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Interferometrically estimating a quadratic form for any immanant of a matrix and its permutations
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We devise a multiphoton interferometry scheme for sampling a quadratic function of a specific immanant
for any submatrix of a unitary matrix and its row permutations. The full unitary matrix describes a passive,
linear interferometer, and its submatrix is used when photons enter in and are detected at subsets of possible
input and output channels. Immanants are mathematical constructs that interpolate between the permanent and
determinant; contrary to determinants and permanents, which have meaningful physical applications, immanants
are devoid of physical meaning classically but here are shown to be meaningful in a quantum setting. Our
quadratic form of immanants is sampled by injecting vacuum and single photons into interferometer input ports
such that the photon arrival times are entangled, in contrast to previous methods that control arrival times without
entangling. Our method works for any number of photons, and we solve explicitly the quadratic form for the two-,
three-, and four-photon cases.

DOI: 10.1103/PhysRevA.101.052314

I. INTRODUCTION

Whereas matrix determinants and permanents have imme-
diate physical applications in many-body quantum physics [1]
and quantum information [2], immanants [3,4] only recently
fully connected with physical concepts via quantum interfer-
ometry. Specifically, n photons, controllably distinguishable
through time delays or polarization [5–8], are injected into an
m-channel interferometer, and n-photon coincidences at the
interferometric output ports depend on sums of immanants
of a square complex matrix describing the interferometer.
This coincidence probability in fact depends in general on
all immanants of the transformation matrix including the
determinant and permanent. Designing input states that are
products of partially distinguishable single-photon input states
and produce a scattering amplitude proportional to a single
immanant has been impossible thus far, except for the case of
perfect indistinguishability where only the permanent of the
appropriate scattering submatrix contributes to the amplitude.
Here, we show how time-bin-entangled input states can lead
to coincidence rates that are obtained from quadratic sums of
a single type of immanant; the immanants in the sum differ
because each is evaluated after some rows or columns of the
original submatrix are permuted.

Immanants of a square complex matrix are defined using a
weighted sum

immλ(U ) :=
∑
σ∈Sn

χλ(σ )
n∏

ı=1

Uı,σ (ı), (1)
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where U ∈ Mn(C) for Mn denoting an n × n matrix, σ (ı) a
permutation of ı ∈ Z+, and χλ(σ ) the character of σ ∈ Sn

in irreducible representation (irrep) λ. The permanent and
determinant are special cases of immanants corresponding to

λ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{n} = · · · ,

{1n} = .
.
.

:= · · · �,
(2)

for symmetric and antisymmetric representations of Sn, the
permutation group of n objects, such that

χ ··· (σ ) ≡ 1∀σ (3)

and

χ ··· �
(σ ) = ±1, (4)

depending on the parity of σ ; for the other representations of
Sn the characters are not necessarily ±1, and other immanants
interpolate beautifully between the permanent and the deter-
minant. Although the immanant is now recognized as being an
integral part of calculating interferometric coincidence proba-
bilities, direct meaning arising from realizing probabilities for
a single immanant has been lacking until now.

The computational hardness (#P-hard) of calculating the
permanent [4] underpins significant efforts on the boson-
sampling problem [2], both theoretically [9] and experimen-
tally [7,10–13], with ramifications for the pursuit of quantum
supremacy [14]. Unlike the permanent or the determinant
that picks up at most a sign under permutations of rows or
columns, an immanant does not necessarily transform back to
a multiple of itself under such transformations, highlighting
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that this function cannot possibly describe identical fermion
or boson states. Some immanants are also #P-hard [15,16]
and, as effective nonclassical functions of the interferometer
transition matrix R, are especially interesting in their own
right.

Now we explain the sum of product of immanants that
is approximately solved through interferometry. For {aσσ ′ }
a to-be-determined set of complex coefficients, let λ =
{λ1, . . . , λp}, λ j � λ j+1, p � n be a fixed partition of n, and
consider

Fλ(Un) :=
∑
σσ ′

aσσ ′ immλ[(Un)σ ]{immλ[(Un)σ ′]}∗, (5)

where the arguments of immλ in the sum Fλ(Un) are matrices
(Un)σ differing from Un by a permutation of rows: thus
immλ[(Un)σ ] is the λ immanant of (Un)σ . Our goal is to find
aσσ ′ so the quadratic form Fλ(Un) can be sampled using a
linear optics setup, thereby connecting the immanant with
experimental technology. As some immanants are #P-hard
[16], this leads to a broad diversification of the possibilities
for empirically studying #P-hard problems.

Our paper is organized as follows: In Sec. II we devise
the experiment to calculate the quadratic function of each
immanant of Un and explain the algorithm, computational
task, and general form of the estimate. In Sec. III, we apply
our general formalism to n ∈ {2, 3, 4} and give the explicit
form of the estimate of the quadratic function in each case.
Finally, we conclude in Sec. IV.

II. THE SCHEME

We devise time-bin-entangled input states for a passive,
lossless, m-channel interferometer, with one photon injected
into each input port, such that the output coincidence prob-
abilities sample a quadratic form Fλ(Un), describing the in-
terferometric transformation of an n × n submatrix Un of the
Um matrix. We can assume that Um is unitary, but in general
the submatrix Un will not be so. The proposed experiment
is shown in Fig. 1. The input state is an entangled state of
single-photon pulses into each input port, with the basis state
being the product of single-photon Fock states in identical
localized wave packets. The entangled time bins are super-
position of such product states. Detectors integrate over the
whole timescale and are set up as coincidence detectors.

We now set up the problem as a computational task. Specif-
ically, we discuss the task as a two-party protocol involving
the client who provides input and accepts the output as well
as the server who computes and produces the output. We also
provide the quantum circuit that performs sampling to deliver
an approximate solution.

In Sec. II A, we explain the algorithm and computational
task carried out by the proposed experiment. In Sec. II B, we
give the general form of the estimate of the quadratic function
of immanants carried out by the experiment. In Sec. II C, we
explain how various components of the proposed scheme can
be physically realized.

FIG. 1. The proposed experiment: The input to the interferome-
ter Um is the time-bin-entangled n � m single photons with spectral
profile, and the desired output is the coincidence click at all the
detectors at output.

A. Algorithm and the computational task

Now we explain the algorithm as well as clarify the compu-
tational task. The input of the computational task is the value
n ∈ Z+, Un ∈ Mn(C) with C the complex number field, the
error bound ε > 0, the values of time delays τ ∈ R+, and the
spectral profile φ : R+ → (0, 1] : ω 	→ φ(ω) of each photon.
Now we explain the output.

The server executes the procedure by using both a classical
computer and a multiphoton, multichannel quantum interfer-
ometer. We begin by explaining the interferometer, which
accepts single-photon pulses

|1〉 =
∫

dωφ(ω) |1(ω)〉 (6)

with

|1(ω)〉 := a†(ω) |0〉 (7)

and vacuum |0〉 as input with a†(ω) the creation operator for
frequency ω.

For the multichannel interferometer and

ω = (ω1 · · ·ωn), (8)

we use the shorthand notation

|1(ω)〉 := |1(ω1)〉 · · · |1(ωn)〉 (9)

for the products of states of the type (6). Next we explain how
to replace this product state by a time-bin-entangled state with
time delays

τ := (τ1 · · · τn)� (10)

for the immanant of Un associated with irrep λ with character
χλ(σ ).

For unitary representation P(σ ) of σ ∈ Sn,

P(σ ) |1(ω)〉 = |1(ωσ )〉 , (11)

where

ωσ := (ωσ (1) · · · ωσ (n) ); (12)
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for example for σ = (123), ωσ = (ω3, ω1, ω2). We define the
input state

|1〉λ (τ) =
∫

dnω√
n!

φ(ω)e−iω·τ ∑
σ∈Sn

χλ(σ ) |1(ωσ )〉 , (13)

with

dnω = dω1 · · · dωn, φ(ω) := φ(ω1) · · · φ(ωn). (14)

This input state contains as weighting factors the characters
of classes for irrep λ, which ensures that only coefficients of
products of one immanant of Un and its permutation survive
in the coincidence probability.

For n = 2 photons, and replacing

λ = 	→ + (15)

and

λ = 	→ −, (16)

the input state is

|1〉± (τ) =
∫

d2ω√
2

φ(ω)e−i(ω1−ω2 )τ [1 ± P(12)] |1(ω)〉 (17)

for

ω = (ω1, ω2), τ = (τ,−τ )�. (18)

For three photons, six permutations of ω are obtained using
the permutation group S3 with elements partitioned into three
classes {1}, σab, and σabc with

σab = {P(12), P(13), P(23)} (19)

and

σabc = {P(123), P(132)}. (20)

Replacing

λ = 	→ + (21)

and

λ = 	→ −, (22)

the input state

|1〉± (τ) =
∫

d3ω√
6

φ(ω)e−i(ω1−ω3 )τ

×{1 ± [P(12) + P(13) + P(23)]

+ [P(123) + P(321)]} |1(ω)〉 , (23)

with τ = (τ, 0,−τ ), is fully symmetric or alternating, and
thus used to obtain the permanent and determinant, respec-
tively. To obtain immanants for λ = with characters
{2, 0,−1} for the three classes 1, σab, and σabc, the input state
is

|1〉 (τ) =
∫

d3ωφ(ω)e−i(ω1−ω3 )τ

× 1√
6
{21 − [P(123) + P(321)]} |1(ω)〉 . (24)

For n = 4, there are 24 permutation operations with five
classes {1}, σab, σ(ab)(cd ), σ(abc), and σ(abcd ) corresponding to
the five partitions. The input state has the general form

|1〉λ (τ ) =
∫

d4ω√
4!

φ(ω)e−iω·τ ∑
σ∈S4

[χλ(σ ) |1(ωσ )〉], (25)

where the notation (11) is used and

τ = (3τ, τ,−τ,−3τ )�. (26)

Here

χ (σ ) ≡ 1∀σ, χ ≡ ±1, (27)

i.e., even/odd, for the permanent and determinant, respec-
tively. The characters needed for the three immanants λ =

, , and for the five classes are {3,−1,−1, 0, 1},
{2, 0, 2,−1, 0}, and {3, 1,−1, 0,−1}.

The interferometer maps the input state (13) to an output
Um |1〉λ (τ). The coincidence probability that all detectors at
the output click, after the transformation, provides an estimate
of the quadratic function

℘λ(τ ) = λ〈1|U †
m
nUm|1〉λ. (28)

The projection operator


n :=
n∏

j=1

∫
d� j |1(� j )〉 〈1(� j )| (29)

is an n-fold product of single-photon projections, each mod-
eling the count in detector j of a single photon, with flat
detection response independent of the frequency � j of the
photon. This samples the coincidence clicks on all the n
output ports; i.e., the coincidence probability is obtained by
projecting the output state of the interferometer onto exactly
one photon per output port with the detector.

As |1〉λ is a sum involving weighted permutations, the
function

℘λ(τ ) =
∑

σ1,σ2,σ
′
1,σ

′
2∈Sn

n∏
ı,j=1

χλ(σ1)χλ(σ2)Uı,σ ′
1(ı)U

∗
j ,σ ′

2(j )

× aσ1◦σ ′
1,σ2◦σ ′

2
(τ), (30)

where

aσ1◦σ ′
1,σ2◦σ ′

2
(τ)

=
∫

dnω

n!
|φ(ω)|2e

−i(ωσ1◦σ ′
1
−ωσ2◦σ ′

2
)·τ (31)

does not contain only the immanant for λ of Un but also
immanants for λ of matrices (Un)σ , differing from Un by
permutations of rows. The subscripts σ ◦ σ ′ in the frequency
vectors ω refer to a composition of permutations. For instance,
if σ ′

1 = (12) and σ1 = (132), then σ ′
1 ◦ σ1 = (13). The output

of the algorithm is the estimate of the quadratic function (30),
which we explain in the next subsection.

B. Estimate of the quadratic function

To estimate the quadratic function (30), we fix n, the
number of input photons, the time delays τ between the
photons in each input, and the partition λ of n. Given
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the input, we have the list of permutations of Sn, a lookup
table for the characters χλ for each partition λ, the matrix
Un, and its row-permuted versions. With these inputs, the sum
of the products of the integrals (30) fully determines what
the coincidence rate and hence the quadratic function is. The
integral (30) is the Fourier transform of the power spectrum
and Uı,σ ′

1(ı) relabels the output channel in which the photon is
detected.

For simplicity, we choose a Gaussian spectral function for
the sources. For a source pulse with carrier frequency ω0 and
bandwidth σ0,

φ(ω) ≡ G(ω; ω0, σ0) :=
exp

[ − (ω−ω0 )2

4σ 2
0

]
(
2πσ 2

0

)1/4 (32)

and

G(ω; ω0, σ0) := G(ω1; ω0, σ0) × · · · × G(ωn; ω0, σ0). (33)

Successive time delays are multiples of τ and equally dis-
tributed about zero such that the ıth component of the vector
τ is

τı =
{

(n + 1 − 2ı)τ, for n even,
1
2 (n + 1 − 2ı)τ, for n odd,

(34)

which leads to each integral (31) being a function of

G̃(τ, σ0) := exp
(−σ 2

0 τ 2
)
. (35)

Without loss of generality, σ0 ≡ 1 so τ is dimensionless scaled
time, which quantifies how long the delay should be in terms
of the width of the pulse. For any general n, we can rewrite
the somewhat complicated form of Eq. (30) in terms of three
basic quantities.

The first quantity is �(λ), which is a column vector con-
taining functions of products of immanants of the submatrix.
Finally, we have Aλ, whose elements are integers and the
(K + 1)-dimensional column vector G̃(τ ) with component k
given by the (k − 1)th power of G̃(τ ), namely,

G̃(τ ) := ([G̃(τ )]0, [G̃(τ )]1, . . . , [G̃(τ )]K )�. (36)

For each λ, the estimate (30) can then be written in the
cleaner form

℘λ(τ ) = ��(λ)AλG̃(τ ), (37)

where, for the choice of delay times (34), we have

K =

⎧⎪⎪⎨⎪⎪⎩
n∑

ı=1
2(n + 1 − 2ı)2 = 2

3 n(n2 − 1), even n,

n∑
ı=1

(n + 1 − 2ı)2/2 = 1
6 n(n2 − 1), odd n,

(38)

which fixes the maximum degree of G̃(τ ).
The estimate of the quadratic function (28) is achieved as

a sampling problem. Specifically, the server repeatedly injects
time-bin-entangled multiphoton states and records the coin-
cidences for detectors placed at each output port. The server
repeats the experiment L times, and a number l of coincidence
events at the output is recorded. Using the familiar tools of
binomial statistics, the event probability is estimated to be [17]

l

L
± z

L

√
l (L − l )

L
(39)

with z related to the confidence level. For a 95% confidence
interval, z ≈ 1.96, but other confidence levels are possible.
One can increase L to narrow the error on the rate so it is below
the desired threshold ε and thus the estimate of the quadratic
function Fλ(Un).

C. Experimental realization

We now explain the construction of the interferometer
based on the unitary matrix U . The matrix is decomposed by
exploiting the fact that any irrep of Um can be parametrized
in a basis that reduces a particular m − 1 subgroup and it is
therefore advantageous to recursively factorize each SU (m)
transformation into a product of SU (2)i j subgroup transfor-
mations mixing fields i and j [18,19]. Experimentally, any
Um matrix can be visualized as a series of

(m
2

)
beam splitters

and phase shifters [20–22] (see also [23]). The matrix Un is
a submatrix of Um, determined by keeping the n � m rows of
Um corresponding to the input channels, and the n columns of
U corresponding to detection channels. The rows and columns
need not be the same, and the n × n submatrix need not be
unitary.

Two-photon time-bin-entangled states have been created
by a single emitter using a Franson interferometer [24]. In
this method, an incoming laser pulse is created into a coherent
superposition of early and late photons through an unbalanced
interferometer [25]. Two-photon time-bin-entangled states are
then generated by creating a biexciton state of a quantum
dot, either by the early or by the late pulse, followed by
the emission of a biexciton-exciton photon cascade [24].
The emitted photons are thus in the time-bin-entangled state.
Generating time-bin-entangled states beyond the two-photon
case is a challenge, which we leave for future work.

III. QUADRATIC FORM FOR ANY IMMANANT
OF Un FOR n = 2, 3, AND 4

We now discuss specific realizations of n ∈ {2, 3, 4} pho-
tons scattering inside an m-channel interferometer, with also n
detectors to record the arrival of photons. A particular irrep of
the permutation group Sn is labeled by a partition conveniently
represented by a Young diagram, and so is an immanant;
hence λ is used interchangeably for both. For n = 2, there
are only the permanent and determinant of the U2 matrix.
For n = 3 and 4, the number of immanants is three and five,
respectively, one for each of the conjugacy classes of the S3 or
S4 symmetric group, for input states suggested in Eqs. (17) to
(25). For each n and λ, we get A from Fig. 2, where for even n
only coefficients of even powers of G̃(τ ) are shown as the rest
are zero.

The number of columns for odd n is K + 1 and for even n
is K/2 + 1. We see that as per (38)

K =
{

4, for n = 2 and 3,

40, for n = 4.
(40)

For each n and

λ+
n 	→ per(Un) (41)

and

λ−
n 	→ det(Un), (42)
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(a)
λ =

(b)
λ =

(c)
λ =

(d)
λ =

(e)
λ =

(f) λ =

(g) λ =
(h) λ =

(i) λ =
(j) λ =

FIG. 2. Aλ for different λ. (a) λ = . (b) λ = . (c) λ = .

(d) λ = . (e) λ = . (f) λ = . (g) λ = . (h) λ = . (i)

λ = . (j) λ = . Each element in a row of the matrix is the

coefficient of various powers of G̃(τ ). For even n, only coefficients
of even powers of G̃(τ ) are shown. The colors code the values of
coefficients as follows: white = 0, cyan = −1, blue = 1, bright green
= −2, dark green = 2, pink = −3, dark purple = 3, light purple =
−4, dark orange = 4, yellow = −5, light orange = 5, bright red =
−6, dark red = 6, and black = 7.

we obtain

�(λ±
n ) = 1

n!
|λ±

n |2, (43)

and Aλ is in Figs. 2(a) and 2(b), 2(c) and 2(d), and 2(f) and
2(g), for n ∈ {2, 3, 4}, respectively.

For λ = , the threefold coincidence probability estimates
the quadratic function (37) with

�(λ) = 1

3

⎛⎜⎝2(|λ|2 + |λ23|2 + |λ21|2 + |λ123|2)

λ
(
λ∗

21 + 2λ∗
23

) + (λ23 + λ12)λ∗
123

λ∗λ123 + λ∗
23λ12

⎞⎟⎠, (44)

for λi j and λi jk corresponding to permutations (i j) and (i jk)
of rows i, j, and k of the matrix Un, with (i jk) denoting
the cycle i → j, j → k, k → i, etc. Here λ∗ corresponds to
the complex conjugate of λ, and Aλ is given in Fig. 2(e). The
probability (37) is a quadratic function of the immanant of Un

and its permutations and linear in G̃(τ), for irrep λ = . The
explicit relation between quantities (5) and (37) for λ = and

is in Appendix A.

TABLE I. Character table for S4.

Class \ Irrep

χ ([4]) 1 −1 0 1 −1
χ ([13]) 1 0 −1 0 1
χ ([22]) 1 −1 2 −1 1
χ ([122]) 1 1 0 −1 −1
χ ([14]) 1 3 2 3 1

For λ = , using input state (25) with corresponding
characters, the coincidence probability estimates quadratic
function (37) with

�(λ) = 1

6

⎛⎜⎝ ξ

λ∗
12λ + λ∗

124λ13

λ∗
13λ

λ∗
124λ12

⎞⎟⎠ (45)

for

ξ := |λ|2 + |λ12|2 + |λ13|2 + |λ124|2 + λ∗
124λ + λ∗

12λ13 (46)

and Aλ is in Fig. 2(h). The coincidence probability is a
quadratic function of one immanant of a 4 × 4 submatrix
U4 and its permutations.

For λ = and , and sending the input states (25), the
coincidence probability gives the estimate of the quadratic
function Fλ(U ) for each λ, with Aλ in Figs. 2(i) and 2(j),
respectively, and �(λ) given in Appendix B. Except for
those partitions corresponding to permanents, we see from
Figs. 2(a), 2(c), and 2(f) that the sum of elements of A in
each row equals zero for all n. Thus, for indistinguishable
photons (τ = 0), all coincidence probabilities vanish except
℘ ··· , which becomes equal to the permanent.

The precise structure of �(λ), especially as a function of
the number of photons in the system, is unknown but intrigu-
ing. The answer would depend on linear relations between
immanants of shape λ, and these relations are apparently not
known yet. As an example, for λ = , the sum of immanants
with columns permuted is 0; on the other hand no such relation
exists for immanants of the type . Moreover, this sum rule
is certainly not true of sums of permanents of matrices with
permuted columns since the permanent is invariant under such
permutations.

As a result, the expressions for �(λ) are not unique, and
there is currently no obvious guide in ascertaining which set of
linearly independent immanants will provide improved insight
into these expressions. In one case expressions for some rates
were simplified by choosing a set of immanants that were not
all linearly independent [6]. Structural issues of �(λ) remain
at this stage open questions.

IV. CONCLUSIONS

In conclusion, we propose a scheme that estimates a
quadratic function of a specific immanant of a unitary matrix
Un, which describes an m-channel n-photon interferometric
transformation, and permutations of rows of Un. Our results
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gives actual quantum physical meaning to the immanant in the
sense that the multiphoton output coincidence rate samples
a quadratic function Fλ(U ), while photon coincidences in
previous studies depended on all of the immanants including
the permanent and determinant and so showed dependence on
immanants but did not isolate one immanant as we have done
here.

In order to translate our concept to experimental realiza-
tion, we explained how to decompose Um into a configuration
of beam splitters and phase shifters. In contrast to previous
studies, which consider only multiphoton input states that are
product, here we have introduced time-bin-entangled input
states, which still feature zero or one photon entering each
input port but arrival times are entangled. Constructing the
input state is a challenge, although a postselected variant of
time-bin-entangled states could be achievable as an extension
of Franson’s postselected superposition of two photons with
one being early and the other late with the case that the
first photon is late and the second one early [25]. Devising
multiphoton time-bin-entangled states is challenging, which
we save for future study. For two-photon coincidences, recent
experiments report around 104 coincidence counts per second
[26]. Though experiments are not being performed yet for
more photon coincidences, these figures suggest a reasonable
count rate for that as well.

The fact that input states are suggested to be generated
by postselection methods will not affect the efficiency of the
scheme compared to those based on single photons. Postse-
lected input states such as parametric down-conversion states
have been suggested in scattershot boson-sampling [27] and
experiments show that the event rate is 4.5 times better than
for boson-sampling experiments with single photons [12], due
to inefficient generation of photons in the latter [28]. We
expect that probabilistic sources in our case will not introduce
an added disadvantage over sampling based on single-photon
sources.

The advantage of our scheme over classical algorithms
needs to be analyzed. The calculation of the permanent using
sampling does not provide an exponential speedup, compared
to the classical algorithms [2,29–31], and we expect the same
for immanants. In addition, losses and imperfections further
degrade the efficiency of this scheme. The analysis of boson-
sampling with photon losses, dark counts, and other imper-
fections [32,33] shows that a quantum system is classically
simulatable if loss is constant. In fact any quantum circuit
with constant loss is classically simulatable [34]. However
for real experiments, the quantum advantage is not based on
the computational complexity and the physical requirement of
the quantum speedup but on the difficulty of simulating these
experiments classically [27,34].

We have constructed the theory generally for any n and
applied it to n ∈ {2, 3, 4}. The quadratic functions of each
immanant are sorted out by time-bin-entangled state, which
gives the immanant an interferometric realization. Ideally
input states could be engineered to make only the coefficient
of one immanant of Un survive and that of its permutations go
to zero. This would require a different experimental setup and
input state, which can be explored as future research.
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APPENDIX A: RELATING EQUATIONS (5) AND (37)

The summation of Eq. (5) can be expressed more com-
pactly using the matrix formulation of (37). This requires the
explicit computation of the coefficients aσσ ′ , some of which
will be identical for different (σσ ′) pairs. A direct calculation
shows that each aσσ ′ is proportional to one entry of the matrix
product AλG̃(τ ).

For λ = , we get

a(I )(I ) = 1
2 AλG̃(τ ) (A1)

= 1
2

(
1 − 4e−4σ 2

0 τ 2)
. (A2)

For λ = , four linearly independent immanants and ten
coefficients {aσσ ′ } exist. From our Fig. 2, we read

Aλ =
⎛⎝1 −1 0 0 0

0 1 0 0 −1
1 0 0 −1 0

⎞⎠, (A3)

and, from Eq. (36), we have

G̃(τ ) =

⎛⎜⎜⎜⎜⎝
1

e−σ 2
0 τ 2

e−2σ 2
0 τ 2

e−3σ 2
0 τ 2

e−4σ 2
0 τ 2

⎞⎟⎟⎟⎟⎠. (A4)

A direct comparison between the entries of AλG̃(τ ) and the
integral expression of aσσ ′ = aσ ′σ in (5) yields

a(I )(I ) = a(23)(23) = a(12)(12) = a(123)(123)

= 2

3

∑
ı

Aλ
1ıG̃ı1(τ ) = 2

3

(
1 − eσ 2

0 τ 2)
, (A5)

a(I )(12) = a(23)(123) = a(12)(123) = 1

3

∑
ı

Aλ
2ıG̃ı2(τ )

= −1

3

(
e−4σ0τ

2 + e−σ 2
0 τ 2)

, (A6)

a(I )(23) = 2

3

∑
ı

Aλ
2ıG̃ı2(τ )

= 2

3

(
e−4σ0τ

2 + e−σ 2
0 τ 2)

, (A7)

a(I )(123) = a(23)(12) = 1

3

∑
ı

Aλ
3ıG̃ı3(τ ) = 1

3

(
1 − e−3σ 2

0 τ 2)
.

(A8)
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The computation of the rate is concluded by multiplying each
of these terms by the appropriate entries of the � matrix,
which contains all the information about the linear combi-

nations of immanants that occur once the various terms of
Eq. (5) have been collected.

APPENDIX B: �(λ) FOR n = 4

Single-photon coincidences at n � m ports of an m-channel interferometer lead to the estimate of the quadratic function,
for each λ, for interaction times multiples of τ , given in Eq. (37). Here we detail the case where n = 4. The possible Young

diagrams are , , , , and . The first and the last correspond to fully symmetric and fully antisymmetric functions of

the columns (or rows) of a matrix: the permanent and the determinant respectively.
The character table for S4 is given as Table I. For instance, the immanant for the matrix

U =
(

U11 U12 U13 U14
U21 U22 U23 U24
U31 U32 U33 U34
U41 U42 U43 U44

)

is

imm = − U14U23U32U41 − U13U24U32U41 + U14U22U33U41 − U12U23U34U41 − U14U23U31U42

− U13U24U31U42 + U11U24U33U42 − U13U21U34U42 − U12U24U31U43 − U14U21U32U43

− U12U21U34U43 + U11U22U34U43 + U13U22U31U44 + U11U23U32U44

+ U12U21U33U44 + 3U11U22U33U44. (B1)

For n = 4 and for λ = , our vector �(λ) has the form

�(λ) = 1

24

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2(|λ|2 − λ∗λ12)

|λ12|2 + |λ34|2 + |λ124|2
−2[(2 λ + 2 λ12 − λ34)λ∗

14]

2|λ13|2 + 2λ13λ
∗ − λ14λ

∗
132

2|λ14|2
2(|λ23|2 + |λ132|2)

|λ143|2
λ∗

12λ34

−2[(2 λ − λ12 − λ43)λ∗
23 + (λ12 + λ124)λ∗

132]

−2λ∗λ34

2λ∗λ124

λ14λ
∗
143

2[(λ + λ12)λ∗
143]

−λ∗
12λ124

2λ14λ
∗
23

−λ14λ
∗
124

λ23λ
∗
124

(2λ + λ14 − λ23)λ∗
132 + 2(λ12 + λ14 + λ23 + λ43 − λ132 − λ143)λ∗

13

2λ23λ
∗
143

−λ34λ
∗
124

−2λ34λ
∗
132

−λ34λ
∗
143

λ124λ
∗
143

2λ132λ
∗
143

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ c.c. (B2)
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For the irrep λ = , we have in turn

�(λ) = 1

24

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2[|λ|2 + λ(λ∗
12 + λ∗

34 + λ∗
143)]

|λ12|2 + 1
2 (|λ34|2 + |λ124|2)

(|λ14|2)

(|λ23|2 + |λ132|2)

2[|λ13|2 + (λ + λ12 + λ14 + λ34 + λ23 + λ132 + λ143)λ∗
13 + λ132λ

∗
14]

1
2 |λ143|2
2λ∗

124λ

λ∗
12λ34

[2 λ∗
14(λ + λ12 + λ34+) + λ∗

34(λ23)]

λ∗
23(2 λ + λ12) + λ∗

132(λ12 + λ124)

λ∗
12λ143

λ∗
12λ124

2λ∗
14λ23

λ∗
14λ124

λ∗
34λ132

λ∗
34λ143

λ∗
34λ124

λ∗
23λ124

λ∗
23λ143

λ∗
23λ132

λ∗
143λ124

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ c.c.,

which is a quadratic function of immanant λ of the Un matrix and its permutations.
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