωb,n )t +

∞∑
m1=−∞

−GnJm1 (κ1,n)a†
nb†

nei[(�′
a,n+ωb,n )+m1ν]t

+
∞∑

m2=−∞
Gn+1Jm2 (κ2,n)a†

n+1b†
nei[(�′

a,n+1+ωb,n )+m2ν]t

}
+ H.c., (9)

where κ1,n = 2λn and κ2,n = λn+1 + λn. Under the red-detuning regime of �′
a,n = �′

a,n+1 = ωb,n, the time-dependent exponen-
tial in NN hopping terms can be removed safely, and the Hamiltonian can be rewritten as

HL,B3=
∑

n

[
−Gna†

nbn + Gn+1a†
n+1bn+

∞∑
m1=−∞

−GnJm1 (κ1,n)a†
nb†

nei(2ωb,n+m1ν)t+
∞∑

m2=−∞
Gn+1Jm2 (κ2,n)a†

n+1b†
nei(2ωb,n+m2ν)t

]
+ H.c.

(10)

Thus the system has resonant Stokes heating terms when ν = ωb,n and m1 = m2 = −2, leading to

HL,B4 =
∑

n

[−Gna†
nbn + Gn+1a†

n+1bn − GnJ−2(κ1,n)a†
nb†

n + Gn+1J−2(κ2,n)a†
n+1b†

n] + H.c. (11)

Apparently, we can safely remove the resonant Stokes heating
terms by choosing appropriate values of κ1,n and κ2,n to
satisfy J−2(κ1,n) = J−2(κ2,n) = 0. We stress that the process
of eliminating Stokes heating terms does not involve the
rotating-wave approximation. Thus this method provides a
new way to obtain the tight-binding Hamiltonian for inducing
a topological phase based on the present optomechanical
system with frequency modulations. Another advantage is that
the effective optomechanical coupling Gn (Gn+1) can realize
the strong-coupling regime, in which the couplings between
the resonator and the adjacent cavity fields can be selected
over a wider range. Then the system can be described by the
following tight-binding SSH Hamiltonian:

HL,B =
∑

n

[−Gna†
nbn + Gn+1a†

n+1bn] + H.c. (12)

Based on this Hamiltonian, the topologically nontrivial SSH
phase can be obtained by varying the adjacent effective op-
tomechanical coupling strength in an alternative way, such as
−Gn < Gn+1.

C. Topologically trivial Kitaev model

Here, we induce an analogous Kitaev Hamiltonian using
the frequency modulations of cavity fields and resonators in
the 1D multiresonator optomechanical system. Consider the
parameter regime λn+1 = λn = γn, φ �= 0, and T = 0; after
performing the Jacobi-Anger transformation under the red-
detuning regime again, the Hamiltonian of the system can be
derived as

HL,C1 =
∑

n

[
−Gna†

nbn + Gn+1a†
n+1bn.

+
∞∑

m1=−∞
−GnJm1 (κ1,n)a†

nb†
nei(2ωb+m1ν)t eim1φ (13)

+
∞∑

m2=−∞
Gn+1Jm2 (κ2,n)a†

n+1b†
nei(2ωb+m2ν)t eim2φ

]
+ H.c.

The resonant Stokes heating terms can be obtained by choos-
ing m1 = m2 = −2. With the choice of φ = −0.25π , the
Hamiltonian becomes

HL,C2 =
∑

n

[−Gna†
nbn + Gn+1a†

n+1bn − iGnJ−2(κ1,n)a†
nb†

n

+ iGn+1J−2(κ2,n)a†
n+1b†

n] + H.c. (14)

For mapping of the Kitaev model Hamiltonian, we choose the
effective optomechanical coupling strength to satisfy −Gn =
Gn+1 = Gc (a fixed value). After this, the Hamiltonian be-
comes

HL,C =
∑

n

[Gca†
nbn + Gca†

n+1bn + iGcJ−2(κ1,n)a†
nb†

n

+ iGcJ−2(κ2,n)a†
n+1b†

n] + H.c. (15)

One can clearly see that the form of the above Hamiltonian
is identical to that of the Kitaev model with zero chemical
potential, in which the first two terms represent the NN hop-
ping and the imaginary Stokes heating terms are analogous
to the superconducting pairing terms of the Kitaev model.
We simulate the energy spectra of the standard fermionic
Kitaev model and the present cavity optomechanical lattice
chain system numerically, as shown in Figs. 3(a) and 3(b).
Compared to the standard fermionic Kitaev model, we find
that the present system only possesses a continuous non-
gapped energy spectrum corresponding to arbitrary values
of J−2(κ1,n) and J−2(κ2,n), which is significantly different
from the fermionic Kitaev energy spectrum, exhibiting two
degenerate zero-energy modes in the gap. The reason is that
the bosonic operators satisfy the commutation relation, which
means that by simply replacing the fermionic operators in the
standard Kitaev model with the bosonic operators, one cannot
obtain the same Majorana double-chain structure as in the
fermionic Kitaev model [43]. Therefore, the present bosonic
Kitaev Hamiltonian with the same real-space form as in the
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FIG. 3. Energy spectra (2L eigenvalues) of the system un-
der Majorana representation. (a) Standard Kitaev energy spectrum
when the system satisfies Fermi exchange antisymmetry [Gc = 0.5,
GcJ−2(κ1,n) = GcJ−2(κ2,n) = 0.2]. (b) Kitaev energy spectrum of the
present system, which does not satisfy Fermi exchange antisymmetry
[Gc = 0.5, GcJ−2(κ1,n) = GcJ−2(κ2,n) = 0.2]. The size of the system
is L = 100.

fermionic Kitaev model exhibits trivial topology and has a
nongapped energy spectrum.

D. Effects of partial next-nearest-neighbor hopping regulated
by frequency modulations

The interaction between two adjacent cavity fields is not
taken into account in the above discussion. However, a realis-
tic cavity optomechanical system may possess a strong direct
coupling between cavity fields, which corresponds to partial
NNN hopping in the perspective of mapping the cavity field
an and resonator bn as two sites in the SSH model. In this way,
the direct coupling between two cavity fields is equivalent
to the NNN hopping only added onto the odd sites of the
SSH chain. In the following we discuss the effects of partial
NNN hopping on the system by choosing the parameters of
frequency modulations to satisfy λn+1 = λn = γn, φ = 0, and
T �= 0. After removal of the Stokes heating terms as discussed
in Sec. III B, the system can be dominated by the tight-binding

Hamiltonian

HL,D1 =
∑

n

[
− Gna†

nbn + Gn+1a†
n+1bn

+
∞∑

m=−∞
T Jm(κ1,n)a†

n+1aneimνt

]
+ H.c., (16)

where κ1,n = λn+1 − λn. When the first kind of Bessel func-
tion takes the zeroth order (m = 0), the system possesses
resonant partial NNN hopping. The Hamiltonian is simplified
as

HD=
∑

n

[−Gna†
nbn+Gn+1a†

n+1bn+T J0(κ1,n)a†
n+1an]+H.c.,

(17)

where T J0(κ1,n) represents the effective partial NNN hopping
strength regulated by the Bessel function. The multiresonator
optomechanical system can be regarded as a standard SSH
chain when the parameters satisfy J0(κ1,n) = 0 and −Gn <

Gn+1. We stress that the condition λn+1 = λn means that
J0(κ1,n) = 1 corresponds to a nonregulated partial NNN hop-
ping. However, the realistic selection of parameters may in-
clude relative fluctuations, thus J0(κ1,n) �= 0 corresponds to a
regulated partial NNN hopping.

Mapping of the topological SSH model based on a 1D
multiresonator optomechanical system provides a new kind of
optical platform for investigation of various effects of topol-
ogy on other physics, such as the block of topological edge
states on quantum walks. As shown in Fig. 4, we investigate
the influences of topological edge states and partial NNN hop-
ping on quantum walks. The numerical results reveal that the
appearance of topological edge states will have a suppressive
effect on quantum walks in the present system, as shown in
Figs. 4(a) and 4(b). However, when partial NNN hopping
is introduced into the system, we find that the existence of
partial NNN hopping will destroy the suppression of the
topological edge states on quantum walks with an increase in
the partial NNN hopping strength, as shown in Figs. 4(c)–4(f).
The reason is that the large partial NNN interactions will
accelerate the process of quantum walks in the bulk.

More specifically, when the parameter satisfies −Gn <

Gn+1 (topologically nontrivial), the topological left edge state
has a maximal suppressive effect on quantum walks corre-
sponding to T J0(κ1,n) = 0. The two degenerate zero-energy
modes are separated accompanied by a decrease in the distri-
bution of the left edge state when mild partial NNN hopping
(T J0(κ1,n) < −Gn) is added in the system, which leads to a
weak suppressive effect of the left edge state on quantum
walks, as shown in Fig. 5(a). With the strength of the partial
NNN hopping continuously increasing, the distribution of the
left edge state decreases continuously while the distribution of
the second site increases gradually, which further weakens the
suppressive effect of the left edge state on quantum walks.
A phase transition occurs when the partial NNN hopping
strength reaches the same value as the strength of the NN
hopping, Gn+1 (T J0(κ1,n) = Gn+1), in which the first cavity
field and the second resonator have the same distributions,
as shown in Fig. 5(b). The reason for this phenomenon is
that the first cavity field and the second resonator will be
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FIG. 4. Effects of the topological edge state and the partial NNN
hopping on quantum walks. (a) Quantum walks in a nontopological
multiresonator optomechanical system (−Gn > Gn+1). (b) Quantum
walks suppressed by topological edge states (−Gn < Gn+1). (c–f)
The suppression of topological edge states is destroyed by the partial
NNN hopping. Strengths of the partial NNN hopping are T J0(κ1,n) =
0.1 (c), 0.45 (d), 0.75 (e), and 1 (f). The size of the system is L = 40.

equivalent to a supersite due to the same effective hopping
strength, T J0(κ1,n) = Gn+1, as shown in Fig. 5(c). This means
that quantum walks can pass though the lattice in terms of two
paths (the path indicated by blue arrows and the path indicated
by pink lines, respectively) with the same probability at the
same time. Subsequently, the distribution of the second site
rises continuously with a sequential increase in the partial
NNN hopping strength, and a high enough partial NNN
hopping strength [T J0(κ1,n) � Gn+1] will separate the second
sites from the lattice chain, which generates a new localized
state, as shown in Fig. 5(d). A large enough partial NNN
hopping limit means that quantum walks will pass though
the lattice only in terms of the odd sites, which leads to the
acceleration of quantum walks and destroys the suppressive
effect of the left edge state on quantum walks due to the
disappearance of the left edge state, as shown in Fig. 5(e).
These results demonstrate that we can realize the controllable
suppression and acceleration of quantum walks based on the
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FIG. 5. Energy spectra and distributions of edge states. (a) En-
ergy spectrum and distributions of edge states corresponding to
T J0(κ1,n) = 0.25. (b) Energy spectrum and distributions of edge
states corresponding to T J0(κ1,n) = 0.5. (c) Schematic of the mul-
tiresonator optomechanical system when the partial NNN coupling
satisfies T J0(κ1,n) = Gn+1 = 0.5. The dashed black circle repre-
sents the supersite. (d) Energy spectrum and distributions of edge
states corresponding to T J0(κ1,n) = 1. (e) Schematic of the multires-
onator optomechanical system under the large partial NNN coupling
limit T J0(κ1,n) = 1. Dashed lines represent the decoupling due to
T J0(κ1,n) � Gn+1. The quantum walk mainly passes though the odd
sites (path indicated by blue arrows). Other parameters are set at
−Gn = 0.25 and Gn+1 = 0.5. The size of the system is L = 100.

present cavity optomechanical system with frequency modu-
lations.

IV. CONCLUSIONS

In conclusion, we have proposed a scheme to induce a
topological SSH phase via distinguishing parameter regimes
based on a 1D multiresonator cavity optomechanical system
with frequency modulations. We find that, after the Stokes
heating terms are eliminated, the optomechanical chain sys-
tem will exhibit a topological SSH phase upon variation of the
effective NN hopping assisted by the frequency modulations
alternately. The property of the Bessel function guarantees the
realization of the SSH model corresponding to the arbitrary
effective optomechanical coupling strength in a certain range.
Another parameter regime is proposed to remove the resonant
Stokes heating terms, in which the optomechanical chain
system exhibits an SSH phase via changing of the effective op-
tomechanical coupling alternately. We also realize a bosonic
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Kitaev model with trivial topology by keeping the Stokes
heating terms. Our scheme provides a controllable method for
investigating the effect of partial NNN hopping in the SSH
model based on a 1D multiresonator cavity optomechanical
system with frequency modulations.
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APPENDIX A: DISCUSSION OF THE FINAL
TIME-DEPENDENT STEADY CAVITY FIELD

Now we give a phenomenological analysis of the final
time-dependent steady cavity field due to the existence of
frequency modulations. For simplicity, we focus on a tiny
component of the optomechanical array, which is composed of
two cavity fields and one resonator. After performance of the
quantum Langevin equations, the mean values of the cavity
field and mechanical resonator can be described by

α̇a,1 = −i�′
a,1αa,1 − ε1

2
αa,1 − i�1 − iλ1ν cos(νt )αa,1,

β̇b,1 = −iωb,1βb,1 − �

2
βb,1 + ig(|αa,1|2 − |αa,2|2)

− iγ1ν cos(νt )βb,1,

α̇a,2 = −i�′
a,2αa,2 − ε2

2
αa,2 − i�2 − iλ2ν cos(νt )αa,2,

(A1)

where ε1 [ε2] and � are the decay of the cavity field and the
damping of the resonator, and �′

a,1 = �a,1 − g(β∗
b,1 + βb,1)

[�′
a,2 = �a,2 + g(β∗

b,1 + βb,1)] is the effective detuning of the
cavity field. We simulate the evolutions of the cavity fields
and the resonator with the time numerically, as shown in
Figs. 6(a) and 6(b). The numerical results show that the
two final steady cavity fields have the same periodically
time-dependent steady distributions due to the existence of
frequency modulations, hence the effective optomechanical
coupling Gn (Gn+1) is also periodically time dependent. Ac-
cording to the above numerical results, we find that the
effective optomechanical coupling can be formally written as
|−Gn| = g(A + B cos ωt ) = A′ + B′ cos ωt after keeping only
the dominant contribution of the Fourier-series expansion of
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FIG. 6. Evolution of (a) the steady cavity fields and (b) the steady
resonator with time. Other parameters are set at �a,1 = �a,2 = ωb,1,
ε1 = ε2 = 0.1ωb,1, � = 1 × 10−6ωb,1, �1 = �2 = 1 × 105ωb,1, g =
2 × 10−6ωb,1, λ1 = 1.2ωb,1, λ2 = γ1 = ωb,1, and ν = ωb,1.

the periodically time-dependent cavity fields, in which A′ ≈
0.91ωb,1 and B′ ≈ 0.09ωb,1. Besides the periodically time-
dependent steady cavity field, we find that the steady resonator
is also periodically time dependent, hence the effective detun-
ing of the cavity field �′

a,1 (�′
a,2) is time dependent. However,

we find that the parameter satisfies �a,1 � g(β∗
b,1 + βb,1)

[�a,2 � g(β∗
b,1 + βb,1)], which leads to �′

a,1 ≈ �a,1 (�′
a,2 ≈

�a,2). In this way, the correlation between �′
a,1 (�′

a,2) and the
time t can also be removed. Thus, the red-detuning condition
can be achieved approximately with �′

a,1 ≈ ωb,1.

APPENDIX B: LINEARIZING THE SYSTEM HAMILTONIAN CORRESPONDING
TO AN EVEN NUMBER OF LATTICE SITES

Here, we consider the frequency-modulated optomechanical array composed of N cavity fields and N resonators (the lattice
size is 2N , corresponding to an even number), in which the coupling between the resonator bn and the adjacent cavity field an

(an+1) is gn. The system can be described by

Heven =
N∑

n=1

{[ωa,n + λnν cos(νt + φ)]a†
nan + (�na†

ne−iωd,nt + �∗
naneiωd,nt ) + [ωb,n + γnν cos(νt + φ)]b†

nbn

− gna†
nan(b†

n + bn)} +
N−1∑
n=1

gna†
n+1an+1(b†

n + bn). (B1)
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Under the condition of strong laser driving, we perform the standard linearization approach to linearize the Hamiltonian.
After dropping the notation “δ” for all the fluctuation operators δan (δbn), the Hamiltonian can be deformed as

HL =
N∑

n=1

{
[�′

a,n + λnν cos(νt + φ)]a†
nan + [

ωb,n + γnν cos(νt + φ)
]
b†

nbn − gn(α∗
nan + αna†

n)(b†
n + bn)

}

+
N−1∑
n=1

gn(α∗
n+1an+1 + αn+1a†

n+1)(b†
n + bn), (B2)

where �′
a,n contains �′

a,1 = �a,1 + g1(β∗
1 + β1) and �′

a,n=2...N = �a,n − gn−1(β∗
n−1 + βn−1) + gn(β∗

n + βn). After performance
of a rotating transformation on the linearization Hamiltonian in Eq. (B2) with

V = exp

{
N∑

n=1

−i�′
a,nta†

nan − iλn sin(νt + φ)a†
nan − iωb,ntb†

nbn − iγn sin(νt + φ)b†
nbn

}
, (B3)

the Hamiltonian becomes

H ′
L =

N∑
n=1

{−Gna†
nbnei[(�′

a,n−ωb,n )t+(λn−γn ) sin(νt+φ)] − Gna†
nb†

nei[(�′
a,n+ωb,n )t+(λn+γn ) sin(νt+φ)]}

+
N−1∑
n=1

{Gn+1a†
n+1bnei[(�′

a,n+1−ωb,n )t+(λn+1−γn ) sin(νt+φ)] + Gn+1a†
n+1b†

nei[(�′
a,n+1+ωb,n )t+(λn+1+γn ) sin(νt+φ)]} + H.c., (B4)

where Gn = gnαn (Gn+1 = gnαn+1) is the effective optomechanical coupling parameter. Obviously, the above Hamiltonian has
the same form as the Hamiltonian in Eq. (4). Thus, our scheme is also valid for the case of an even number of lattice sites. To
avoid the tedious expression of two summation symbols in Eq. (B4), in the text we focus on the case of an odd number of lattice
sites.

APPENDIX C: DISCUSSION ABOUT THE RATIONALITY
OF THE MODULATED FREQUENCY

As revealed in Ref. [25], the frequency ν of the frequency
modulations should be much higher than the effective op-
tomechanical coupling with ν � Gn to ensure the rationality
of removing the other heating sidebands. As mentioned in
Appendix A, a typical choice of the single-photon optome-
chanical coupling usually is of the order of 10−6, which means
that the final effective optomechanical coupling Gn satisfies
Gn ∼ 10−1. Then, when the modulated frequency is ν = ωb,
there seems to be an order-of-magnitude difference between
the effective optomechanical coupling Gn and the modulated
frequency ν. We stress that, although there is an order-of-
magnitude difference, the condition ν � Gn is not satisfied
very well. However, we can always find a parameter regime to
optimize the satisfaction of this condition. For example, when
we increase the decay of the cavity fields, we find that the
final steady cavity fields decrease, as shown in Fig. 7(a). In
this way, we can realize the condition ν � Gn better.

Meanwhile, as obtained in Ref. [25], the condition of a
large enough ν can also be achieved via ν = xωb,n, with x
being multiples of the resonator frequency, in which we can
always find a set of parameters m2 (m4) to guarantee the
existence of minimal detuning and the neglect of other heating
sidebands. For example, when the modulated frequency is
ν = 2ωb, we find that the amplitudes of the two final steady
cavity fields take an order in the approximate range of 104–
105, as shown in Fig. 7(b). Together with the extremely weak

single-photon optomechanical coupling (of the order of 10−6),
the final effective optomechanical coupling Gn satisfies [Gn ∼
10−2] − [Gn ∼ 10−1], so the condition Gn 	 ν is better satis-
fied. Especially, when ν = 4ωb, we find that the amplitudes of
the two final steady cavity fields both take order 104, as shown
in Fig. 7(c). In this way, we have Gn ∼ 10−2 and Gn 	 ν,
which further optimizes the condition of ν � Gn.

Note that the final steady cavity fields are also affected
by external strong laser driving. As for an extremely strong
laser driving limit, the driving field can indeed guarantee
that the final steady cavity fields are large enough that the
condition Gn 	 ν is invalid. However, due to the properties of
the optomechanical system an extremely strong laser driving
limit may destroy the stability of the system conversely. For
example, when the amplitudes of the laser driving take order
107, we find that the amplitudes of the two cavity fields
take order 106, as shown in Fig. 7(d). Indeed, the effective
optomechanical coupling now satisfies Gn ∼ 1 (Gn ∼ ν) with
ν = ωb, which means that the condition Gn 	 ν is not valid.
However, at the same time, extremely strong laser driving also
destroys the stability of the system, thus the two final cavity
fields cannot enter steady states. This means that the strong
laser driving needs to be chosen appropriately; driving that
is too mild cannot ensure implementation of the lineariza-
tion process, while extremely strong driving may destroy the
stability of the system. Stated thus, the rationality of the
condition Gn 	 ν can be assured. In the text, for simplicity,
we focus on the case of ν = ωb to avoid the complexity caused
by the different parameter regimes.
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FIG. 7. Evolution of the two steady cavity fields with time.
(a) ν = ωb, (b) ν = 2ωb, and (c) ν = 4ωb. Other parameters are set
at �a,1 = �a,2 = ωb,1, ε1 = ε2 = 0.25ωb,1, � = 1 × 10−6ωb,1, �1 =
�2 = 1 × 105ωb,1, g = 1 × 10−6ωb,1, λ1 = 1.5ωb,1, and λ2 = γ1 =
ωb,1. (d) �1 = �2 = 1 × 107ωb,1 and other parameters are the same
as in (a)–(c).
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FIG. 8. Evolution of |αa,1| (a) and |αa,2| (b) with time. (a) λ1 =
1.6ωb,1, λ2 = γ1 = ωb,1. (b) λ1 = 2ωb,1, λ2 = γ1 = ωb,1. (c) Energy
spectrum of the system when |αa,1| > |αa,2|. Other parameters are set
at �a,1 = �a,2 = ωb,1, ε1 = ε2 = 0.1ωb,1, � = 1 × 10−6ωb,1, �1 =
�2 = 1 × 105ωb,1, g = 2 × 10−6ωb,1, and ν = ωb,1.

APPENDIX D: EFFECT OF TIME-DEPENDENT
EFFECTIVE OPTOMECHANICAL COUPLING

ON THE TOPOLOGY OF THE SYSTEM

As mentioned in Appendix A, when the cavity fields
have the same steady distributions, the effective optomechani-
cal couplings satisfy |−Gn| = |Gn+1| = A′ + B′ cos ωt , which
leads to the final effective tight-binding Hamiltonian in Eq. (7)
becoming

H =
∑

n

[J0(κ1,n)A′ + J0(κ1,n)B′ cos ωt]a†
nbn

+ [J0(κ3,n)A′ + J0(κ3,n)B′ cos ωt]a†
n+1bn + H.c. (D1)
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Obviously, the time-dependent fluctuations caused by the
frequency modulation are equivalent to the fluctuations added
in the NN hopping of the tight-binding model if we have
|J0(κ1,n)A′| > |J0(κ1,n)B′| and |J0(κ3,n)A′| > |J0(κ3,n)B′|. In
this way, mild fluctuation has no effect on the topology of
the system due to the protection of the energy gap. We
stress that the parameters chosen in Fig. 6 make the Bessel
coefficients satisfy J0(κ1,n) < J0(κ3,n). Theoretically, when
|J0(κ1,n)| < |J0(κ3,n)|, the system always has two degenerate
zero-energy modes in the gap since the effective hopping
satisfies |J0(κ1,n)A′| < |J0(κ3,n)A′| (after ignoring the effects
of the time-dependent fluctuations). This means that we can
always find a set of parameters to ensure the topology of the
system.

To further clarify the effect of the final time-dependent
steady cavity fields on the topology of the system, we focus on
two more general cases, |−Gn| < |Gn+1| and |−Gn| > |Gn+1|,
as shown in Figs. 8(a) and 8(b). As shown in Fig. 8(a),
the system has |−Gn| = A′

1 + B′
1 cos ωt and |Gn+1| = A′

2 +
B′

2 cos ωt with A′
1 < A′

2 and B′
1 < B′

2. After ignoring the
time-dependent fluctuations, we still have |J0(κ1,n)A′

1| <

|J0(κ3,n)A′
2|, with |J0(κ1,n)| < |J0(κ3,n)| under the parameter

regime shown in Fig. 8(a). This means that the system also
has two degenerate zero-energy modes in the gap.

Especially, as shown in Fig. 8(b), we find that the
parameters satisfy |−Gn| = A′

1 + B′
1 cos ωt and |Gn+1| =

A′
2 + B′

2 cos ωt with A′
1 ≈ 1.025ωb,1, B′

1 ≈ 0.077ωb,1, A′
2 ≈

0.98ωb,1, and B′
2 ≈ 0.084ωb,1. Obviously, we have |−Gn| >

|Gn+1|, which corresponds to the trivial topology in the usual
tight-binding model. However, the parameters in Fig. 8(b) en-
sure that the Bessel coefficients satisfy |J0(κ1,n)| ≈ 0.77ωb,1

and |J0(κ3,n)| ≈ ωb,1, which means that the final effective
hopping terms satisfy |J0(κ1,n)A′

1| < |J0(κ3,n)A′
2|. Thus, the

system can still have two degenerate zero-energy modes in
the gap, as shown in Fig. 8(c).

Based on the results mentioned above, we find that the final
time-dependent steady cavity fields can have no effect on the
topology of the system, which means that we can always find
a set of parameters to ensure the nontrivial topology of the
system. Dramatically, the topologically nontrivial phase can
be achieved even when |−Gn| > |Gn+1|. We stress that the
present time-dependent topological phase shown in Fig. 8(c)
is actually a two-dimensional Chern topological phase. In the
text, to clarify the feasibility conveniently, we treat the final
time-dependent effective optomechanical coupling Gn (Gn+1)
as an ensemble to avoid the complexity caused by different
parameter regimes. For example, we choose −Gn and Gn+1 to
be positive, real, and fixed values throughout the text.
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