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Variational quantum circuits for quantum state tomography
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Quantum state tomography is a key process in most quantum experiments. In this work, we employ quantum
machine learning for state tomography. Given an unknown quantum state, it can be learned by maximizing
the fidelity between the output of a variational quantum circuit and this state. The number of parameters of
the variational quantum circuit grows linearly with the number of qubits and the circuit depth, so that only
polynomial measurements are required, even for highly entangled states. After that, a subsequent classical circuit
simulator is used to transform the information of the target quantum state from the variational quantum circuit
into a familiar format. We demonstrate our method by performing numerical simulations for the tomography
of the ground state of a one-dimensional quantum spin chain, using a variational quantum circuit simulator.
Our method is suitable for near-term quantum computing platforms, and could be used for relatively large-scale
quantum state tomography for experimentally relevant quantum states.
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I. INTRODUCTION

Identifying a quantum state is a key step to verify or bench-
mark any quantum processes [1–4]. Practically, quantum state
tomography (QST) is a standard technology to obtain the
information of an unknown state through quantum measure-
ments and is widely used in many quantum experiments
[5–7]. The efficiency of QST highly depends on the times
of quantum measurements as well as the copies of the target
states.

However, the original technique for QST requires an ex-
ponentially growing number of measurements, which could
be feasible only for a small number of qubits [8]. To allevi-
ate this exponential scaling in the original proposal, various
approaches has been used based on some assumptions about
the structure of the target state. An outstanding class of these
methods is based on tensor network states [9–11], which can
efficiently represent quantum states with bounded entangle-
ment entropy through a polynomial number of parameters
[12]. However, the tensor-network-based methods may not
be suited for highly entangled states where these methods
still suffer from exponential scaling. Other examples along
this line include the permutationally invariant tomography
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[13,14], as well as the compressed sensing which reduces
the number of measurements with the assumption that the
target quantum state is sparse [15,16]. Besides these meth-
ods, the classical-neural-network-based methods also obtain
remarkable achievements [17–21], where the information of
the target state is encoded with the parameters of the neural
network. These methods all represent the quantum state in
classical manners and have to face the challenge of expo-
nential scaling in specific cases. For example, the matrix
product state (MPS) representation becomes inefficient for
highly entangled states, such as the output state of a random
quantum circuit (RQC) [22].

Recently, the rapid development of quantum hardware [23]
indicates that the computing power of quantum processors can
be used for specific applications. In this work, we show that
by using a quantum processor, it only requires a polynomial
number of measurements for quantum state tomography, even
for certain highly entangled states. We apply quantum ma-
chine learning (QML) [24], a possibly suitable application for
a noisy intermediate-scale quantum (NISQ) computer, to learn
the target state and encode its information into the parameters
of a variational quantum circuit (VQC). In this way, the target
state can be stored within a more natural quantum data struc-
ture. The number of parameters of this circuit grows polyno-
mially with the number of qubits. Unlike the tensor-network-
based methods, with these polynomial number of parameters,
the VQC can approximate highly entangled states. Therefore,
our method can serve for a wider range of applications. After
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FIG. 1. (a) The scheme of the approach to quantum state tomog-
raphy. The information of the unknown state is learned by maximiz-
ing the fidelity F (�θ ) measured through the SWAP test between the
reduced density matrix of the first n qubits in the output state ρ̂S

and the unknown state ρ̂. The information of the state is then stored
with a quantum data structure: the variational circuit with optimized
parameters. Then the information of the state can be transferred
into a familiar format (e.g., a state vector) using a classical circuit
simulator. (b) The structure of the variational quantum circuit for
state estimation. The circuit contains d layers of operations. The ith
layer contains 2n single-qubit gates encoding the tunable parameters
{θi,1, θi,2, . . . , θi,2n}, and a group of commuting controlled-not (CNOT)
gate operations applied on the neighboring qubits alternately. The
parametric single-qubit gates are, respectively, Rx gates in the odd
layers or Ry gates in the even layers. The circuit ends up with an
extra layer of single-qubit operations. The latter n auxiliary qubits
are unnecessary if we have the prior knowledge that the unknown
state is pure.

encoding the information of the target state into the circuit,
an optional step can be to transfer the information of this
state into a familiar format (such as a state vector). Actually,
this process is done via the classical simulation of the state
evolution through this circuit, which is an exponentially hard
problem for classical computers. Straightforwardly, one can
represent the state by a vector for the simulation, but in this
paper, we also introduce a MPS circuit simulator which can
be scaled up to cases with more qubits. We demonstrate our
method by the numerical simulations of the tomography for
the ground state of a one-dimensional quantum spin chain
with 6∼15 qubits on a personal computer.

This paper is organized as follows. In Sec. II, we introduce
the scheme of our quantum machine learning algorithm for
quantum state tomography. In Sec. III, we show how to extract
the information of the target state from the VQC with a MPS

circuit simulator. In Sec. IV, we demonstrate our method with
numerical simulations of quantum state tomography for the
ground state of a quantum spin chain. Finally, we conclude
in Sec. V.

II. APPROXIMATING QUANTUM STATES WITH
QUANTUM MACHINE LEARNING

The information of the unknown state is obtained through
a quantum machine learning algorithm as shown in Fig. 1(a).
Generally, the target state under tomography is an n-qubit
mixed state, which we denote as ρ̂. To fully capture the
information in ρ̂, we use a 2n-qubit variational quantum
circuit C2n(�θ ) (since it is enough to purify any n-qubit mixed
state with n auxiliary qubits [25]), where �θ contains all
the parameters to be optimized. The output of the varia-
tional quantum circuit is denoted as |ψo〉, which can be
written as

|ψo〉 = C2n(�θ )|0〉⊗2n. (1)

The reduced density operator of the first n qubits can then be
obtained by

ρ̂S = trA(|ψo〉〈ψo|), (2)

where trA means the partial trace over the latter n qubits. The
fidelity between ρ̂S and ρ̂ can be represented by

F (�θ ) = trS (ρ̂ρ̂S ) = 〈ψo|ρ̂ ⊗ Î|ψo〉, (3)

where trS means the trace over the former n qubits. Note that
F (�θ ) can be efficiently computed with a quantum computer
via the SWAP test [26].

The goal is then to maximize F (�θ ) over �θ , for which
we simply choose the loss function of our quantum machine
learning algorithm as

f (�θ ) = 1 −
√
F (�θ ). (4)

Specifically, if the target state is known to be a pure state in
advance, then only n qubits are required in our variational
circuit, i.e., |ψo〉 = Cn(�θ )|0〉⊗n. In this case, the loss function
can be simplified to be

f (�θ ) = 1 − |〈ψo|ψ〉|. (5)

In Fig. 1(b), we show a possible implementation of the
VQC, which consists of interlacing layers of single-qubit
rotation gates and two-qubit CNOT gates. To represent generic
quantum states, both parametric rotational X (Rx) gates and
rotational Y (Ry) gates are used, which are defined as

Rx(θ ) =
[

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

]
, (6)

Ry(θ ) =
[

cos θ
2 − sin θ

2

− sin θ
2 cos θ

2

]
. (7)

In this circuit, each layer of commuting CNOT gates is counted
as one depth. Thus, for such a circuit with depth d , the total
number of parameters is 2n(d + 1) in general. However, if
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we have the priori knowledge that the target state is pure,
then the number of parameters can be reduced to n(d + 1),
and the simplified loss function described by Eq. (5) can
be used during the optimization. It is worth noting that the
structure of the circuit in Fig. 1(b) closely resembles that of a
random quantum circuit [27], and the random quantum circuit
can generate statistic distributions, which are intractable for
classical computers to produce [22].

We apply a gradient-based optimization method to itera-
tively update the parameters �θ and minimize the loss function.
Using the chain rule, we have

∂ f (�θ )

∂θi
= ∂ f (�θ )

∂F (�θ )

∂F (�θ )

∂θi
. (8)

The first term on the right-hand side of Eq. (8) can be easily
computed using a classical computer as long as we have
obtained the value of F (�θ ) from a quantum computer, and the
second term ∂F (�θ )/∂θi can also be computed on a quantum
computer through [28]

∂F (�θ )

∂θi
= 1

2
F (�θ+

i ) − 1

2
F (�θ−

i ), (9)

where �θ±
i is the array of parameters obtained by adding or

subtracting the ith parameters of �θ by π/2.
For one iteration of the algorithm, besides the evaluation of

F (�θ ), it is also required to evaluate F (�θ±
i ) for all 2n(d + 1)

parameters to calculate the gradient. A single evaluation of
F (�θ ) requires one to execute the circuit for a constant number
of times to reach a certain precision in the n-qubit SWAP test,
and each execution involves around 3nd gate operations. As a
result, the complexity of each iteration is O(n3d2).

III. STATE RECONSTRUCTION WITH MPS

The VQC will store almost all the information of the target
state as long as the above quantum machine learning algo-
rithm manages to minimize the loss function to approximate 0,
which indicates that ρ̂S ≈ ρ̂. We can then reconstruct the state
by transforming the information encoded in the circuit to a fa-
miliar format, namely, to simulate this circuit classically. One
can directly store the full wave function as a state vector and
then simulate the state evolution, which, however, requires an
exponential amount [O(22n)] of memory. To accelerate the
classical processing, we can apply the MPS algorithm for
the information recovery. In the following, we show how to
reconstruct ρ̂S with MPS [29]. The MPS representation of the
2n-qubit state can be written as [30]

|φ〉 =
∑

σ1,...,σ2n

G(Bσ1 Bσ2 · · · Bσ2n )|σ1, σ2, . . . , σ2n〉. (10)

Each Bσl
al ,al+1

is a rank-3 tensor, where σl represents the phys-
ical index and al represents the auxiliary index. Function G
means summation over common auxiliary indices. Here we
also assume that the MPS is prepared in the right canonical
form, namely, Bσl

al ,al+1
satisfies∑

σl ,al+1

Bσl
al ,al+1

conj
(
Bσl

a′
l ,al+1

) = δal ,a′
l
, (11)

×

(b) (c)

× ×

s s

m

nm

(a)

2n-qubit state ...
...

m

n

n

nm

FIG. 2. The classical circuit simulator based on MPS. (a) A 2n-
qubit quantum state represented with MPS. Each qubit is represented
by a rank-3 tensor Bσl

al ,al+1
. (b) Application of a single-qubit operation

on a local tensor of MPS, which does not affect the sizes of the
tensors. (c) A two-qubit gate operation is first decomposed into
two local operations and then applied to nearest-neighbor qubits,
respectively. The sizes of the tensors increase in general after this
operation.

where conj(M ) means to take the elementwise conjugate of
the tensor M, and δi, j is the Kronecker matrix satisfying δi, j =
1 for i = j, or 0 otherwise. The maximum size of the auxiliary
indices is referred as the bond dimension χ , namely,

χ = max
1�l�2n+1

dim(al ). (12)

The initial state of the VQC, |0〉⊗2n, can be easily written
as a separable MPS with χ = 1, which is shown in Fig. 2(a).
Then the single-qubit and two-qubit gates are applied to this
MPS in a way that the right canonical form of the MPS
is preserved. The single-qubit and two-qubit gate operations
on MPS are shown in Figs. 2(b) and 2(c), respectively. For
a detailed mathematical description of these operations, one
can refer to, for example, Refs. [30,31]. Note that each time
a two-qubit gate is performed on a pair of neighbor qubits,
the bond dimension will effectively increase by a factor of
χo, which is the rank of the two-qubit operation. As for the
CNOT gate, we have χo = 2 [32]. As a result, for a variational
quantum circuit organized as in Fig. 1(a) with depth d , the
final MPS will have a bond dimension

χ � 2
d
2 . (13)

After the evolution, we trace out the latter n qubits of the
resulting MPS and obtain the reduced density matrix in the
form of a matrix product operator (MPO),

ρ̂S =
∑

σ1,...,σn,σ
′
1,...,σ

′
n

G(Bσ1 . . . Bσn Bσ ′
1 . . . Bσ ′

n )

× |σ1, . . . , σn〉〈σ ′
1, . . . , σ

′
n|, (14)

052316-3



YONG LIU et al. PHYSICAL REVIEW A 101, 052316 (2020)

where

G(Bσ1 . . . Bσn Bσ ′
1 . . . Bσ ′

n )

=
∑

a1, . . . , an, an+1
a′

1, . . . , a′
n, an+1

Bσ1
a1,a2

. . . Bσn
an,an+1

B
σ ′

1
a′

1,a
′
2
. . . Bσ ′

n
a′

n,an+1
. (15)

Note that we have exploited the property of the MPS described
by Eq. (11) during the simulation.

Finally, the obtained MPO contains all the information
of the target state, whose size is bounded by 4nχ4 = 4n22d .
The component of the target state in a particular basis
|τ1, . . . , τn〉〈τ ′

1, . . . , τ
′
n| can be computed by

〈τ1, . . . , τn|ρ̂S|τ ′
1, . . . , τ

′
n〉 = G(Bτ1 . . . Bτn Bτ ′

1 . . . Bτ ′
n ), (16)

where the computational complexity is O(χ3).
Although here we have proposed to reconstruct the target

quantum state as a MPS (or, more generally, a MPO), we
stress that our approach is entirely different from the ap-
proaches in Refs. [9,12]. The reasons are as follows:

(i) The efficiency of the quantum state tomography, which
highly depends on the times of measurement and copies of tar-
get states, does not necessarily rely on the assumption that the
target quantum state has a limited amount of entanglement.

(ii) When recovering the information of the target state
using the MPS circuit simulator, the bond dimension χ of
the MPS representation will in general grow exponentially.
Therefore, the main focus of our approach is to reduce the
number of quantum gate operations or the number of quantum
measurements.

A straightforward example to show the differences can
be the output state of the one-dimensional random quantum
circuit [27]. The MPS tomography may require exponential
measurement because of the rapidly growing entanglement,
while in our method, only polynomial measurements are
required because the structure of the VQC and RQC can be
the same. Though the subsequent classical MPS simulator has
exponential complexity, it is still tolerable with a moderate
classical computer for mixed states with less than 20 qubits or
pure states with less than 40 qubits. Actually, our method is
similar to a recent work that applies a parametric Hamiltonian
[33] which, however, is only suitable for pure states.

IV. NUMERICAL SIMULATION AND
PERFORMANCE ANALYSIS

We demonstrate our method by numerical simulations
based on a VQC simulator [34,35]. Although our method can
be used to approximate density operators in general, here we
consider the case where the target state is pure. Moreover, it is
the ground state of a local spin Hamiltonian, the Heisenberg
XXZ spin chain,

ĤXXZ =
L−1∑
l=1

[
J
(
σ̂ x

l σ̂ x
l+1 + σ̂

y
l σ̂

y
l+1

) + �σ̂ z
l σ̂ z

l+1

] + h
L∑

l=1

σ̂ z
l ,

(17)

where L is the number of spins (qubits), h is the magnetization
strength, J is the tunneling strength, and � is the interaction
strength. In the simulations, we fix h = 1 and J = 1, and

L is fixed according to the manner of fidelity calculation.
Therefore, the ground state can be treated as a function of �,
which we denote as |GS(�)〉. ĤXXZ is gapless when � � 1 or
gapped when � > 1, and it is worth noting that the ground
state of a gapped Hamiltonian can be efficiently computed
either with a classical computer [36] or a quantum computer
[37]. With a priori knowledge that the “unknown” quantum
state is pure, we can simply use the loss function defined in
Eq. (5). Moreover, since |GS(�)〉 contains only real numbers,
we only use parametric Ry gates in our circuits.

Concretely, we adapt two different configurations in our
simulations. In the first configuration, we assume that the
fidelity F is evaluated ideally, that is, we neglect the error
produced in the SWAP test when estimating F from a finite
number of measurements. We prepare the ground states of
an XXZ chain with 15 spins as an MPS using the density
matrix renormalization-group method [30] via a classical
simulator, and take this state as the target state. After that,
the target states are approximated with variational circuits of
different depths, and the parameters are optimized through the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer [38].
In the second configuration, we use a classical simulator,
which directly stores the quantum state as a vector, and
faithfully compute F using the SWAP test as follows. Given
two n-qubit quantum states |ψ〉 and |ψo〉, we perform the
following quantum circuit evolution [26]:

(H ⊗ I )(C-SWAP)(H ⊗ I )|0〉|ψ〉|ψo〉, (18)

where H is the Hadamard gate, I is the identity operator,
C-SWAP is the controlled-swap operation, and |0〉 is an auxil-
iary qubit. Then we measure the probability that the auxiliary
qubit is in state |1〉, which is denoted by p|1〉, and is equal to
(1 − |〈ψo|ψ〉|2)/2. Thus, we have

|〈ψo|ψ〉| = √
1 − 2p|1〉. (19)

However, in practice, one can only perform a finite number
of quantum measurements and obtain p|1〉 approximately.
Therefore, in this configuration and also for a real quantum
computer, the fidelity F as well as the gradients can only
be computed approximately. In our simulations, we perform
10 000 measurements to evaluate each F , and apply the Adam
gradient-based optimizer [39] to minimize the loss. The re-
sults show that the ground state can still be approximated with
high precision. Due to the heavy cost to faithfully simulate the
SWAP test, we only simulate up to six spins in the second case.
The results of the simulations are summarized in Fig. 3.

In Figs. 3(a) and 3(b), we show the numerical results for
L = 15 where the fidelities are computed ideally. In Fig. 3(a),
we plot the final fidelity between the output of the variational
quantum circuits and |GS(�)〉 as a function of the depth d
for � = 0.5, 1.0, and 1.5, respectively. We can see that with
a circuit depth of d = 15 (240 parameters), the final fidelity
reaches above 99.1% for all of the cases. For a larger value
of �, it requires a fewer number of parameters to reach the
same precision. This result meets our expectations since in
the gapped phase the entanglement of the ground state is
bounded [40]. In Fig. 3(b), we plot the loss against the number
of iterations. For � = 0.5, 1.0, 1.5, reaching f (�θ ) � 0.05
requires Niter = 50, 44, 34 and reaching f (�θ ) � 0.01 requires
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FIG. 3. (a) Final fidelity as a function of the circuit depth given
L = 15 for ideally computed fidelities. (b) Loss values as a function
of the number of iterations given L = 15 and d = 20 for ideally
computed fidelities. (c) Final fidelity as a function of the circuit depth
given L = 6 with fidelities computed by the SWAP test. (d) Loss val-
ues as a function of the number of iterations given L = 6 and d = 5,
with fidelities computed by the SWAP test. The inset is the difference
between fideal(�θ ) computed with ideal fidelities and fapprox(�θ ) evaluated
via the SWAP test. In all the figures, the blue dash-dotted lines with
triangles, the red solid lines with circles, and the black dashed lines
with stars correspond to � = 0.5, 1.0, and 1.5, respectively.

Niter = 240, 209, 206, respectively. In Figs. 3(c) and 3(d), we
show the numerical results for L = 6, with F faithfully com-
puted using the SWAP test. In Fig. 3(c), we plot the final fidelity
for L = 6 after 100 iterations. The state can be approximated
with a fidelity beyond 95% by using a low-depth circuit. Fig-
ure 3(d) shows the loss against the number of iterations. The
inset shows the comparison � f (�θ ) = | fapprox(�θ ) − fideal(�θ )| be-
tween fideal(�θ ) computed with ideal fidelities and fapprox(�θ )
evaluated via the SWAP test, starting from the same set of initial
parameters. All the results suggest that the algorithm has a
remarkable robustness even if F cannot be computed exactly.

V. CONCLUSION

In this work, we proposed a method for quantum state
tomography. We first utilize quantum machine learning to
extract the information of the target quantum state into a VQC,
which requires only a polynomial number of gate operations
for a quantum computer and hopefully can be executed on
near-term quantum computers. Then, based on the determined
variational quantum circuit, the information of the target state
can be efficiently recovered using a MPS circuit simulator.
Our method can be applied for the tomography of both pure
states and mixed states. For a pure state, the tomography can
be further simplified if this constraint of the target state is
known in advance. We demonstrate our method by approxi-
mating ground states of a local spin Hamiltonian with 6 or 15
qubits based on a VQC simulator. The result indicates that a
high fidelity could be reached with a relatively small number
of variational parameters and iterations, and this method can
hopefully be applied on near-term quantum devices.
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