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In this work, we consider a probability representation of quantum dynamics for finite-dimensional quantum
systems with the use of pseudostochastic maps acting on true probability distributions. These probability
distributions are obtained via symmetric informationally complete positive operator-valued measure (SIC-
POVM) and can be directly accessible in an experiment. We provide SIC-POVM probability representations
both for unitary evolution of the density matrix governed by the von Neumann equation and dissipative evolution
governed by Markovian master equation. In particular, we discuss whereas the quantum dynamics can simulated
via classical random processes in terms of the conditions for the master equation generator in the SIC-POVM
probability representation. We construct practical measures of nonclassicality non-Markovianity of quantum
processes and apply them for studying experimental realization of quantum circuits realized with the IBM cloud
quantum processor.

DOI: 10.1103/PhysRevA.101.052320

I. INTRODUCTION

Quantum technologies require an efficient toolbox for syn-
thesis, control, and characterization of the quantum states and
processes [1]. The task of characterizing quantum states has
quite a rich history of attempts to describe quantum systems
with the use of standard methods of statistical physics, such as
phase-space probability distributions [2–5]. A quantum ana-
log of classical phase-space probability distributions, known
as the Wigner function, cannot be fully interpreted as a prob-
ability distribution because it takes negative values in some
cases [2,6,7]. The negativity of the Wigner quasiprobability
distribution plays an important role in the modern quantum
theory since this effect is a signature of the highly nonclassical
character of a quantum state. In particular, it was demonstrated
that negativity and contextuality are equivalent notions of
nonclassicality [8]. The negativity of the Wigner function has
been largely studied for quantum information processing both
for systems with continuous [6] and discrete variables [9–14].
Recent progress in quantum information science has helped
us to understand the role of properties of quasiprobability
distribution in the context of verifying quantum resources that
provide quantum speedup [15–21].

An approach to the description of quantum phenomena
using the language of probability distributions [22–25] has
been extended by the concept of informationally complete
POVMs (IC-POVMs) and SIC-POVMs that are based on
measurements completely describing quantum states [26–28].
In this framework, quantum states are associated with prob-
abilities related to a specific set of vectors in the Hilbert
space, which is composed of so-called SIC projectors. It is

important to point out that in the SIC approach, the probability
distributions describing quantum states contain no redundant
information; i.e., the number of probabilities is the minimum
possible for reconstructing all density-matrix elements. We
note that analytic proofs of SIC existence have only been
found in a number of cases [29]. The approach of describing
quantum states with SIC-POVM probability distributions has
been widely explored in quantum Bayesianism (QBism) re-
formulation of quantum mechanics [30,31]. SIC-POVM mea-
surements also has been actively used in various experiments
[32–37]. Importantly, it turns out that the set of possible prob-
ability distributions obtained with SIC-POVM measurements
is smaller than the full probability distributions set of the same
dimension. This “quantum” part of a classical probability sim-
plex, which is achievable via SIC-POVM measurements, is
referred to as a “qplex” [38]. An important result of Ref. [38]
is the derivation of the properties of qplexes from the very
fundamental assumptions about quantum theory as well as
the description of a link between the symmetry properties of
qplexes and a condition for the existence of a d-dimensional
SIC-POVM.

The representation of quantum states with the use of
quasiprobability distributions can be further generalized to the
representation of quantum processes (channels) with the use
of quasistochastic matrices [39–42]. In contrast to tradition-
ally used stochastic matrices, which describe the evolution
of classical probability distributions, quasistochastic matrices
can posses negative elements. In Ref. [40], a functorial em-
bedding of the quantum channels category into the category
of quasistochastic matrices has been provided. Thus, the for-
malism of quasistochastic matrices can serve as an alternative
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FIG. 1. General relation among the set of SIC-POVM probability
distributions, general classical probability distributions of the same
dimension, and maps which keep distributions in a particular set. The
set of SIC-POVM probability distributions, so-called Hilbert qplex
[38], is smaller than the full probability distribution set, while the set
of possible maps turning SIC-POVM probabilities into SIC-POVM
probabilities (known to be a pseudostochastic) is wider than the set
of classical stochastic maps. Points and arrows demonstrate actions
of pseudostochastic (stochastic) maps on SIC-POVM (classical)
probability distributions.

formulation of the quantum theory and looks promising in
the framework of quantum resources analysis. This appara-
tus, however, has not been consistently applied to quantum
information processing tasks yet.

In this work, we focus on the dynamics of probability
distributions obtained in SIC-POVM measurements. In line
with Refs. [41,42], we refer to the resulting matrices (maps),
which define the evolution of SIC-POVM probability distri-
butions as pseudostochastic rather than quasistochastic. This
is because these matrices correspond to the evolution of true
experimentally accessible probabilities rather then quasiprob-
abilities. As was mentioned, pseudostochastic matrices are an
analog of conditional probability matrices without restrictions
of positivity for matrix elements (see Fig. 1). In fact, pseudos-
tochastic matrices appear in the discussion of unitary evolu-
tion of quantum states described by qplexes (see Appendix B
of Ref. [38]) and are discussed in detail in Ref. [40]. How-
ever, a connection between pseudo(quasi)stochastic matrices
and common equations used for describing quantum system
dynamics, to the best of our knowledge, is not considered in
the literature. It is then important to investigate how pseudos-
tochastic matrices appear as solutions of quantum dynamical
equation, and we address this question in this work. More
precisely, we derive a dynamics equation for a SIC-POVM
probability vector, which corresponds to the von Neumann
equation and dissipative evolution governed by Markovian
master equation. Next we consider a general scheme of
quantum mechanical experiments and demonstrate that the
developed SIC-POVM representation shines additional light
on nonclassical features of quantum process. We consider
necessary and sufficient conditions for the time-independent
Markovian generator to produce classical-like quantum evo-
lution. These conditions allow us to construct practical mea-
sure for nonclassicality of quantum processes. We show that
the considered SIC-POVM probability representation also al-
lows introducing new practical measure of non-Markovianity,
which has been actively studied in recent decades [43–54].
Finally, we apply our theoretical results to experimental study

of processes realized on the superconducting quantum cloud
IBM QX4 quantum processor [55].

Our work is organized as follows. In Sec. II, we present a
general scheme for the SIC-POVM probability representation
of states and measurements. In Sec. III, we derive an equation
for a SIC-POVM probability vector which corresponds to the
von Neumann equation and the Markovian master equation. In
Sec. IV, we study a relation between pseudostochasticity and
nonclassicality and construct practical measures of nonclassi-
cality and non-Markovianity of quantum processes. In Sec. V,
we apply our theoretical result to experimental study of the
IBM Q4 superconducting quantum processor. We summarize
main results and conclude in Sec. VI.

II. PROBABILITY REPRESENTATION OF STATES,
MEASUREMENTS, AND LINEAR MAPS

We start our consideration by introducing SIC-POVM ef-
fects, which can be used in the construction of probability rep-
resentation of states and measurements for finite-dimensional
systems. Consider a d-dimensional Hilbert space H with d �
2. In what follows, we assume that it is possible to find out a
set of d2 normalized states {|ψi〉}d2

i=1 belonging to H such that

|〈ψi|ψ j〉|2 = Tr(�i� j ) = dδi, j + 1

d + 1
, (1)

where �i := |ψi〉〈ψi| and δi, j stands for the Kronecker sym-
bol. We note that the set {�i}d2

i=1 forms a basis in the space
L(H) of linear operators acting on H.

The set {�i/d}d2

i=1 is called a SIC-POVM. By its definition,
we have 1

d �i � 0 and
∑

i �i = 1d , where 1 denotes identity
operator. At this moment, SIC-POVMs are found for d = 2–
151, 168, 172, 195, 199, 228, 259, 323, and 844. The obtained
solutions are available online [56] (for a review, see also
Ref. [29] and reference therein). We also note that numerical
methods are heavily involved for SIC-POVM search [57,58].

A. Representation of states

Let us consider a quantum state given by a unit-trace semi-
positive Hermitian density operator ρ ∈ L(H) (ρ � 0, Trρ =
1). The probability of obtaining an ith outcome corresponding
to the effect �i/d after SIC-POVM measurement is given by

pi = 1

d
Tr(ρ�i ). (2)

Let us write these probabilities in the form of vector p :=
[p1 . . . pd2 ]T, which we further refer to as a SIC-POVM
probability vector.

The density matrix ρ can be reconstructed back from the
SIC-POVM probability vector in the following way:

ρ =
d2∑

i=1

[
(d + 1)pi − 1

d

]
�i

=
d2∑

i=1

[(d + 1)�i − 1]pi =
∑

i

Ki pi, (3)

where Ki = (d + 1)�i − 1.

052320-2



PROBABILITY REPRESENTATION OF QUANTUM … PHYSICAL REVIEW A 101, 052320 (2020)

We mention the following useful property of Ki:

Tr(Ki�i ) = (d + 1)Tr(�i� j ) − Tr(� j ) = dδi, j . (4)

It is also useful to introduce a vectorized representation
of linear operators. Let {|i〉} be an orthonormal basis in
H and A ∈ L(H) is some linear operator. We can write
A = ∑

i, j Ai, j |i〉〈 j|, where Ai, j = 〈i|A| j〉 are matrix elements
of A in the {|i〉} representation. Next, we refer to |A〉〉 :=∑

i, j Ai, j |i〉 ⊗ | j〉 ∈ H ⊗ H, as the “ket” vector representation
of A. In a similar way, we can introduce an adjoint vector
〈〈A| := ∑

i, j A∗
i, j〈i| ⊗ 〈 j| ∈ H∗ ⊗ H∗. It is easy to check that

for any two operators A, B ∈ L(H), their Hilbert-Schmidt
product takes the form Tr(A†B) = 〈〈A||B〉〉.

Let A, B,U,V ∈ L(H). It is also easy to check that the
identity B = UAV † corresponds to the following identities in
the vector representation:

|B〉〉 = U ⊗ V ∗|A〉〉, 〈〈B| = 〈〈A|U † ⊗ V T. (5)

Using the introduced vectorized representation, one can
rewrite Eq. (3) in the following form:

|ρ〉〉 =
d2∑

i=1

|Ki〉〉pi = Kp, (6)

where

K = [|K1〉〉 . . .
∣∣Kd2

〉]
= (d + 1)

[|�1〉〉 . . .
∣∣�d2

〉〉]− [|1〉〉 . . . |1〉〉]
(7)

is a d2 × d2 matrix.
Thus, the linear transformation K defines the map from the

SIC-POVM probability vector p to the vectorized represen-
tation of the density matrix ρ. Using Eq. (2), we obtain the
inverse matrix K−1 given by

K−1 = 1

d

[〈〈�1| . . . 〈〈�d2 |]T
. (8)

We also note the following correspondence between the
Hilbert-Schmidt product of states and dot product of SIC-
POVM probability vectors. Let ρ and σ be two arbitrary
density matrices, and p and s be their corresponding SIC-
POVM probability vectors. One can check that

Tr(ρσ ) = 〈〈ρ||σ 〉〉 = d (d + 1)〈p, s〉 − 1, (9)

where 〈p, s〉 = ∑d2

i=1 pisi is a standard dot product of two
SIC-POVM probability vectors. Since Tr(ρσ ) ∈ [0, 1], we
also have

1

d (d + 1)
� 〈p, s〉 � 2

d (d + 1)
, (10)

where the minimum is achieved for two orthogonal states ρ

and σ , while the maximum is achieved for s = p and a pure
state ρ = σ = |ψ〉〈ψ |.

As was already mentioned in the introduction, the set of
possible SIC-POVM probability vectors is smaller than the
full set of all possible d2-dimensional probability vectors.
This fact can be easily verified by noticing that the maximum
probability in the SIC-POVM probability vector cannot ex-
ceed the value d−1 due to the structure of SIC-POVM effects.

We refer readers to Ref. [38], where properties of the SIC-
POVM probability vectors set (qplex) are studied in detail.

In Appendix A, we provide a relation between the consid-
ered SIC-POVM probability representation and an alternative
probability representation based on mutually unbiased mea-
surements (MUB) in the case of d = 2.

B. Representation of measurements

Let us now consider a question how the SIC-POVM prob-
ability vectors determine the probabilities for arbitrary mea-
surements. Consider a POVM E = {E1, . . . , Em} with Ei � 0
and

∑
i Ei = 1. Let us introduce an m-dimensional vector

q := [q1 . . . qm]T with elements given by probabilities of
obtaining different outcomes in measuring E for some state ρ:
qi = Tr(Eiρ).

The relation between the SIC-POVM probability vector p
(corresponding to ρ) and a new probability vector q for an
arbitrary measurement can be obtained using Eq. (3):

q = Mp, (11)

where

M = (d + 1)m −

⎡⎢⎣TrE1
...

TrEm

⎤⎥⎦(1 . . . 1
)︸ ︷︷ ︸

d2 elements

(12)

is m × d2 matrix with elements given by mi, j = Tr(Ei� j ).
The matrix m is a stochastic rectangular matrix, that is,
it satisfies the following properties: mi, j � 0,

∑
i mi, j =

Tr(
∑

i Ei� j ) = 1. We note that m appears to be bistochastic;
that is, its rows also sum up to 1, in the case where m = d2 and
TrEi = d−1 for any i ∈ {1, . . . , d2}. It may be the case when
{Ei} is also a SIC-POVM.

It easy to check from Eq. (12) that the matrix M is
pseudostochastic, that is, the sum of its elements in each col-
umn equals to unity:

∑
i Mi, j = (d + 1) − Tr1 = 1; however,

some elements Mi, j may be negative. It may be the case when
Ei is proportional to the projector on the state orthogonal to
some |ψ j〉. Then we obtain Mi, j = −TrEj < 0.

C. Representation of linear maps as pseudostochastic matrices

Here we consider a representation of positive trace-
preserving (PTP) and completely positive trace-preserving
(CPTP) maps acting on quantum states in the SIC-POVM
framework.

First, consider a PTP linear map � : L(Hin ) → L(Hout ),
where Hin and Hout are din- and dout-dimensional Hilbert
spaces, respectively.

Being a PTP map � transforms density operators in Hin

into density operators in Hout, so we can consider an action
of � on some input state ρ in resulting in output state ρout =
�[ρ in]. Let {�in

i }d2
in

i=1 and {�out
i }d2

out
i=1 be SIC-POVM projectors

in Hin and Hout, respectively. Let pin and pout be SIC-POVM
probability vectors corresponding to ρ in and ρout. Simple
algebra leads to pout = Spin, where

Si, j = (din + 1)si, j − 1

dout
Tr
[
�out

i �(1in )
]
, (13)
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TABLE I. Correspondence between standard and SIC-POVM probability representations.

Standard representation Probability representation for SIC-POVM {�i/d}d2

i=1

d-dimensional quantum state ρ – d × d Hermitian unit-trace
semipositive complex matrix

p = [p1 . . . pd2 ]
T

is the real probability vector with
non-negative elements

Trρ = 1, ρ � 0.
∑d2

i=1 pi = 1, pi � 0.

Measurement results
probabilities for a POVM {Ei}

qi = Tr(ρEi ) q = Mp, where M = (d + 1)m − E, Ei, j = TrEi,
mi, j = Tr(Ei� j ) (M is pseudostochastic matrix).

Evolution equation defined by a
Hamiltonian H

iρ̇ = [H, ρ] (H is Hermitian) ṗ = Hp, where Hi, j = (d + 1)d−1Tr(H [� j, �i]) (H
is real antisymmetric).

Solution of the evolution
equation

ρ = U (t )ρ inU †(t ), where
U (t ) = T {exp (−i

∫ t
t ′=0 H (t ′)dt ′)}, (U (t )

is unitary).

p = U(t )pin, where U(t ) = T {exp (
∫ t

t ′=0 H(t ′)dt ′)}
(U(t ) is unitary and pseudobistochastic).

Markovian master equation
governed by the GKSL
generator

ρ̇ = −i[H, ρ] +
+∑k (VkρV †

k − 1
2 [V †

k Vkρ + ρV †
k Vk])

ṗ = Lp, where L = K−1�K,
� = −i(C ⊗ 1 − 1 ⊗ C∗) +∑

k Vk ⊗ V ∗
k ,

C = H − i
2

∑
k V †

k Vk .

Quantum channel defined by
Kraus operators {Ai}

ρout = ∑
i Aiρ

inA†
i pout = Spin, where

S = (din + 1)s − d−1
out Tr[�out

i

∑
k AkA†

k ],
si, j = d−1

out

∑
k Tr(Ak�

in
i A†

k �
out
j ) (S is

pseudostochastic).

si, j = 1

dout
Tr
[
�out

i �(�in
j )
]
, (14)

and 1in is the identity operator acting in Hin. One can see
that s is a stochastic matrix:

∑
i si, j = 1, si, j � 0, while Si, j

is pseudostochastic one:
∑

i Si, j = 1 with some elements may
be negative.

If � is also unital, that is, �(1in ) = 1out, then s is bis-
tochastic and Eq. (13) reduces to Si, j = (din + 1)si, j − dout

−1.
The examples of PTP maps for the qubit case (d = 2) are
presented in Appendix B.

Let now � be a CPTP map that is representing a quantum
channel. Any such map gives rise to a Kraus representation

ρout = �[ρ in] =
∑

k

Akρ
inA†

k ,
∑

k

A†
k Ak = 1in. (15)

In this case, Eq. (13) may be rewritten as follows:

Si, j = (din + 1)si, j − 1

dout
Tr

[
�out

i

∑
k

AkA†
k

]
, (16)

where si, j = d−1
out

∑
k Tr[Ak�

in
i A†

k�
out
j ]. Again, s is a stochas-

tic matrix, while S is pseudostochastic.
Let us observe that we can define S in another way. Let us

rewrite Eq. (15) in the vectorized form:

|ρout〉〉 =
∑

k

Ak ⊗ A∗
k |ρin〉〉 = A|ρin〉〉, (17)

where A = ∑
k Ak ⊗ A∗

k . Consequently, we obtain Kout pout =
AKin pin, where Kout and Kin are defined via Eq. (7), which is
related to the corresponding SIC-POVM elements. Finally, we
have the following expression for the pseudostochastic matrix
S: S = K−1

outAKin.
We can also define � using the Choi state

ρ� = 1

din

∑
i, j

|i〉〈 j| ⊗ �[|i〉〈 j|]. (18)

The vectorized version of the Choi state then reads R =
1

din

∑
i, j |�[|i〉〈 j|]〉〉〈i| ⊗ 〈 j|. In this form, the output state can

be calculated in the following way: |ρout〉〉 = dinR|ρin〉〉. By
comparing this result with Eq. (17), we obtain

R = 1

din
A� = 1

din
KoutSK−1

in (19)

and S = dinK−1
outRKin.

It is important to note that � is CPTP map if and only
if ρ� � 0 and TrHinρ� = 1/din. These requirements allow
one to check whether a given pseudostochastic matrix S
corresponds to any CPTP map.

III. DYNAMICS OF SIC-POVM PROBABILITY VECTORS

Here we study the dynamics of the SIC-POVM probability
vector p. For this purpose, we analyze (i) the representation
for dynamical equation for p corresponding to the unitary
evolution of the density matrix governed by the von Neumann
equation, (ii) the representation for unitary operators as the
solution of dynamical equations, and (iii) the representation
for dissipative evolution for p corresponding to Markovian
master equation. We place the summary of results of each
following subsection in Table I.

A. Stochastic representation of the von Neumann equation

Consider a standard von Neumann evolution equation

ih̄ρ̇ = [H, ρ], (20)

where [·, ·] stands for commutator, i2 = −1, ρ̇ is the time
derivative of the state ρ, H = H† is the system Hamiltonian,
and h̄ is the Plank constant. In the general case, the Hamil-
tonian H may depend on time t . In what follows, we use
dimensionless units and set h̄ := 1.

To make a transition from the density matrix ρ to the
corresponding SIC-POVM probability vector p, we multiply
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both sides of Eq. (20) by �i and take the trace. Thus, we
obtain

iTr(ρ̇�i ) = Tr([H, ρ]�i ). (21)

Taking into account Eq. (4), the left-hand side of Eq. (21) can
be rewritten as follows:

iTr(ρ̇�i ) = i
∑

j

Tr(Kj�i ) ṗ j = id ṗi. (22)

The right-hand side of Eq. (21) can be written in the following
way:

Tr([H, ρ]�i ) =
∑

j

Tr([H, ((d + 1)� j − 1)p j]�i )

=
∑

j

p j (d + 1)Tr([H,� j]�i )

=
∑

j

p j (d + 1)Tr(H[� j,�i]). (23)

By combining Eqs. (22) and (23), we obtain

ṗ = Hp, (24)

where H is a d2 × d2 matrix with elements given by Hi, j =
d+1
id Tr(H[� j,�i]). One can see that the elements of H can be

also rewritten as

Hi, j = 2(d + 1)

d
Im[〈ψ j |ψi〉〈ψi|H |ψ j〉], (25)

where Im[·] stands for the imaginary part.
Let us also consider an alternative approach to obtaining

the form of H. We can write the von Neumann equation (20)
in the vectorized form: i|ρ̇〉〉 = (H ⊗ 1 − 1 ⊗ H∗)|ρ〉〉. Then
by taking into account Eq. (6), we have iK ṗ = (H ⊗ 1 − 1 ⊗
H∗)Kp. Comparing this result with Eq. (24), we obtain the
following representation of the Hamiltonian:

H = −iK−1(H ⊗ 1 − 1 ⊗ H∗)K. (26)

The matrix H in the form given by Eq. (25) has a number
of important properties.

(1) H is real and antisymmetric: Hi, j = −H ji.
(2) Diagonal elements and trace of H are zero: Hii = 0,

TrH = 0.
(3) Each row and column of H summing to 0:

∑
i Hi, j =

0,
∑

j Hi, j = 0 (here we employed the fact that
∑

i |ψi〉〈ψi| =
1d).

The number of independent parameters defining the d2 ×
d2 matrix with such properties is equal to NH = (d2 −
1)(d2 − 2)/2. Meanwhile, the physical properties of the
Hamiltonian is defined with NH = d2 − 1 parameters (the
term −1 comes from the fact that the Hamiltonian is defined
up to a term proportional to the identity matrix). One can see
that NH > NH for d > 2, so there should be some additional
constraints on H on the top of the listed properties.

In order to study these constraints, we introduce a set
{σ ( j)}d2−1

j=1 of orthogonal (with respect to the Hilbert-Schmidt
distance) traceless Hermitian matrices in L(H) (e.g., Pauli
matrices for d = 2) and a renormalized identity matrix
σ (d2 ) := √

2/d1 satisfying the relation Tr(σ (i)σ ( j) ) = 2δi, j for
any i, j ∈ {1, . . . , d2}.

Then the Hamiltonian can be written in the form

H =
d2∑

i=1

λiσ
(i), (27)

where λi = Tr(Hσ (i) )/2. We note that all {λi}d2−1
i=0 can take

arbitrary real values.
Substituting representation (27) into Eq. (26), we obtain

H =
d2−1∑
i=0

λi
[− iK−1

(
σ (i) ⊗ 1 − 1 ⊗ σ (i)∗)K]

=
d2−1∑
i=1

λiH(i), (28)

where H(i) = −iK−1(σ (i) ⊗ 1 − 1 ⊗ σ (i)∗)K. We see that the
parameter λ0 does not participate in defining H.

It turns out that the matrices from the set {H(i)}d2

i=1 are
orthogonal to each other:

Tr
(
H(i)H( j)T

) = −Tr
(
H(i)H( j)

)
= Tr

(
σ (i)σ ( j) ⊗ 1 + 1 ⊗ σ (i)∗σ ( j)∗) = 4dδi, j .

(29)

Thus, the set {H(i)} forms a basis of the (d2 − 1)-dimensional
linear subspace of real antisymmetric matrices in the space
of all antisymmetric matrices corresponding to physical pro-
cesses.

We can also introduce a projector PHam on this subspace,
which acts on arbitrary real d2 × d2 matrix H̃ as follows:

Punit (H̃) = 1

4d

d−1∑
i=1

Tr(H(i)T H̃)H(i). (30)

Therefore, a matrix H corresponding to a physical Hamilto-
nian satisfies the relation

Punit (H) = H. (31)

This is an important relation for the representation of the SIC-
POVM probability vector dynamics.

B. Representation of unitary operators

If the matrix H does not depend on t (the Hamiltonian
H does not depend on time t), then the solution of the ba-
sic dynamics equation for the SIC-POVM probability vector
Eq. (24) is as follows:

p(t ) = U(t )pin, U(t ) = exp (Ht ), (32)

where pin is a SIC-POVM probability vector at t = 0.
At the same time, we know that the solution for ρ via

standard evolution operator is given by

ρ(t ) = U (t )ρ inU †(t ), U (t ) = exp (−iHt ), (33)

where ρin is initial density matrix (corresponded to pin). Then
we can obtain

pi(t ) =
∑

j

(
(d + 1)ui, j (t ) − 1

d

)
pin

j , (34)
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where ui, j (t ) = 1
d Tr[U (t )� jU †(t )�i]. It easy to see that u is

a d2 × d2 bistochastic matrix:∑
i

ui, j (t ) =
∑

j

ui, j (t ) = 1, ui, j (t ) � 0. (35)

Finally, we arrive at the following expression:

U(t ) = (d + 1)u(t ) − 1

d
Ĩ, (36)

where Ĩ is the d2 × d2 matrix with all elements equal to unity
(i.e., Ii, j = 1).

We can highlight the following basic properties of the
operator U(t ).

(1) U(t ) is pseudobistochastic:∑
i

Ui, j (t ) =
∑

j

Ui, j (t ) = 1, (37)

and some its elements of may be negative.
(2) U(t ) is orthogonal:

U(t )UT(t ) = UT(t )U(t ) = I, (38)

where I is a d2 × d2 identity matrix.
We note that according to these two properties an action of

U(t ) preserves both l1 and l2 norms.
Finally, the generalization on time-dependent Hamiltoni-

ans can be provided in a straightforward way. In this case of
t > 0, the evolution operator is given by

U(t ) = T

{
exp

(∫ t

t ′=0
H(t ′)dt ′

)}
, (39)

where T is the standard time-ordering operator. It is easy to
see that the mentioned properties for U(t ) remain true in this
case.

We present an example for the construction of H and U(t )
in Appendix C.

C. Stochastic representation of dissipative evolution

Consider now the Markovian master equation

ρ̇ = L(ρ), (40)

which is governed by the Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) generator [59,60] of the following form:

L(ρ) = −i[H, ρ] +
∑

k

(
VkρV †

k − 1

2
[V †

k Vkρ + ρV †
k Vk]

)
,

(41)
where H is Hamiltonian and Vk are so-called noise operators.
By fixing an orthonormal basis |i〉 in H, one defines the
following matrix

Ki, j := Tr[PiL(Pj )], (42)

where Pi = |i〉〈i|. The matrix Ki, j defines a Kolmogorov
generator [61] as follows: Ki, j � 0, i 
= j, and

∑
i Ki, j = 0,

j = 1, . . . , d . Let us then define the stochastic representation
of Eq. (40) using SIC-POMV. Equation (40) gives rise to the
following equation for the probability vector p:

ṗ = Lp, (43)

where the d2 × d2 matrix L is defined as follows:

Li, j := (d + 1)
1

d
Tr[�iL(� j )] − 1

d
Tr[�iL(1)]. (44)

The matrix Li, j satisfies the condition
∑d2

i=1 Li, j = 0, j =
1, . . . , d2; however, condition Li, j � 0 for i 
= j needs not be
satisfied. We may call Li, j a pseudo-Kolmogorov generator.

Finally, defining the vectorization of L

� := −i(C ⊗ 1 − 1 ⊗ C∗) +
∑

k

Vk ⊗ V ∗
k , (45)

with C = H − i
2

∑
k V †

k Vk , one finds the following represen-
tation for the pseudo-Kolmogorov generator: L = K−1�K.

The solution of the master equation (43) takes the form

p(t ) = S(t )pin, (46)

where the pseudostochastic matrix S is given by S(t ) =
exp(Lt ) for time-independent generator L and

S(t ) = T

{
exp

(∫ t

t ′=0
L(t ′)dt ′

)}
, (47)

if there is time dependence in the generator.
Finally, we introduce a projector on the set of real matrices

corresponded to time-independent Markovian noise genera-
tors in Eq. (43). For this purpose, we represent the generator
L in the form L = H + D, where the first term H is a
Hamiltonian part, defined by Eq. (26), and D is a remaining
part corresponding to the Markovian noise. Next, we refer to
H and D as unitary evolution generator and Markovian noise
generators correspondingly.

Consider a decomposition of the noise operators in the
form Vk = ∑d2

i=1 v
(i)
k , where v

(i)
k are arbitrary complex num-

bers. Then the operator D takes the form

D =
∑
i, j


i, j

∑
k

v
(i)
k v

( j)∗
k , (48)

where


i, j = K−1

(
σ (i) ⊗ σ ( j)∗ − 1

2
σ ( j)σ (i) ⊗ 1

−1

2
1 ⊗ σ (i)∗σ ( j)∗

)
K. (49)

Noticing that
∑

k v
(i)
k v

( j)∗
k can be considered as (i, j)th el-

ement of some semipositive matrix v, we can introduce a
complex matrix V such that

[VV†]i, j = vi, j =
∑

k

v
(i)
k v

( j)∗
k (50)

(hereafter, [a]i, j stands for a (i, j)th matrix element of a matrix
a). Although the dimensionality of V can be reduced down
to d2 × rank(v), we prefer to treat V as d2 × d2 matrix with
possibly zero columns.

Using the matrix V as a parametrization of the Markovian
noise generator D, we define a function

D(V) :=
∑
i, j

[VV†]i, j
i, j . (51)
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FIG. 2. Scheme of a quantum-mechanical experiment.

It allows us to introduce a function (projector) which outputs
a matrix of physical time-independent Markovian generator
which is closest, in terms of the Frobenius norm, to given d2 ×
d2 matrix D̃:

PMark(D̃) := D

(
arg min
V∈Md2

Tr[(D(V) − D̃)2]

)
, (52)

where Md2 is set of complex d2 × d2 matrices. We note that it
is practical to consider V in the form V = Vre + iVim, where
Vre and Vim are real matrices, and perform an optimization
over two spaces of real matrices.

So the necessary and sufficient condition for a generator L
to correspond to time-independent Markovian evolution is to
satisfy a relation

Punit (L) + PMark(L − Punit (L)) = L (53)

which is a generalization of the condition (31).

IV. RELATION BETWEEN PSEUDOSTOCHASTICITY AND
NONCLASSICALITY

Here we apply the developed SIC-POVM probability rep-
resentation to study nonclassical features of quantum system
dynamics. We consider a general scheme of a quantum-
mechanical experiment (see Fig. 2), which has three parts:
(i) preparation of a quantum state controlled by a random
classical input X taking values from some finite set X ; (ii)
evaluation of this stated under the sequence of quantum
channels; and (iii) measurement of the resulting state, which
provides a (generally random) outcome Y from some finite
set Y . Let us consider these steps in more detail and in the
framework of the pseudostochastic representation. We assume
that it is possible to construct SIC-POVMs for all involved
dimensions of quantum systems.

Let the input X have a probability distribution pX (x) (x ∈
X ). We can also introduce a corresponding probability vector
pX with |X | components given by values pX (x). Let for every
x ∈ X the prepared state in the case X = x is described by
a din × din density matrix ρx. Then the preparation of the
quantum state can be described with d2

in × |X | stochastic
matrix G, each of whose columns is a SIC-POVM vector pin,x

corresponded to the state ρx. By multiplying G on the vector
pX we obtain a SIC-POVM vector pin = ∑

x∈X pX (x)pin,x,
which corresponds to a prepared state

∑
x∈X pX (x)ρx. So

one can see that every quantum state preparation process can
be considered as a classical probabilistic process. However,
the opposite statement is not true. Each of columns of G
strictly belongs to d2

in-dimensional qplex, so the set of possible
stochastic matrices corresponded to quantum state preparation

is strictly inside the set of all possible d2
in × |X | stochastic

matrices.
We then consider an evolution of the prepared state during

actions of quantum channels. As discussed above, the action
of each channel can be described by a multiplication on a
pseudostochastic matrix on an input SIC-POVM probability
vector. Therefore, the total action of the channels on the
quantum states is given by a product of pseudostochastic
matrices, which is also pseudostochastic. Let the output state
be described with the dout × dout density matrix. Then the
action of quantum channels is given by the corresponding
d2

out × d2
in pseudostochastic matrix S and the resulting state is

given by a SIC-POVM probability vector pout = Spin.
Finally, we consider a measurement process whose output

is described by a discrete random variable Y taking values
from a finite set Y . Let M be a pseudostochastic matrix of
the measurement under consideration. Then Y-dimensional
probability vector pY of the random variable Y can be ob-
tained as pY = Mpin = QpX , where Q = MSG is a |Y| × |X |
stochastic matrix. It is easy to see that by varying M, S, and
G it is possible to construct any desired stochastic matrix Q.

From this analysis, one can note that the nonclassicality
of the considered process is related to negative conditional
probabilities of pseudostochastic maps, which correspond to
quantum channels and quantum measurement. Otherwise, if
all matrices, which are involved in our consideration, are
stochastic, then we can conclude that the whole process
appears to be classical-like stochastic process. In this case, ob-
taining of measurement results in the real quantum experiment
can be simulated by a classical sampling technique: One can
first sample a classical random variable x from the distribution
pX , then sample a random variable from the distribution pin,x,
next sample a random variable from the certain column of the
stochastic matrix corresponding to the first channel, and so
on, until the final measurement. We note that this technique
turns out to be invalid in the case of pseudostochastic matrices
with negative elements due to the necessity of sampling
from distributions with negative elements. Below we consider
formulate necessary and sufficient for obtaining nonclassical
behavior of the resulting process. We would like to note an
alternative consideration of nonclassical features of quantum
system dynamics in the context of SIC-POVM is presented in
Ref. [62].

A. Characterizing nonclassicality of time-independent
Markovian dynamics

Here we consider a time-independent Markovian dynamics
governed by Eq. (43), where L is time independent and
satisfies relation (53). We raise the question about whether the
resulting evolution demonstrates nonclassical features related
to negative elements in the pseudostochastic matrix S(t ) = eLt

or it is classical-like. The results are as follows.
Theorem 1. Consider a time-independent Markovian mas-

ter equation governed by the generator L given in the SIC-
POVM probability representation. The resulting map S(t ) =
eLt is stochastic for any t > 0 if and only if all nondiagonal
elements of L are non-negative: Li, j � 0 for any i 
= j.

Proof. First, we prove that if all nondiagonal elements of L
are non-negative then S(t ) is stochastic. In order to do so, we
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represent S(t ) for some fixed t in the form

eLt = lim
n→+∞

(
I + L

t

n

)n

. (54)

Let l̃ := maxi |Li,i|. Since Li, j � 0 for i 
= j, all elements
of the matrix I + L t

n are non-negative for n � �̃lt. So the
expansion (54) is product of matrices, whose elements are
non-negative, and therefore the resulting matrix also consists
of non-negative elements only.

Then, we prove that because S(t ) is stochastic for all t >

0, then all nondiagonal elements of L are non-negative. We
prove this statement by contraposition. Let Li∗, j∗ < 0 for some
i∗, j∗. Consider small values of t , and an expansion of S(t ) in
the form

S(t ) = 1 + Lt + �L(t ), �L(t )i, j ∈ O(t2). (55)

Since �L(t )i∗ j∗ is of the second order of smallness, it is possi-
ble to find small enough t > 0 such that Li∗ j∗t + �L(t )i∗ j∗ <

0 and thus Si∗ j∗ (t ) < 0. �
The above theorem has an important corollary regarding to

noiseless unitary processes with L = Punit (L) = H.
Corollary 1. Any nonzero unitary evolution generator H 
=

0, given in the SIC-POVM probability representation, spawns
a pseudostochastic matrix S(t ) = eHt with at least one nega-
tive element for some t > 0.

Proof. The statement directly follows from facts that Hi, j =
−H ji and H is nonzero matrix. �

Thus, as one may expect, the necessary condition for
quantum evolution to become classical-like is the presence of
decoherence processes, which appear, e.g., due to Markovian
noise. We also note that for some values of t > 0 the resulting
evolution matrix S(t ) = eHt can be stochastic; e.g., in the case
of two-level system of Rabi oscillations S(t ) is stochastic and
equals the identity matrix for t = nT , where n is a positive
integer and T is a period of oscillations. However, between
these discrete moments S(t ) appears to be pseudostochastic
with negative elements.

The result of Theorem IV A allows us to construct a
measure of nonclassicality of time-independent Markovian
dynamics determined by a generator L. Let

N (L̃) = max
i 
= j

(max(0,−L̃i, j )) (56)

be a magnitude of the smallest negative nondiagonal element
of some matrix L̃. In line with the results of Theorem IV A,
N (L) seems to be suitable for the characterization of the
nonclassicality of L. However, it is not invariant under change
of the basis of the underlying d-dimensional Hilbert space
determined by applying sone unitary operator U to compu-
tational basis vectors. It is easy to see that a transformation
|ψi〉 → U |ψi〉 of basic SIC-POVM vectors {|ψi〉}d2

i=1 yields a
transformation L → ULUT, where U is a pseudostochastic
representation of U . Consequently, we can introduce the
measure of nonclassicality δquant (L) for given generator L in
the following form:

δquant (L) := max
U∈U

N (ULUT), (57)

where the set U of all possible pseudostochastic matrices
corresponding to unitary operators is given by

U =
⎧⎨⎩exp H : H =

d2∑
i=1

λiH(i), λi ∈ R

⎫⎬⎭. (58)

B. Measuring non-Markovianity of the dynamics

In the above consideration, we stressed on a particular
case of time-independent Markovian generator and discussed
its nonclassicality. Here we introduce an additional quantity,
which indicates how accurately the considered Markovian
type of dynamics can describe the observed dynamics, which
is given by a pseudostochastic matrix S. In other words,
we are considering a measure non-Markovianity of quantum
processes. We note that our approach in general is similar to
the one proposed in Ref. [43].

Consider a projection of S on a set of pseudostochastic
matrices corresponding to Markovian evolution with time-
independent generators:

SMark := exp [Punit (L) + PMark(L − Punit (L))], (59)

where L := ln S. We can define the non-Markovianity mea-
sure δnMark (S) as

δnMark(S) := 1

d2

√
D(S, SMark ), (60)

where D(S1, S2) = Tr[(S1 − S2)2] is the Hilbert-Schmidt dis-
tance between matrices S1 and S2. The values of δnMark (S)
have a clear physical meaning: They show an average dif-
ference between elements of S and corresponding Marko-
vian projection SMark. We note that all elements Si, j can
be measured experimentally with some absolute accuracy δ.
So in order to conclude with confidence that S exhibit non-
Markovianity, one should have δnMark(S) larger than δ.

V. EXPERIMENTAL STUDY OF SUPERCONDUCTING
CIRCUITS

In this section, we apply the SIC-POVM probability rep-
resentation to experimental study of quantum processes re-
alizing during implementation of quantum gates of the IBM
QX4 cloud-based superconducting quantum processor [55].
We consider a qubit dynamics determined by implementation
of single-qubit gate, followed by a SIC-POVM measurement.
The SIC-POVM measurement is realized using an additional
qubit in the pure state

|φ〉〈φ| = 1

2

[
1 + 1/

√
3 1/

√
3 − i/

√
3

1/
√

3 + i/
√

3 1 − 1/
√

3

]
, (61)

applying controlled-NOT (CNOT) gate followed by the
Hadamard gate, and performing standard projective mea-
surements in the computational basis on both qubits [see
Fig. 3(a)]. We note that alternative ways of performing SIC-
POVM measurements can also be used [63]. Let ab be a
classical two-bit string produced at each launch of the con-
sidered measurement scheme. It is easy to check that there is
one-to-one correspondence between possible outcomes ab =
00, 01, 10, 11 and SIC-POVM effects �1/2, �2/2, �3/2, and
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Hϕ

SIC-POVM measurement

a

b
U

Sdec
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(b)

Quantum
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Quantum state
preparation

SUG

ψin,i

a,b

FIG. 3. The experimental setup. For the tomography of the SIC-
POVM measurement operation, applying U (SU ) is skipped. In
panel (a), standard representation as a circuit is presented (standard
notations for CNOT and Hadamard gates are used). In panel (b),
SIC-POVM probability representation is shown.

�4/2 defined by projectors

�1 = |ψ1〉〈ψ1| = 1

2

[
σ (4) + 1√

3

(
σ (1) − σ (2) + σ (3)

)]
,

�2 = |ψ2〉〈ψ2| = 1

2

[
σ (4) + 1√

3

(
σ (1) + σ (2) − σ (3)

)]
,

�3 = |ψ3〉〈ψ3| = 1

2

[
σ (4) + 1√

3

(− σ (1) + σ (2) + σ (3))],
�4 = |ψ4〉〈ψ4| = 1

2

[
σ (4) + 1√

3

(− σ (1) − σ (2) − σ (3)
)]
(62)

(here σ (1), σ (2), and σ (3) stand for standard x, y, and z Pauli
matrices respectively and σ (4) is a 2 × 2 identity matrix).
Bloch vectors of SIC-POVM projectors and the state |φ〉〈φ|
are shown in Fig. 4.

Our experiment is designed as the tomographic reconstruc-
tion of the quantum channel related to the implementation of

y

z

x

|ψ1〉
|ψ3〉

|ψ4〉

|ψ2〉

|φ〉

FIG. 4. The Bloch vectors corresponded to SIC-POVM projec-
tors {|ψi〉〈|ψi〉|}4

i=1 and the state |φ〉〈φ|.

a single-qubit gate of the following form:

U =
[

1 0

0 i

]
, (63)

also known as the S gate. In order to perform the tomography
protocol, we apply U to a set of four input states {|ψi〉}4

i=1—
the same which were used for SIC-POVM construction—and
then measure resulting states with the designed SIC-POVM
measurement.

The corresponding scheme of the experiment in the SIC-
POVM probability representation is presented in Fig. 3(b).
The quantum state preparation is presented by stochastic
matrix G = [pin,1 pin,2 pin,3 pin,4], where each pin,i is
a SIC-POVM probability vector, corresponding to the state
|ψi〉〈ψi|, with elements

pin,i
j = Tr(�i� j )/2 = (2δi, j + 1)/6. (64)

We note that for a particular known value of i the probability
distribution is given by pin,i. Then this probability distribution
is multiplied by a pseudostochastic matrix SU corresponded to
the gate U . In the case of ideal realization, it would be given
by

Sideal
U = 1

2

⎡⎢⎢⎢⎣
1 −1 1 1

1 1 −1 1

1 1 1 −1

−1 1 1 1

⎤⎥⎥⎥⎦. (65)

Because of experimental imperfections and decoherence, SU

has some forms different from Sideal
U , and, actually, the purpose

of the experiment is to find out. We note that Sideal
U possesses

negative elements of maximal possible for this dimensionality
magnitude equal to 1/d = 1/2 [see Eq. (36)].

Then the multiplication by a pseudostochastic matrix,
which corresponds to the SIC-POVM measurement comes.
In the ideal case, it would be described by the 4 × 4 identity
matrix. However, the realistic experimental conditions it can
also suffer from different kinds of imperfections, especially
because of employing two-qubit CNOT gate. In order to take
imperfection into account, we model the real SIC-POVM
measurement with a sequence of a decoherence channel de-
scribed by some pseudostochastic matrix Sdec and ideal SIC-
POVM measurement described with the identity matrix. The
measurement outcome ab is obtained by sampling a random
variable from the resulting probability distribution pout,i =
Sdec SU pin,i.

For each input state, which is given by i ∈ {1, 2, 3, 4}, we
ran the experiment N = 1024 times and calculate the output
four-dimensional probability vectors pout,i as frequencies of
obtaining corresponding outcomes in SIC-POVM measure-
ment. Then, by employing known elements of input proba-
bility vectors pin,i

j , we obtain a complete system of 12 linear
equations on the elements of a pseudostochastic matrix SdecSU

from general matrix equations

pout,i = (Sdec SU ) pin,i, i = 1, 2, 3, 4. (66)

We note that the d2 × d2 (pseudo)stochastic matrix is char-
acterized by d2(d2 − 1) independent elements due to the
normalization requirement for each column.
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TABLE II. Experimental results.

Gate implementation SIC-POVM measurement

Pseudostochastic matrix SU =
⎡⎣ 0.517 −0.399 0.478 0.489

0.449 0.504 −0.418 0.473
0.502 0.403 0.466 −0.448

−0.467 0.493 0.475 0.487

⎤⎦ Sdec =
⎡⎣0.893 0.002 0.100 0.010

0.018 0.877 0.012 0.071
0.102 0.018 0.924 0.058
0.014 0.111 −0.002 0.874

⎤⎦
Unitary evolution generator HU =

⎡⎣ 0 −0.768 −0.033 0.801
0.768 0 −0.761 −0.007
0.033 0.761 0 −0.794

−0.801 0.007 0.794 0

⎤⎦ Hdec =
⎡⎣ 0 −0.010 0.012 −0.002

0.010 0 0.011 −0.021
−0.012 −0.011 0 0.023
0.002 0.021 −0.023 0

⎤⎦
Markovian evolution generator DU =

⎡⎣−0.044 0.046 0.070 0.001
0.013 −0.105 0.005 0.030
0.033 0.001 −0.110 0.003

−0.004 0.058 0.035 −0.034

⎤⎦ Ddec =
⎡⎣−0.131 0.008 0.089 0.007

0.007 −0.136 −0.001 0.098
0.113 0.025 −0.102 0.035
0.011 0.103 0.014 −0.139

⎤⎦
Non-Markovianity δnMark (SU ) = 0.003 δnMark (Sdec) = 0.007
Nonclassicality δquant (HU + DU ) = 0.781 δquant (Hdec + Ddec) = 0

Let Sraw
dec,U be a solution of the the system of linear equa-

tions. The reconstruction error of each element of pseudos-
tochastic matrices can be estimated at a level of δ ≈ 0.031 as
shown in Appendix D. However, the resulting matrix is not
guaranteed to be physical. It means that the corresponding
Choi matrix may have negative eigenvalues. In order to obtain
a physical result with certainty, we introduce an operation of
projection on a set of pseudostochastic maps corresponding to
CPTP maps. We derive it in a way similar to the derivation of
PMark(·).

We consider the Kraus representation of an arbitrary
CPTP map presented in Eq. (15). Taking into account
that each Kraus operator can be decomposed in the form
Ak = ∑

i a(i)
k σ (i) with complex coefficient a(i)

k , we obtain
a corresponding pseudostochastic matrix in the form S =∑

i, j

∑
k a(i)

k a( j)∗
k i, j , where i, j = K−1

outσ
(i) ⊗ σ ( j)Kin. Then

we can treat
∑

k a(i)
k a( j)∗

k as elements of some semipositive
matrix VV†. This trick allows us to introduce a function

S(V) =
∑
i, j

[VV†]i, ji, j (67)

which parametrizes a CPTP map with complex d2 × d2 ma-
trix V. Finally, we introduce a projection operator

PCPTP(̃S) = S
(

arg min
V∈Md2

Tr[(S(V) − S̃)2]

)
, (68)

which gives a physical pseudostochastic matrix closes to some
matrix S̃.

We employ the constructed projector for obtaining
Sdec,U := PCPTP(Sraw

dec,U ). Then in order to get Sdec and SU

separately, we performed the same experiment without im-
plementation of the gate U . It allows reconstructing Sdec and
obtaining SU with the use of the inverse matrix S−1

dec and
known matrix Sdec,U . We note that a similar trick is used for
improving results of quantum state and process tomography
[64,65]. Because of the same number of circuit runs N =
1024, the experimental error of the reconstruction δ remained
the same.

The results of Sdec and SU reconstruction are presented in
the first row of Table II and Fig. 5. The values of fidelities
regard to the identity matrix and U [see (63)] equal 0.89 and
0.94, respectively.

We then study a possibility to describe the observed
processes with a time-independent Markovian master equa-
tion. For this purpose, we compute ln(Sdec) and ln(SU ) and
then extract unitary evolution and Markovian evolution parts
by employing corresponding projectors. We note that the
unitary term is extracted first (e.g., HU = Punit[ln(Sdec)]),
and then PMark is applied to the orgthogonal part (e.g.,
DU = PMark[ln(Sdec) − HU ]). We also computed measures of
non-Markovianity given by δnMark (Sdec) and δnMark(SU ) [see
Eq. (60)] and measures of nonclassicality for Markovian
approximations, which are given by δquant (HU + DU ) and
δquant (Hdec + Ddec) [see Eq. (57)].

The obtained results are presented in Table II. First of
all, we note that the level of non-Markovianity for both
processes is quite small compared to measurement error δ.
Thus, the observed processes can be efficiently described
with time-independent Markovian equations. Second, we see
that the imperfect SIC-POVM measurement can be described
by purely classical stochastic process. In the chosen basis,
it has small nondiagonal negative elements; however, they
can be completely removed by shifting to a new basis: This
fact corresponds to δquant (Hdec + Ddec) = 0. In contrast, the
process of the gate implementation shows a clear nonclassical
behavior: There are negative elements in the pseudostochastic
matrix which cannot be removed by any basis change. So we
see that SIC-POVM probability representation opens interest-
ing possibilities for deep studying of quantum dynamics and
revealing its classical and nonclassical features.

FIG. 5. Experimentally reconstructed pseudostochastic matrices
of the single-qubit gate U (a) and the imperfect SIC-POVM measure-
ment (b).
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VI. CONCLUSION

In this work, we have considered a probability representa-
tion of quantum mechanics based on employing SIC-POVM.
In this representation, d-dimensional quantum systems are
described with true d2-dimensional probability distributions
(probability vectors), while their dynamics and calculating
measurement outcomes are governed by pseudostochastic
matrices—matrices of conditional probabilities without re-
striction on elements positivity.

We have derived an equation of a SIC-POVM probability
vector evolution corresponding to the von Neumann equa-
tion and the GKSL master equation. In the case of unitary
evolution, we have shown that the evolution generator in
the SIC-POVM probability representation is given by d2 ×
d2 real antisymmetric matrix from a certain (d2 − 1) linear
subspace of all d2 × d2 real antisymmetric matrices. This
fact has allowed us to construct a projector on the space
of physical unitary evolution generators. Then we have also
shown that a corresponding evolution operator is the SIC-
POVM probability representation is given by orthogonal pseu-
dobistochastic matrix preserving both l1 and l2 norms. In the
case of the dissipative evolution, we have also shown that is
possible to construct a projector on a set of time-independent
Markovian dissipators in the SIC-POVM probability repre-
sentation.

We have applied our results to studying nonclassical fea-
tures of quantum system dynamics. We have proven the theo-
rem about necessary and sufficient conditions on the evolution
generator which make the resulting evolution described with
stochastic (but not pseudostochastic) matrices. Then we have
constructed a practical measures of nonclassicality and non-
Markovianity for the observed quantum processes described
with pseudostochastic matrices.

Finally, we have applied our approaches to the ex-
perimental study of superconducting quantum circuits run
on the IBM quantum processor. We have demonstrated
that a noise appearing in the imperfect SIC-POVM mea-
surement demonstrates classical behavior, while quantum
dynamics during application of the single-qubit gate has
clear nonclassical features. Meanwhile, we have shown
that both processes are well described by the Markovian
approximation that is revealed by our non-Markovianity
measure.
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APPENDIX A: RELATION BETWEEN SIC-POVM
PROBABILITIES AND MUB PROBABILITIES FOR d = 2

Here we provide a correspondence between the consid-
ered SIC-POVM probability representation and the alterna-
tive probability representation based projective MUB mea-
surements in the case of two-level systems, which were
extensively studied in Refs. [22–24]. In this representation,
an arbitrary quantum state ρ is characterized with a three-
dimensional vector

p̃ :=
⎡⎣ p̃1

p̃2

p̃3,

⎤⎦, (A1)

where

p̃1 := 〈+|ρ|+〉, p̃2 := 〈R|ρ|R〉, p̃3 := 〈0|ρ|0〉

|+〉 := 1√
2

(|0〉 + |1〉), |R〉 := 1√
2

(|0〉 + i|1〉).
(A2)

One can see that the probabilities { p̃i}3
i=1 define projections

on x, y, and z axes of the Bloch sphere. We note that all three
components of p̃ are independent.

In order to obtain the relation between the vector p̃ and
the SIC-POVM vector p, we can employ Eqs. (11) and (12).
Finally, we obtain

p̃ = Fp, (A3)

where

F = 1

2

⎡⎢⎣1 + √
3 1 + √

3 1 − √
3 1 − √

3

1 − √
3 1 + √

3 1 + √
3 1 − √

3

1 + √
3 1 − √

3 1 + √
3 1 − √

3

⎤⎥⎦, (A4)

where we use the qubit SIC-POVM based on the projectors
set (62).

In order to obtain the opposite relation, we note that p4 =
1 − p1 − p2 − p3. Then one can verify the following equality:⎡⎢⎢⎢⎣

p̃1

p̃2

p̃3

1

⎤⎥⎥⎥⎦ = 1

2

⎡⎢⎢⎢⎣
2
√

3 2
√

3 0 1 − √
3

0 2
√

3 2
√

3 1 − √
3

2
√

3 0 2
√

3 1 − √
3

0 0 0 2

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

p1

p2

p3

1

⎤⎥⎥⎥⎦. (A5)

Using (A5), we obtain the following relation:⎡⎢⎢⎢⎣
p1

p2

p3

p4

⎤⎥⎥⎥⎦ =
√

3

12

⎡⎢⎢⎢⎣
2 −2 2

√
3 − 1

2 2 −2
√

3 − 1

−2 2 2
√

3 − 1

−2 −2 −2
√

3(1 + √
3)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

p̃1

p̃2

p̃3

1

⎤⎥⎥⎥⎦.

(A6)
It can be rewritten in a more compact form:

p = Tp̃ + c, (A7)

where

T =
√

3

6

⎡⎢⎢⎢⎣
1 −1 1

1 1 −1

−1 1 1

−1 −1 −1

⎤⎥⎥⎥⎦, c = 1

12

⎡⎢⎢⎢⎣
3 − √

3

3 − √
3

3 − √
3

3 + 3
√

3

⎤⎥⎥⎥⎦. (A8)
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APPENDIX B: EXAMPLES OF PSEUDOSTOCHASTIC
MATRICES OF PTP Ds FOR d = 2

Here we consider two well-known maps in entanglement
theory: transposition map T (X ) = X T, and so-called reduc-
tion map R : L(H) → L(H),

R(X ) = 1

d − 1
(1TrX − X ), (B1)

which is unital PTP but not CPTP. In the case of
din = dout = d = 2 for SIC-POVM effects given by (62),
one finds the pseudobistochastic matrices corresponding to
transposition

ST = 1

2

⎡⎢⎢⎢⎣
1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1

⎤⎥⎥⎥⎦, (B2)

and to reduction map

SR = 1

2

⎡⎢⎢⎢⎣
−1 1 1 1

1 −1 1 1

1 1 −1 1

1 1 1 −1

⎤⎥⎥⎥⎦. (B3)

APPENDIX C: CONSTRUCTION OF
PSEUDOSTOCHASTIC MATRIX OF A UNITARY

EVOLUTION FOR d = 2

Here we present explicit forms of some basic matrices used
for SIC-POVM probability representation in the case (d =
2)-dimensional systems (qubits) and provide an example of
a unitary pseudobistochastic evolution operator construction.
We consider the SIC-POVM based on the projectors given in
Eq. (62). The matrix K and its inverse, which defines transi-
tions between SIC-POVM probability representation and the
standard representation, take the following forms:

K = 1

2

⎡⎢⎢⎢⎢⎣
1 + √

3 1 − √
3 1 + √

3 1 − √
3

√
3 + i

√
3

√
3 − i

√
3 −√

3 − i
√

3 −√
3 + i

√
3

√
3 − i

√
3

√
3 + i

√
3 −√

3 + i
√

3 −√
3 − i

√
3

1 − √
3 1 + √

3 1 − √
3 1 + √

3

⎤⎥⎥⎥⎥⎦, (C1)

K−1 = 1

12

⎡⎢⎢⎢⎢⎣
1 + √

3 1 − √
3 1 + √

3 1 − √
3

√
3 + i

√
3

√
3 − i

√
3 −√

3 − i
√

3 −√
3 + i

√
3

√
3 − i

√
3

√
3 + i

√
3 −√

3 + i
√

3 −√
3 − i

√
3

1 − √
3 1 + √

3 1 − √
3 1 + √

3

⎤⎥⎥⎥⎥⎦. (C2)

The antisymmetric matrices forming a basis for physical
process take the forms

H(1) =

⎡⎢⎢⎢⎣
0 0 1 −1

0 0 −1 1

−1 1 0 0

1 −1 0 0

⎤⎥⎥⎥⎦,

H(2) =

⎡⎢⎢⎢⎣
0 −1 1 0

1 0 0 −1

−1 0 0 1

0 1 −1 0

⎤⎥⎥⎥⎦,

H(3) =

⎡⎢⎢⎢⎣
0 −1 0 1

1 0 −1 0

0 1 0 −1

−1 0 1 0

⎤⎥⎥⎥⎦.

(C3)

Consider a Hamiltonian H = σ3/2. In the probability
representation, the dynamics is defined by the matrix H =
1
2 H(3). Then the resulting pseudobistochastic operator of the

evolution reads

U(t ) = exp (Ht )

= 1

2

⎡⎢⎢⎢⎣
1 + cos(t ) − sin(t ) 1 − cos(t ) sin(t )

sin(t ) 1 + cos(t ) − sin(t ) 1 − cos(t )

1 − cos(t ) sin(t ) 1 + cos(t ) − sin(t )

− sin(t ) 1 − cos(t ) sin(t ) 1 + cos(t )

⎤⎥⎥⎥⎦,

(C4)

which corresponds to the standard evolution operator

U (t ) = exp (−iHt ) =
[

exp(it/2) 0

0 exp(−it/2)

]
. (C5)

APPENDIX D: ESTIMATING STATISTICAL ERRORS IN
THE EXPERIMENTAL RECONSTRUCTION OF A

PSEUDO-STOCHASTIC MATRIX

In order to reconstruct an unknown pseudostochastic ma-
trix S in our quantum process tomography protocol, we con-
sidered a set of equations

pout,i
j =

4∑
k=1

S jk pin,i
k , i, j = 1, 2, 3, 4 (D1)
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where the values of pin,i
k are given by Eq. (64), and the values

of pout,i
j are obtained from the experiment as frequencies of

getting a jth SIC-POVM measurement outcome for ith input
state.

In order to write down a set of linear equations on the
components of S in a standard form, we can represent S as
follows:

S = [
s(1) s(2) s(3) s(4)

]T
, (D2)

where s(i) are four-dimensional column vectors. We note that
due to normalization condition on the columns of S we have
s(4)

j = 1 − s(1)
j − s(2)

j − s(3)
j , so we need to reconstruct s(1), s(2)

and s(3) only.
Then by introducing

q( j) :=
[

pout,1
j pout,2

j pout,2
j pout,4

j

]T
(D3)

and

P :=

⎡⎢⎢⎢⎣
pin,1 T

pin,2 T

pin,3 T

pin,4 T

⎤⎥⎥⎥⎦ = 1

6

⎡⎢⎢⎢⎣
3 1 1 1

1 3 1 1

1 1 3 1

1 1 1 3

⎤⎥⎥⎥⎦, (D4)

we can write the basic system of linear equations on the
components of S in a compact form

q( j) = Ps( j), j = 1, 2, 3. (D5)

Its solution is then given by

s( j) = P−1q( j), j = 1, 2, 3, (D6)

where

P−1 = 1

2

⎡⎢⎢⎢⎣
5 −1 −1 −1

−1 5 −1 −1

−1 −1 5 −1

−1 −1 −1 5

⎤⎥⎥⎥⎦. (D7)

In order to estimate statistical errors of the obtained result,
we first estimate statistical errors of reconstructed output
probabilities. The mean squared error for each of q(i)

j = pout,i
j

can be obtained in the following way:

(
δq(i)

j

)2 ≈ (1 − pout, j
i )pout, j

i

N
� 1

4N
, (D8)

where N = 1024 is number measurements performed for each
input state. Then the resulting statistical error for components
of S can be estimated as

δs( j)
i =

√√√√ 4∑
k=1

∣∣P−1
ik

∣∣(δq( j)
k

)2
� 1√

N
= 1

32
≈ 0.031. (D9)
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