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Increasing two-photon entangled dimensions by shaping input-beam profiles
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Photon pairs entangled in high-dimensional orbital angular momentum (OAM) degrees of freedom (DOF)
have been widely regarded as a possible source for improving the capacity of quantum information processing.
The generation of a high-dimensional maximally entangled state in the OAM DOF is therefore much desired.
In this work, we demonstrate a simple method to generate a broader and flatter OAM spectrum, i.e., a larger
spiral bandwidth (SB), of entangled photon pairs generated through spontaneous parametric down-conversion
by modifying the pump beam profile. By investigating both experimentally and theoretically, we find that an
exponential pump profile that is roughly the inverse of the mode profiles of the single-mode fibers used for OAM
detection will provide a much larger SB compared to a Gaussian-shaped pump.
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I. INTRODUCTION

The two-photon high-dimensional entangled state (HD-
ES),

∑d−1
j=0 c j | j〉A | j〉B, has been widely regarded as useful in

increasing the capacity for quantum information processing.
From the fundamental physics standpoint, such states imply a
larger violation of local-realism theories and a lower fidelity
bound in quantum state cloning [1–3]. Also, great attention
has been given to their practical applications [3,4], for exam-
ple, enhancing security robustness against eavesdrop in quan-
tum cryptography [5,6], increasing dimensions of the Bell
state in dense coding, entanglement swapping, or teleportation
[7–9], multiplexing a heralded single-photon source [10,11],
and improving the quality of imaging or quantum sensors
[12–14].

In photonic systems, one can construct an HD-ES in many
of the photon’s degrees of freedom (DOF) [15,16], for ex-
ample, in orbital angular momentum (OAM) [17–23], paths
[24–26], frequency [27], photon number [28], and temporal
modes [29,30]. HD-ESs in OAM have been gaining more at-
tention due to their easy scalability in dimension. One typical
process is to create 100 × 100–dimensional entanglement via
employing both the OAM and the radial DOF of entangled
photon pairs [31].

The most common method for generating OAM entangled
photon pairs is via the process of spontaneous parametric
down-conversion (SPDC) [17]. According to OAM conser-
vation, the sum of OAM from the signal and idler photons
must equal that of the pump photon, i.e., �p = �s + �i. When
�p = 0, the output two-photon state of SPDC can be Schmidt
decomposed into

∑∞
−∞ C�s,�i |−�〉s |�〉i. Here, C�s,�i is the
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probability amplitude (
∑ |C�s,�i |2 = 1) of finding a signal

photon with OAM −� and an idler photon with OAM � in
coincidence. The width of the OAM spectrum is often known
as the spiral bandwidth (SB) [32]. The Schmidt number K =
1/

∑
C4

�s,�i
is also often defined to evaluate the entanglement

dimensions [33–35]; a larger value of K depicts a larger
dimension of entanglement. For a maximally entangled state
(MES) of |C�s,�i | = 1

√
d , the Schmidt number is d . Entangled

photons with a larger Schmidt number could be beneficial
in implementing higher-dimensional quantum protocols like
cryptography, computation, imaging, and metrology.

For SPDC, the coincidence amplitudes C�s,�i can be calcu-
lated via the overlap integral between the input pump mode
and both the signal and the idler modes in the Laguerre-
Gaussian (LG) basis [34,36]. Previous works have shown
several ways to increase the SB of OAM entanglement.
First, one can adjust the beam waist ratio between the pump
and the measured LG modes γ = wp/ws(i) [32–34]; the
SB increases with increasing γ . Second, one can change
the down-conversion angle by adjusting the SPDC phase
matching [35,37,38]; the SB changes based on the down-
conversion angle between the SPDC photons. Finally, one
can engineer a crystal with spatially varying phase matching
[39–41]; there has been little experimental progress in this
avenue due to the complex fabrication technology. Also, some
works attempt to prepare HD-MESs through some complex
engineering of the pump beam profile [23,42–46]. In recent
work [44,45], a three-dimensional maximally entangled state
1/

√
3(|−1〉 |−1〉 + |0〉 |0〉 + |1〉 |1〉) has been generated by

shaping the pump into a superposition of several LG modes.
However, the generation of higher-dimensional MESs remains
difficult due to the crosstalk between OAM modes.

Here, we propose an ingenious method to increase the
SB via some simple shaping of the pump beam profile.
We show both theoretically and experimentally that an
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exponential pump will significantly flatten the OAM spectrum
and extend the SB. The optimal exponential pump is when the
combined profile of both single-mode optical fibers (SMFs)
and pump beam profile is a constant, where the optimal pump
is roughly the inverse of mode profile from the SMFs. We
then perform high-dimensional quantum state tomography in
three- and five-dimensional subspaces using the optimized ex-
ponential pump; the corresponding fidelities are 90.74% and
81.46% for three- and five- dimensional MESs, respectively.
Traditionally, when the input pump beam profile is a Gaussian
function, the distribution of the coincidence amplitude with
OAM is strongly mode dependent [34,36]. Therefore, mode
postselection has to be performed in order to generate an HD-
MES. Our method demonstrates a simple way to broaden and
flatten the SB, which could allow future quantum protocols
using the OAM DOF to access higher-dimensional MESs
without requiring mode filtering.

II. RESULTS

A. Optimizing the input beam profile to increase
the entangled dimension

SPDC photons entangled in arbitrary superpositions of
OAM are often described in terms of the LG modes. In
our analysis, we are only interested in the OAM DOF and
set the radial momenta to be 0. In the thin crystal limit,
the phase-matching function of the SPDC process can be
approximated to unity and the coincidence amplitudes C�s,�i

can be calculated from the overlap integral [34,47,48]

C�s,�i =
∫

�(x)
[
LG�s (x)

]∗[
LG�i (x)

]∗
G2(x)d2x, (1)

where �(x) is the mode function of the pump and G(x)
is the Gaussian mode of the SMF used for detection. LG�(x)
is the LG mode [49]. When the pump profile is a Gaussian and
the LG mode sizes of the signal and idler beams are chosen to
be equal, ws = wi ≡ wsi, the coincidence probability can be
evaluated as [34,47,48]

C−�,� ∝
(

2γ 2

2γ 2 + 2η2 + 1

)|�|
. (2)

Here γ = wp/wsi is the beam waist ratio between that of
the pump and the LG modes of the signal and idler photons
measured on the nonlinear crystal plane. η = wp/w f is the
beam waist ratio between the pump beam and the mode size
of the SMFs. Based on Eq. (2), the OAM spectrum always
peaks at � = 0 and rapidly decreases with increasing �.

Looking at Eq. (1), we see that if the combined profile (CP)
of �(x) and G2(x) is a constant, the overlap integral should
be a constant with respect to � resulting in an HD-MES [48].
We classically simulated this using Klyshko’s advanced-wave
representation [50]. It was found that the SB can be expanded
significantly when this CP is flat. We look at a more general
situation that uses an adjustable exponentially shaped pump
beam whose beam profile is given by

�(r) = exp

(
ar2

w2
p

)
H (−r + wp). (3)

Here a is a parameter that determines the width and curva-
ture of the exponential function and H (x) is the heaviside step
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FIG. 1. Theoretical results in the OAM spectrum under various
pump profiles. (a1–a3) Intensity pump beam profiles with a = −1,
a = 0.19, and a = 1.0. (b1–b3) Corresponding cross-section profile
of the pump [along the red line in (a1)–(a3)]. (c1–c3) Theoretically
predicted OAM spectrum based on Eq. (4), where γ = wp/wsi is
equal to 2.0 and η = wp/w f is equal to 0.31. (d1) OAM spectrum
along different γ values, where the pump beam profile is set to a =
0.19 = 2η2. (d2) Schmidt number versus beam profile parameter of a
running from −3 to 3 for various γ values, with OAM ranging from
−50 to 50 in the calculations. The left solid and right dashed vertical
lines in (d2) represent the pump beam profile of a Gaussian a = −1
and an exponential with a = 2η2 = 0.19, respectively.

function, which limits the width of the beam to the same. After
evaluating the overlap integral in Eq. (1), C−�,� is determined
to be

C−�,� ∝
(

2γ 2

2γ 2 + 2η2 − a

)|�|

×
[

1 − 1

|�|!�(1 + |�|, 2γ 2 + 2η2 − a)

]
, (4)

with �(n, z) (=∫ ∞
z t n−1e−t dt) being the incomplete gamma

function.
Equation (4) is similar to Eq. (2), despite the extra gamma

function. Some interesting behavior can be observed when a
is varied.

i. When a < 2η2, the CP of the pump and the SMFs
is still a Gaussian. The OAM spectrum is essentially the
same as that in Eq. (2) (with some small deviations coming
from the incomplete gamma function at larger �), where it
peaks at |�| = 0 and decreases rapidly with larger |�| values
[Fig. 1(a1)]. The SB broadens as a approaches 2η2.
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FIG. 2. Experimental setup for pump shaping, generation, and
detection of OAM entangled photons. The pump beam is first shaped
either by SLM1 (i.e., phase 1 for a = 0) or by the π shaper into the
desired beam shape. The beam then pumps a 10-mm-long PPKTP
crystal (type II; 775 to 1550 nm) to generate OAM entangled photon
pairs via SPDC. Through the use of SLM2 (i.e., phase 2 for � =
1) and single-mode fibers, projective measurements of the photons’
OAM can be performed.

ii. When a = 2η2, the CP will have a flattop. The first term
in Eq. (4) becomes a constant resulting in a flat OAM spec-
trum, however, the incomplete gamma function will suppress
|C−�,�|2 for larger |�| values [Fig. 1(a2)]. To further broaden
the OAM spectrum, one can increase γ as shown in Fig. 1(d1).

iii. When a > 2η2, the CP is an exponential. The de-
nominator in the first term of Eq. (4) is now smaller than
its numerator, so the term will increase with increasing |�|.
|C−�,�|2 is still suppressed by the incomplete gamma function
at larger |�| values. This results in an OAM spectrum that
peaks at some nonzero |�| value [Fig. 1(a3)].

In Fig. 1(d2), it can be seen that for larger γ values, the
Schmidt number reaches a maximum when a ≈ 2η2. How-
ever, when γ is small, the maximum Schmidt number occurs
at a > 2η2. This is the result of a larger contribution from
the incomplete gamma function when γ is small, therefore
suppressing C−�,� at smaller � values.

B. Beam-shaping technology for two-photon
high-dimensional entanglements

To verify the theoretical prediction in Eq. (4), we mea-
sured two-photon OAM correlations using different input
beam profiles (parameter a). The corresponding experimental
setup is shown in Fig. 2, which includes three parts: pump
beam shaping [Fig. 2(a)], state generations [Fig. 2(b)], and
projection measurements [Fig. 2(c)]. First, the pump beam
was shaped using either an SLM (path 2) or a π shaper (path
1) from a Gaussian into the desired beam shape (details in

FIG. 3. Normalized OAM spectrum in SPDC. (a) OAM spec-
trum for various pump profiles. Here, γ = 1.25 and η = 0.31.
(b) Coincidences for various � values as a function of γ when
the pump profile has a = 0.10. (c) OAM spectrum measured from
� = −12 to l = 12 for γ = 2.4. The green (fourth, innermost layer)
and red (third layer) OAM spectra are normalized theoretical and
experimental results for a = 0.10, respectively; the corresponding
Gaussians a = −1 are shown by orange (second layer) and blue
(first, outermost layer) bars. Inset in (c): Optimized pump beam
profile, where we can estimate the parameter a = 0.10 by fitting its
intensity. The nonnormalized versions of (a) and (c) can be found
in Appendix A.

Appendix A). Then a 10-mm-long nonlinear crystal (PPKTP)
was placed at the beam waist to perform the SPDC process.
The spatial photons on the nonlinear crystal plane were im-
aged to the surface of another SLM for mode demodulation
and then for coincidence measurements via a superconducting
nanowire single-photon detector. In our setup, the beam width
ratio η is 0.31. It should be noted that though an SLM has
more versatility in the beam shaping it can perform, it can-
not support high pump intensities and has lower conversion
efficiencies compared to a commercial π shaper. The SLM is
therefore used in confirming the shape of the SB for various a
parameters; in situations where a high pump power (350 mW)
is required to increase the SPDC photon production rate and
reduce the data acquisition time without needing to change the
beam shape, the π shaper is used.

C. Two-photon OAM spectrum under different beam profiles

Figure 3(a) shows the OAM spectrum generated with dif-
ferent pump beam profiles (a = −1, 0, and 0.8) reported in
Appendix A, where the beam width ratio γ is 1.25. It can
be seen that the OAM spectrum broadens as a increases, just
as theoretically predicted from Eq. (4). Also, note that since
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γ is small, the optimized beam profile a [the largest SB (or
K)] is actually larger than 2η2 as shown in Fig. 1(d2). The
theoretical OAM spectra for these three cases are given in
Appendix A.

In addition to the beam profile parameter a, the beam
width ratio γ is another important parameter that affects the
entangled dimension. In Fig. 3(b), we show the measured
coincidence rate for various � values as a function of γ , where
a = 0.10. One can see that for larger values of γ [blue area in
Fig. 3(b); γ � 2.5], the differences in coincidence rate for the
various � values are relatively small, which indicates a broader
SB. This is in agreement with our theoretical results shown in
Fig. 1(d1).

In Fig. 3(c) we show the theoretical and experimental OAM
spectra from � = −12 to � = 12 for γ = 2.4. A significantly
broader OAM spectrum can be observed compared to a Gaus-
sian pump (a = −1) with the same γ . The experimental az-
imuthal Schmidt number K is determined to be 21.9, which is
in good agreement with the theoretical prediction of 20.7; for a
Gaussian pump K is 15. For quantifying the crosstalk between
two neighboring OAM values, we measured the crosstalk
visibility (1 − ∑

i, j=i±1 C2
i, j/

∑12
i=−12 C2

ii ) and obtained a value
of 93.91%.

D. Quantum state tomography of high-dimensional
entanglement

From Fig. 3(c), one can see that the HD-MES is prepared
in at least a five-dimensional subspace. We reconstructed the
density matrices for the cases of dimensions d = 3 [Figs. 4(a)
and 4(b)] and d = 5 [Figs. 4(c) and 4(d)] through high-
dimensional quantum state tomography [45,51,52] (also see
Appendix B). The measured fidelity, F = [Tr

√√
ρρexp

√
ρ]2,

was 0.9071 ± 0.005 for d = 3 and 0.8146 ± 0.0014 for d =
5, with the uncertainty obtained through statistical simulations
assuming that the coincidence events follow a Poissonian
distribution. The fidelity for both d = 3 and d = 5 entangled
states exceeded the dimensional threshold of (d − 1)/d , sig-
nifying that the density matrix cannot be decomposed into an
ensemble of pure states with a low Schmidt number [53–55].
The fact that the fidelity of the d = 5 MES is less than that of
the d = 3 is not surprising, as Fig. 3(c) shows that the OAM
spectrum is fairly flat at d = 3 (� = −1, 0, 1) but less so at
d = 5 (� = −2,−1, 0, 1, 2). One can improve the fidelity for
higher dimensions by using a slightly higher beam waist ratio
γ . From the density matrix we can also calculate the linear en-
tropy, Sent = 1 − Tr(ρ2

exp), giving Sent = 0.1043 ± 0.009 and
0.2851 ± 0.0093 for the d = 3 and d = 5 cases, respectively;
the linear entropy determined using the theoretical OAM
spectrum is 4 × 10−4 for d = 3 and 12 × 10−4 for d = 5
(for a pure state the linear entropy is 0). Furthermore, the
CGLMP Bell inequality [2] was determined to be 2.85 ± 0.03
and 2.40 ± 0.01 for the d = 3 and d = 5 entangled states,
respectively. As a comparison, the theoretical upper bound for
the CGLMP Bell inequality is 2.87 and 2.91 for the d = 3
and d = 5 entangled states, respectively [2]. The lower value
for the d = 5 case is mainly attributed to imperfect mode
overlap between the SPDC photons and the measurement
SLM. These values are listed in the table in Fig. 4 for
clarity.
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FIG. 4. Reconstructed density matrices of three- and five-
dimensional OAM MESs from the experimental OAM spectrum in
Fig. 3(c). (a), (b) Real and imaginary parts of the density matrix for
d = 3. (c), (d) Real and imaginary parts of the density matrix for
d = 5. The table at the bottom displays the corresponding fidelity,
entropy, and CGLMP Bell inequality for the two density matrices.
Data acquisition times for each reading are 50 and 300 s for the three-
and five-dimensional cases, respectively.

III. DISCUSSION

In this work, a simple technique for shaping pump beam
profiles to increase the two-photon OAM entanglement di-
mensions in SPDC processes is demonstrated. Theoretically
and experimentally, we found that the coincidence amplitude
will become mostly mode independent when the pump profile
is an exponential that roughly cancels the Gaussian pro-
file of the SMFs used for photon detection. Compared to the
more commonly used method of increasing γ to expand the
OAM entanglement dimensions, optimizing the beam profile
in SPDC offers two advantages. First, by optimizing the beam
profile one does not suffer as much loss to the coincidence
count rate compared to increasing γ , which can lead to a
significant reduction in the coincidence count rate due to a
decrease in the coupling efficiency to the SMFs. Second, by
shaping the pump into an inverse Gaussian, one can always
achieve an OAM spectrum that is flat for at least several
OAM modes even in cases where γ is small (≈2 or less);
this allows one to generate an HD-MES in situations not
possible previously. This adds a way to expand the SPDC
OAM spectrum and can be used concurrently with previously
suggested techniques such as increasing γ and adjusting the
down-conversion angle between the signal and the idler pho-
tons. The ability to generate such HD-MESs without mode
postselection will be of great importance in quantum com-
munication, quantum sensing, and, also, fundamental physics
research.
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APPENDIX A: SHAPING THE BEAM PROFILE VIA
DIFFRACTIVE OPTICS

When a monochrome electronic field U (x1, y1) passes a
lossless phase element, the mapping of the output field can
be expressed in terms of the Fresnel integral. Usually, a lens
( f ) is used to focus the beam waist located after the phase
element. The beam-shaping problem can be seen as a Fourier
transform [56,57],

U (x, y) = 1

iλ f
exp(ik f + x2 + y2)

×
∫ ∫

U (x1, y1) exp(iβφ(x1, y1))

× exp

(
−i

2π

λ f
(xx1 + yy1)

)
dx1dy1, (A1)

where k = 2π/λ, and U (x1, y1) and U (x, y) are the magni-
tudes of the input and output fields, respectively. The beam-
shaping problem is to determine what the phase function
βφ(x1, y1) is. Here, β(= 2πw0w1/λ f ) is a system parameter
connecting the input beam width w0 with the output beam
width w1. In principle, any arbitrary field can be shaped
approximately through a suitable phase function. A suitably
large β can generate a good approximate output field [56].

Based on the diffraction theory of lossless beam shaping
[56], three steps are needed to determine the phase factor φ.
For a radially symmetric problem, first, we need to evaluate
the constant A given by

A =
∫ +∞
−∞ I (s)ds∫ +∞
−∞ Q(s)ds

, (A2)

where the I (s) and Q(s) are the intensities of the input and
output beams. Then the phase factor φ can be determined by
solving two ordinary differential equations [56],

AQ(α)
dα

dξ
= I (ξ ),

dφ

dξ
= α(ξ ), (A3)

where α(ξ ) is a medium function. For some certain special
patterns, the ordinary differential equations can be solved
analytically; for example, for the output as a flattop beam
[Q(s) = 1 ∗ H (−s + 1)], the phase can be given,

φ(ξ ) = − 2

π

(
ξ

√
π

2
exp(ξ ) + 1

2
exp(−ξ 2) − 1

2

)
. (A4)

In most situations, one needs to solve for φ numerically, which
is the case when the output beam profile is an exponential

FIG. 5. Intensity patterns of the pump beam profiles and the
corresponding OAM spectrum. (a)–(c) Pump beams generated in our
system with a = −1, 0, and 0.8, respectively. (d)–(f) Corresponding
cross-section intensity profile [along the white line through (a)–(c)].
Wavy blue lines show the measured distributions, and smooth red
lines the theoretical distributions. (g)–(i) Corresponding theoretical
OAM spectrum with γ = 1.25. (j), (k) Experimental OAM spectra
corresponding to Figs. 3(a) and 3(c), respectively. In Fig. 3(c), the
outermost, red distribution is the situation of the Gaussian pump,
and the innermost, blue bars show the situation of the optimized
exponential pump.

function, Q(s) = exp(as2), as in this paper. Experimentally,
we can realize the beam shaping by loading the phase βφ

onto an SLM. In our setup (Fig. 2 in the text), the Fourier
lens (F1) has a focal length of 75 mm, the input beam waist
is 3000 μm, and the beam width of the output beam is set to
200 μm on the Fourier plane. Therefore, one can determine
β = 64.4. Figures 5(a)–5(c) show some intensity patterns of
the input beams with the exponential function. The corre-
sponding cross-section distributions are shown in Figs. 5(d)–
5(f). Under these beams as a pump, we get the theoretical
OAM spectrum, which is shown in Figs. 5(g)–5(i). Figure 5(j)
shows the corresponding experimental results, where three
lines represent three situations of pumps in a = −1, a = 0,
and a = 0.8, respectively. Figure 5(k) is the measured OAM
spectrum when the situations of the pumps are the optimized
and Gaussian beams, respectively, where we use the π shaper
to generate the optimized pump beam.

The SLM used could not support a very high input power
and has a low conversion efficiency (about 30% at first
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order). Therefore, we employed a commercial π shaper to
perform beam shaping when a high pump power was required
to increase SPDC photon production and reduce the data
acquisition time. In this regime, a π shaper and a Fourier
lens ( f = 1000 mm) are used to shape the beam profile. A
π shaper is used to transform a Gaussian into an Airy disk via
the Fourier-Bessel transformation [58,59],

I f (ρ) = I f 0[J0(2πρ)/2πρ]2, (A5)

where J0(2πρ) is the zeroth-order Bessel function of the first
kind and I f 0 is the normalization factor. Such a beam can be
transformed into a flattop beam in the Fourier plane by using a
Fourier lens. The change in the shape of I (ρ) as it propagates
can be determined by the Rayleigh-Sommerfeld diffraction
integral [60]. An exponential-like beam shape would be
created at a location slightly away from the Fourier plane.
Experimentally, we could move the nonlinear crystal along the
beam axis slightly to the location with the desired beam shape.

APPENDIX B: DETAILS OF HIGH-DIMENSIONAL
QUANTUM ENTANGLED STATE TOMOGRAPHY

For a high-dimensional entangled state (MES), the theoret-
ical density matrices can be given as

ρ = |ψ〉MES ⊗ 〈ψ |MES . (B1)

Using this definition, we can calculate the theoretical density
matrix ρ of the MES [52].

Experimentally, with the help of projection measurement,
one can reconstruct the density matrix of a high-dimensional
MES. For an HD-MES defined in d-dimensional space, the
corresponding reconstructed density matrices can be written
as [51]

ρexp = N
d2∑

u,v, j,k=1

(
Ajk

uv

)−1
nuvλ j ⊗ λk, (B2)

where N is the normalized coefficient; Ajk
uv (= 〈�uv| λ j ⊗

λk |�uv〉) is the constant matrix associated with the funda-
mental matrix λ j,k and measurement basis |�uv〉, in which
λ j,k can be generated by SU(d) algebra; |�u,v〉 = |�u〉A |�v〉†

B
represents the measurement basis in the signal (A) and idler
photons (B); (Ajk

uv )−1 are the corresponding inverted matrices;
and nuv = N tr(�A,Bρexp) represents the coincidence counts
measured by electronic systems [52]. In order to experimen-

tally reconstruct the density matrix of HD-MES, three steps
should be performed as follows.

1. Ensure the details of the projection measurement basis

The first step is to ensure the details of the projection
measurement basis. The constant matrix Ajk

uv is associated
with the measurement basis |�uv〉. One can set the mea-
surement basis to a complete group of mutually unbiased
bases (MUBs) {|� j

m〉}, which can be generated using the Weyl
group, Hadamard matrix, or Fourier-Gauss transform method
[61]. Here, we used the discrete Fourier-Gauss transform to
product MUBs in prime dimensional space [62],

{∣∣� j

m

〉} =
{

1√
d

d−1∑
n=0

ω
( jn2+nm)
d |n〉

}
, (B3)

where j ( j = 0 . . . d − 1) indexes the group of MUBs, m
(m = 0 . . . d − 1) indexes the superposed OAM states for

each set of MUBs, and |〈� j
m|� j′

m′ 〉|2 = 1/d (1 − δ j j′ ) for the
MUBs. In actuality, j runs from 0 to d , with the last set of
MUBs being the OAM eigenstates.

2. Obtain a series of coincidence photon counts

After setting the details of the MUBs, one next performs
projection measurement to get coincidence photon counts
nuv under these MUBs, called OAM superposition states.
Experimentally, we employ amplitude-encoding technology
to generate high-fidelity OAM MUBs [63,64].

3. Calculate the experimental density matrix

Finally, based on Eq. (B2), we calculate the density matrix
ρexp, and thus get the fidelity and entropy. It should be noted
that the reconstructed density matrix may not be a ‘physical’
density matrix, i.e., it has the property of positive semidefi-
niteness [65]. To overcome this disadvantage, the maximum
likelihood estimation method is used during the process of
reconstructions. We build the likelihood function,

L(t1, t2, . . . , td4 ) =
d4∑
j=1

[N (〈� j | ρexp |�〉 j − n j]2

2N (〈� j | ρexp |�〉 j
, (B4)

where ρexp should be preliminary defined as a physical density
matrix [65].
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