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Effective Hamiltonian methods are utilized to model the two-qubit cross-resonance gate for both the ideal
two-qubit case and when higher levels are included. Analytic expressions are obtained in the qubit case and
the higher-level model is solved both perturbatively and numerically, with the solutions agreeing well in the
weak-drive limit. The methods are applied to parameters from recent experiments and, accounting for classical
cross-talk effects, results in good agreement between theory and experimental results.
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I. INTRODUCTION

Implementing high-fidelity quantum operations is a central
problem in the field of experimental quantum information
processing (QIP). Building a universal fault-tolerant quantum
computer requires the ability to perform a high-fidelity two-
quantum-bit (two-qubit) entangling gate and, while many
proposals have been put forth for implementing two-qubit
gates, few experimental demonstrations have achieved fideli-
ties near those determined by fault-tolerant analyses [1,2]. The
cross-resonance (CR) gate [3,4] has recently been utilized
in superconducting circuit systems [5] to achieve a two-
qubit CNOT gate with high fidelity exceeding 0.99 [6] and
has been used in small-scale multiqubit demonstrations of
fault-tolerant protocols [7–10]. Here we provide a theoreti-
cal analysis of the CR gate and outline effective Hamilto-
nian methods that can be used to obtain a description of
the gate dynamics. The developed techniques are directly
applicable in realistic systems as shown by the improved
experimental calibration and high two-qubit gate fidelity of
Ref. [6].

Broadly speaking, the goal of effective Hamiltonian theory
is to model some set of complex dynamics on a large system
via a more compact Hamiltonian on a set of smaller subsys-
tems or subspaces. Effective Hamiltonian methods have been
utilized in various areas of physics and chemistry, including
nuclear, atomic-molecular, optical, and condensed-matter sys-
tems. In particular, techniques for the adiabatic elimination
of higher-energy levels in a system have been widely stud-
ied, with common examples including the Schrieffer-Wolff
transformation [11,12] and Born-Oppenheimer approxima-
tion [13]. Here we restrict attention to effective Hamiltonian
constructions based on unitary (canonical) operations that
transform the Hamiltonian H on the full Hilbert space H into
a block-diagonal Hamiltonian Heff with the two-block case
corresponding to the standard Schrieffer-Wolff transforma-
tion.

We outline the perturbative construction of an effec-
tive Hamiltonian where the desired block-diagonal form
is enforced at each order. The advantage of the pertur-
bative construction lies in obtaining analytical expressions
for components of Heff that hold in the weak perturbation

limit. The second construction is based on an exact multi-
block-diagonalization technique [14], which finds the block-
diagonal Hamiltonian that is closest to the true Hamiltonian
under the principle of least action. This method has the
advantage of being valid in the strong drive regime; however,
it is not possible to compute general analytic expressions
for the Hamiltonian components except in simple cases such
as the basic two-qubit model. These methods are applied
to obtain an effective model for the CR gate Hamiltonian
in the two-qubit model as well as when higher levels are
included. As a concrete example, we use the parameters
of Ref. [6] and find good agreement between the pertur-
bative and exact multi-block-diagonalization approaches in
the weak-drive limit with higher levels included. However,
a discrepancy is found between the theory and experiment
since Ref. [6] finds the presence of extra unwanted terms
in the Hamiltonian. We propose classical cross talk between
the two transmons from the CR drive as a potential source
for this discrepancy and extend the analysis to include this
effect. After doing so, we find very good agreement be-
tween the theoretical predictions and experimental results of
Ref. [6].

The paper is structured as follows. First, in Sec. II, we
describe the starting Hamiltonian for the analysis, which con-
sists of two transmons dispersively coupled to a resonator. We
outline a method to find an effective block-diagonal Hamil-
tonian for the two-transmon–resonator system, which when
projected onto the zero-excitation subspace of the resonator
provides an effective Hamiltonian for the two-transmon sys-
tem alone. Next, in Sec. III, we model the transmons as
ideal qubits and find an analytic expression for the effec-
tive CR Hamiltonian under the principle of least action. In
Sec. IV, we model the transmons as Duffing oscillators and
find perturbative expressions that hold in the weak-drive limit.
We also perform a numerical analysis of the exact block-
diagonalization technique using the parameters of Ref. [6].
In Sec. V, we analyze classical cross talk occurring from the
CR drive to model the results of Ref. [6]. For clarity of the
presentation, the mathematical methods and details of effec-
tive Hamiltonian theory are contained in Appendix A, with
the main text focused mainly on discussion of the application
of the methods to the CR gate.
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II. INITIAL HAMILTONIAN AND EFFECTIVE
TWO-TRANSMON HAMILTONIAN

We start with a Hamiltonian describing the standard cQED
[15] setup of two transmons [16], modeled as Duffing oscilla-
tors, coupled to a bus resonator,

Hsys =
2∑

j=1

[
ω̄ jb

†
jb j + δ1

2
b†jb j (b

†
jb j − 1)

]
+ ωrc†c

+
2∑

j=1

g j (b
†
jc + b jc

†), (2.1)

where we set h̄ = 1. Here, ω̄ jb
†
jb j + δ j

2 b†jb j (b
†
jb j − 1) is the

Duffing Hamiltonian of the jth transmon ( j = 1, 2), with ω̄ j

and δ j being the 01 transition frequency and anharmonicity
of the jth transmon, respectively. The resonator Hamiltonian
ωrc†c is a single-mode harmonic oscillator with fundamen-
tal frequency ωr � ω̄1(2). Each transmon is coupled to the
resonator by a Jaynes-Cummings Hamiltonian with coupling
strength g j and, since we are in the dispersive regime,

∣∣∣∣ g j

� j,r

∣∣∣∣ � 1, (2.2)

where � j,r = ω̄ j − ωr is the detuning of the jth transmon
to the resonator. Note that the total number of excitations
is a symmetry of the system as the total excitation operator
commutes with Hsys.

Let us write Hsys as the sum of two Hamiltonians Hsys,0 and
Hsys,1,

Hsys,0 =
2∑

j=1

[
ω̄ jb

†
jb j + δ1

2
b†jb j (b

†
jb j − 1)

]
+ ωrc†c,

Hsys,1 =
2∑

j=1

g j (b
†
jc + b jc

†), (2.3)

where Hsys,0 is diagonal and Hsys,1 contains all of the coupling
terms and so is off diagonal. Moving into the frame rotating at
ωr via the unitary

R = e−itωr (b†1 b1+b†2 b2+c†c) (2.4)

gives

Hsys =
2∑

j=1

[
� j,rb†jb j + δ j

2
b†jb j (b

†
jb j − 1)

]

+
2∑

j=1

g j (b
†
jc + b jc

†), (2.5)

where � j,r = ω̄ j − ωr . In this frame, the diagonal part of Hsys

is independent of the resonator photon number. Therefore,
Hsys is the direct sum of infinitely many identical copies
(blocks), where each copy corresponds to a photon number

{0, 1, 2, . . . },

diag(Hsys) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0p

1p

2p

.

.

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.6)

All of the photon-number blocks jp describe the same two-
transmon Hamiltonian and each block can be broken into sub-
blocks labeled by excitation number of the transmons,

jp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

{�i,r}
{2�i,r + δi,�1,r + �2,r}

.

.

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.7)

Hence we can denote every possible excitation block by the
label ( jP, kT ), where ‘‘P” refers to photon and “T” refers to
transmon.

Now, since the photon-number blocks jp support the same
Hamiltonian, the blocks (mP, kT ) and (rP, kT ) have the exact
same form for m �= r and we can group all of the levels
with the same transmon excitation number into a single
infinite-dimensional block. The first block corresponds to zero
excitations in the transmons,

{(0P, 0T ), (1P, 0T ), . . . , (mP, 0T ), . . . }
= {|0P〉 ⊗ |00〉, |1P〉 ⊗ |00〉, . . . , |mP〉 ⊗ |00〉, . . . }, (2.8)

at 0 energy scale; the second block corresponds to one-
transmon excitation,

{(0P, 1T ), . . . , (mP, 1T ), . . . }
= {|0P〉 ⊗ |01〉, |0P〉 ⊗ |10〉, . . . , |mP〉

⊗ |01〉, |mP〉 ⊗ |10〉, . . . }, (2.9)

at the energy scale {�1,r,�2,r}; and the third block corre-
sponds to two-transmon excitations,

{(0P, 2T ), . . . , (mP, 2T ), . . . }
= {|0P〉 ⊗ |02〉, |0P〉 ⊗ |11〉, |0P〉 ⊗ |20〉, . . . ,
|mP〉 ⊗ |02〉, |mP〉 ⊗ |11〉, |mP〉 ⊗ |20〉, . . . }, (2.10)

at an energy scale of {2�1,r + δ1,�1,r + �2,r, 2�2,r + δ2}.
The fourth block will correspond to three-transmon excita-
tions and four energies of the same order, and, in general, the
kth block will correspond to k − 1 transmon excitations and k
different energies of the same order.
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Hence, diag(Hsys) is written as

diag(Hsys) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0T

1T

2T

.

.

.

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.11)

where each block kT has energy approximately of the order
of k� j,r . Since the coupling terms preserve total excitation
number, there are no coupling terms connecting elements
within each block. All coupling terms connect different blocks,
which are detuned on the order of � j,r , that is, there are only
couplings between the blocks [( j + 1)P, (k − 1)T ] and [( j −
1)P, (k + 1)T ]. Since these blocks are detuned on the order of
� j,r , which is assumed to be much larger than the coupling
strengths g j , the couplings can be adiabatically eliminated to
give an effective block-diagonal Hamiltonian for the whole
system, as outlined via the methods in Appendix. A. In the
dispersive regime where ωr is much larger than the transmon
frequencies, one can obtain an effective Hamiltonian for the
two transmons by projecting onto the zero-excitation subspace
of the bus, which gives

H (0)
sys =

2∑
j=1

[
ω̃ jb

†
jb j + δ j

2
b†jb j (b

†
jb j − 1)

]

+ J (b†1b2 + b1b†2), (2.12)

where ω̃1 and ω̃2 are the dressed qubit frequencies and, to
lowest order, the exchange coupling is given by

J = g1g2(ω̄1 + ω̄2 − 2ωr )

2(ω̄1 − ωr )(ω̄2 − ωr )
. (2.13)

The general drive Hamiltonian is modeled as

Hd =
2∑

j=1

[
�Xj (t ) cos

(
ωd j t

)+ �Yj (t ) sin
(
ωd j t

)]
(b†j + b j ),

(2.14)

where ωd j is the drive frequency on transmon j, and �Xj (t ),
�Yj (t ) are the drive amplitudes on the quadratures of transmon
j. The full Hamiltonian is given by

HT = H (0)
sys + Hd

=
2∑

j=1

[
ω̃ jb

†
jb j + δ j

2
b†jb j (b

†
jb j − 1)

]
+ J (b†1b2 + b1b†2)

+
2∑

j=1

[
�Xj (t ) cos

(
ωd j t

)+ �Yj (t ) sin
(
ωd j t

)]
(b†j + b j ).

(2.15)

For now, we will focus mainly on the case of only a drive term
on the X quadrature of qubit 1 (control),

HT =
2∑

j=1

[
ω̃ jb

†
jb j + δ j

2
b†jb j (b

†
jb j − 1)

]
+ J (b†1b2 + b1b†2)

+�(t ) cos(ωdt )(b†1 + b1). (2.16)

We take HT to form the basis of our analysis and analyze the
ideal qubit model next.

III. EFFECTIVE CR HAMILTONIAN FOR
A QUBIT MODEL

In the qubit model, the anharmonicity is infinite, so the
qubit subspace is perfectly isolated and HT is given by

HT =
2∑

j=1

ω̃ jb
†
jb j + J (b†1b2 + b1b†2) + �(t ) cos(ω̃2t )(b†1 + b1),

(3.1)

where b j is a two-level operator, the control qubit is driven
at the frequency of the target qubit, and, for simplicity, we
assume �(t ) = � is a constant amplitude drive on the X
quadrature of the control qubit only. We derive an exact
expression for the full qubit CR Hamiltonian using the method
of Ref. [14] and find an effective ZX term that agrees with
expressions derived previously using alternative methods [4].
First, we move into the frame rotating at ω̃2 on both qubits
and make the rotating wave approximation (RWA) by ignor-
ing fast-rotating terms. Writing cos(ω̃2t ) = (e−iω̃2t + eiω̃2t )/2,
defining

R = e−iω̃2(b†1 b1+b†2 b2 )t , (3.2)

and ignoring fast-rotating terms gives the Hamiltonian

HR = R†HT R − iR†Ṙ

= �b†1b1 + J (b†1b2 + b1b†2) + �

2
(b†1 + b1)

=

⎡
⎢⎢⎢⎣

0 0 �/2 0

0 0 J �/2

�/2 J � 0

0 �/2 0 �

⎤
⎥⎥⎥⎦, (3.3)

where � = ω̃1 − ω̃2. From the form of HR, there are naturally
two 2 × 2 blocks, i.e., one corresponding to the states |00〉,
|01〉 with energy scale 0 and the other corresponding to the
states |10〉, |11〉 with energy scale �. Using the method of
Appendix A 1, which in this case corresponds to the stan-
dard Schrieffer-Wolff transformation, one can find the closest
block-diagonal Hermitian matrix to HR under the principle of
least action. Let X be the eigenvector matrix of HR, that is, X
has columns consisting of the normalized eigenvectors of HR.
Let X be the unnormalized version of X , with columns given
by

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(J2+
√

J2(J2+�2 ))(�+
√

2J2+�2+�2−2
√

J2(J2+�2 ))

J�2

− (�+
√

2J2+�2+�2−2
√

J2(J2+�2 ))

�

(J2−
√

J2(J2+�2 ))
J�

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(J2−
√

J2(J2+�2 ))(�+
√

2J2+�2+�2+2
√

J2(J2+�2 ))

J�2

− (�+
√

2J2+�2+�2+2
√

J2(J2+�2 ))

�

(J2+
√

J2(J2+�2 ))
J�

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−(J2+
√

J2(J2+�2 ))(−�+
√

2J2+�2+�2−2
√

J2(J2+�2 ))

J�2

(−�+
√

2J2+�2+�2−2
√

J2(J2+�2 ))

�

(J2−
√

J2(J2+�2 ))
J�

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(−J2+
√

J2(J2+�2 ))(−�+
√

2J2+�2+�2+2
√

J2(J2+�2 ))

J�2

(−�+
√

2J2+�2+�2+2
√

J2(J2+�2 ))

�

(J2+
√

J2(J2+�2 ))
J�

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Approximating

(J2 ±
√

J2(J2 + �2))

J�
∼ 1, (3.4)

and rescaling the eigenvectors implies that X takes the form⎡
⎢⎢⎢⎢⎢⎢⎣

1

−1

− �

(�+
√

J2+�2+(�−J )2 )
�

(�+
√

J2+�2+(�−J )2 )

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1

− �

(�+
√

J2+�2+(�+J )2 )

− �

(�+
√

J2+�2+(�+J )2 )

⎤
⎥⎥⎥⎥⎥⎥⎦

, (3.5)

⎡
⎢⎢⎢⎢⎢⎢⎣

1

−1
�

(−�+
√

J2+�2+(�−J )2 )

− �

(−�+
√

J2+�2+(�−J )2 )

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

1

1
�

(−�+
√

J2+�2+(�+J )2 )
�

(−�+
√

J2+�2+(�+J )2 )

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.6)

The least-action unitary T that block diagonalizes HR is given
by

T = XX †
BDX

− 1
2

P , (3.7)

where XBD is the block diagonalization of X and XP =
XBDX †

BD. We have

(X P )−
1
2 (1 : 2, 1 : 2) =

[
1√
2

0

0 1√
2

]
, (3.8)

and (X P )
− 1

2 (3 : 4, 3 : 4) is the 2 × 2 matrix[
a b

b a

]
, (3.9)

where

a = −2� +
√

J2 + �2 + (� − J )2+
√

J2 + �2 + (� + J )2

2
√

2�
,

b = −
√

J2 + �2 + (� − J )2 +
√

J2 + �2 + (� + J )2

2
√

2�
.

(3.10)

Ignoring terms of the order of J2 gives the following unnor-
malized columns for T :⎡

⎢⎢⎢⎢⎢⎢⎣

√
2

0
−√

2�

(�+√
�2+�2 )
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

0√
2

0

−√
2�

(�+√
�2+�2 )

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2

0
−√

2�

(�−√
�2+�2 )
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎣

0√
2

0

−√
2�

(�−√
�2+�2 )

⎤
⎥⎥⎥⎥⎥⎥⎦

. (3.11)

Finally, computing the block diagonal of HR and moving back
to the physical frame consisting of the transmons rotating at
their respective frequencies gives the block-diagonal Hamil-
tonian HCR with 2 × 2 blocks given by

1

2

⎡
⎣� − √

�2 + �2 − J�√
�2+�2

− J�√
�2+�2 � − √

�2 + �2

⎤
⎦, (3.12)

1

2

⎡
⎢⎢⎣

−� + √
�2 + �2 J�√

�2+�2

J�√
�2+�2 −� + √

�2 + �2

⎤
⎥⎥⎦. (3.13)

The ZX term is thus given by

tr

(
HCR

[
ZX

2

])
= − J�√

�2 + �2
, (3.14)

where, by virtue of the system Hamiltonian definition, the
two-qubit Pauli operators are scaled by 1

2 (in an n-qubit
system, they are scaled by 1

2n−1 ). The Stark-shift term on the
control qubit is given by

tr

(
HCR

[
ZI

2

])
= � −

√
�2 + �2, (3.15)

and so, in total,

HCR = (� −
√

�2 + �2)
Z1

2
−
(

J�√
�2 + �2

)
ZX

2
. (3.16)

IV. EFFECTIVE CR HAMILTONIAN FOR
A HIGHER-LEVEL MODEL

For a model including higher levels, the approach is to first
dress H (0)

sys in Eq. (2.12) and then rotate the drive term into
this frame. The system is then moved into the frame rotating
at the target qubit frequency on both qubits, and an RWA
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is performed. In this rotating frame, the control |0〉 and |1〉
states define two subspaces that are far detuned by ∼� and
an effective block-diagonal Hamiltonian is obtained via the
perturbative analysis of Appendix A 2. Unlike the qubit case,
exact analytical expressions are not straightforward to obtain
and so realistic parameters are used for the exact method
of Appendix A 1. For these parameters, we find that the
perturbative expressions and the exact block diagonalization
agree up to medium power drives of � ∼ 50 MHz, with the
exact method holding for much larger values of �. Note that
a semianalytical approach to estimating rates for the CR gate
has been given in Ref. [17].

To start, we assume that J
|ω̃1−ω̃2| � 1 and obtain an effective

diagonal Hamiltonian for H (0)
sys . Letting U be the diagonalizing

(dressing) unitary, the effective diagonal Hamiltonian is given
by

H̃ (0)
sys = U †H (0)

sysU, (4.1)

where, to second order in the two-qubit subspace,

H̃ (0)
sys = ω1

Z1

2
+ ω2

1Z

2
+ ξ

ZZ

2
, (4.2)

with

ω1 = −ω̃1 − J2

�
− ξ, (4.3)

ω2 = −ω̃2 + J2

�
− ξ, (4.4)

ξ = − J2(δ1 + δ2)

(� + δ1)(δ2 − �)
. (4.5)

The presence of higher levels has produced an effective ZZ
interaction in the two-qubit subspace. The drive term of
Eq. (2.14) is rotated into this frame by applying the diago-
nalizing unitary U ,

H̃d =
2∑

j=1

[�Xj (t ) cos(ωd j t ) + �Yj (t ) sin(ωd j t )]B̃ j, (4.6)

where B̃ j = U †(b†j + b j )U for j = 1, 2. We set ωd1 = ωd2 =
ωd and the Hamiltonian in the dressed frame is given by

H (t ) = H̃ (0)
sys + H̃d (t ). (4.7)

Moving into the frame rotating at ωd on both transmons
and making the RWA as outlined in Appendix B gives the
Hamiltonian

HRWA = H̃drift + H̃d, RWA, (4.8)

where

H̃drift := H̃ (0)
sys − H̃A,

H̃d,RWA := (R†H̃d R)RWA, (4.9)

H̃A = ωd (b†1b1 + b†2b2),

and the matrix elements of (R†Hd,diagR)RWA are given by
the cases in Eq. (B1). The drive frequency on the control
transmon, ωd , is set to be the average of the dressed target
transmon frequencies over the ground and excited states of

the control transmon,

ωd = H̃ (0)
sys (11) − H̃ (0)

sys (10) + H̃ (0)
sys (01) − H̃ (0)

sys (00)

2
. (4.10)

We suppose the states are ladder ordered as {00, 01, 10,

11, 02, 20, 03, 12, 21, 30, . . . , 0d, . . . , d0}, with F denoting
the permutation matrix that moves to ladder ordering from
standard Kronecker ordering. To second order in J , the
{00, 01} subspace has energy J2

�
, the {10, 11} subspace has

energy � + J2

�
, and {rest} is assumed to be detuned from both

of these subspaces. Loosely speaking, the energy of the state
| jk〉 is given by

j� + j( j − 1)

2
δ1 + k(k − 1)

2
δ2, (4.11)

so that Hdrift is naturally partitioned according to the rela-
tive detunings with respect to ωd . Therefore, the space can
be partitioned as {00, 01}, {10, 11}, {rest}. The off-diagonal
elements have a magnitude set by �( J

�
)
m

for m � 0. Let
us now analyze the perturbative approach to obtain analytic
expressions in the weak-drive limit and then investigate the
exact method under the principle of least action.

A. Effective perturbative Hamiltonian

Under the assumption �
�

� 1, a canonical transforma-
tion can be perturbatively constructed to find an effective
block-diagonal Hamiltonian via the method outlined in Ap-
pendix A 2 b. We assume that the drive term in Eq. (4.6)
contains only a drive on the X quadrature of the control with a
constant amplitude �. The unperturbed Hamiltonian, denoted
H0, can be defined in a few different ways. For instance, it can
be defined via the block diagonals of HRWA,

H0 = P0001HRWAP0001 + P1011HRWAP1011 + PrestHRWAPrest,

(4.12)

with the perturbative term given by

H1 = HRWA − H0

�
, (4.13)

so that

HRWA = H0 + λH1. (4.14)

Unfortunately, defining H0 to be block diagonal does not
provide simple analytic expressions for the effective block-
diagonal Hamiltonian components because one needs to an-
alytically compute the inverse of H0 (see Appendix A 2 b).
As a result, we approach the construction by defining an
unperturbed Hamiltonian via the diagonals of HRWA,

H0 = diag(HRWA), (4.15)

and define the perturbative term by

H1 = HRWA − H0

�
. (4.16)

At each order, we enforce block diagonality as usual, where
the diagonal unperturbed Hamiltonian is treated as block di-
agonal. In this picture, all terms of the Hamiltonian containing
the drive are included in the perturbation Hamiltonian and the
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inverse of H0 is simple to compute. The order parameter is
given by λ = � and

HRWA = H0 + λH1. (4.17)

The perturbation proceeds as follows. The effective Hamil-
tonian takes the form

Heff =
∞∑

m=0

λmH (m), (4.18)

where H (0) = H0 is diagonal (block diagonal) and, for m > 0,

H (m) = i[S(m), H0] + H (m)
x , (4.19)

with H (m)
x defined in Appendix A 2 b. We define the mth-order

approximation to Heff by

H (m)
eff = H (0) + λH (1) + λ2H (2) + · · · + λmH (m), (4.20)

where, at each order, H (m) is enforced to be block diagonal by
the choice of S(m). Usually for m = 1, H (1)

x = H1 is orthogonal
to the desired form of H (m)

eff and so S(1) typically eliminates
the first-order term H (1). Here, however, by choosing H0 to
be diagonal, H1 has nonzero super- and subdiagonals of the
order of J

�
�. Therefore, while we assume as usual that S(1)

is off-block-diagonal, the nonzero super- and subdiagonals of
H1 survive to give a contribution at first order in � so that
H (1)

eff has leading diagonals of the order of J
�

� and unchanged

diagonal elements (which have shifts of the order of J2

�
from

the dressing).
Keeping terms to first order in J ,

H (2)
x = − 1

2 [S(1), [S(1), H0]] + i[S(1), H1] (4.21)

has sub- and superdiagonals equal to 0 and contributions of
the order of �2 on the diagonals. Thus the second-order term
contributes only to the diagonals, and the off diagonals of H (2)

eff
are the same as in the first-order expression,

H (1)
eff [1, 2] = H (2)

eff [1, 2] = −J�X,1

2�
,

H (1)
eff [3, 4] = H (2)

eff [3, 4] = −J�X,1(� − δ1)

2�(� + δ1)
. (4.22)

Going to third order, one again obtains corrections to the off
diagonals and we use the third-order effective Hamiltonian for
the analytic expressions of the Hamiltonian. Moving back into
the physical frame to restore the correct energies relative to the
respective qubit frequencies gives the final Hamiltonian HCR,

HCR = Heff + (ωd − ωd1 )F (b†b ⊗ 1)F †, (4.23)

where

ωd1 = H̃ (0)
sys (11) − H̃ (0)

sys (01) + H̃ (0)
sys (10) − H̃ (0)

sys (00)

2
(4.24)

is the dressed frequency of the control qubit.
The ZX coefficient to third order is given by

ZX

2 coeff

= ZX

2 linear
+ J�3δ2

1 (3δ3
1 + 11δ2

1� + 15δ1�
2 + 9�3)

2�3(δ1 + �)3(δ1 + 2�)(3δ1 + 2�)
,

(4.25)

FIG. 1. All Pauli coefficients excluding ZI as a function of CR
drive amplitude for model including higher levels.

where

ZX

2 linear
= −J�

�

(
δ1

δ1 + �

)
, (4.26)

and the full set of Pauli coefficients is given in Appendix C.
The poles in the ZX expression occur at � = 0, − δ1

2 ,
−δ1, − 3δ1

2 . The point � = 0 corresponds to the qubits on-
resonance and the point � = −δ1 corresponds to the ω

(1)
01 =

ω
(2)
12 . The points � = − δ1

2 and � = −δ1, − 3δ1
2 are two-photon

processes, the first of which corresponds to ω
(1)
01 = ω

(2)
02
2 . If

these points are avoided, one expects the perturbative ex-
pressions to model the system well in the weak-drive limit.
Low-order perturbative analysis has been utilized in Ref. [18]
to better understand the operating regime.

B. Effective Hamiltonian from principle of least action

An effective block-diagonal CR Hamiltonian obtained un-
der the principle of least action (outlined in Appendix A 1)
provides a valid model in the limit of strong drives, where
the perturbative model breaks down. Since a general analytic
expression for the effective Hamiltonian cannot be obtained,
we use the device parameters of Ref. [6] to form the basis
of our study: ω1/2π = 5.114 GHz, ω2/2π = 4.914 GHz,
δ1/2π = −0.330 GHz, δ2/2π = −0.330 GHz, g1/2π =
0.098 GHz, g2/2π = 0.083 GHz, ωr/2π = 6.31 GHz, and
ξ/2π = 277 kHz. Using the approximation from Eq. (4.5),

ξ = − 2J2(δ1 + δ2)

(�12 + δ1)(δ2 − �12)
, (4.27)

the exchange coupling rate is given by J/2π = 3.8 MHz.
Figure 1 contains all of the relevant Pauli coefficients except
ZI , which is given in Fig. 2 and diverges quickly since the
control qubit is driven far off resonance. The presence of
higher levels and finite anharmonicity produces a large IX
term in the Hamiltonian that is not present in the pure qubit
model. The ZX and IX coefficients have the largest magnitude
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FIG. 2. ZI Pauli coefficient as a function of CR drive amplitude
for model including higher levels.

and so the other coefficients are also contained alone in Fig. 3.
The IZ and ZZ terms do not deviate significantly from their
initial values as the drive amplitude increases. Note that the
nonzero offset of the ZZ coefficient corresponds to the static
ZZ term.

Importantly, there is no IY term present, which is also
expected from the perturbative expressions for the Pauli coef-
ficients in Appendix. C. This is in contrast to the experimental
results of Ref. [6], where there is a large IY component for this
set of parameters. We revisit this discrepancy in Sec. V. Fig-
ure 4 contains expressions for the ZX term from the different
Hamiltonian models: principle of least action, first-order per-
turbative expression, third-order perturbative expression, and
the ideal qubit limit. As expected, the perturbative expressions
match the principle of least action for weak �, but diverge
as � grows large. In addition, there is a significant deviation
between the ZX coefficient for the perfect qubit model and

FIG. 3. IY , IZ , ZY , and ZZ Pauli coefficients as a function of CR
drive amplitude for model including higher levels.

FIG. 4. Perturbative, qubit model, and numerical ZX values as a
function of CR drive amplitude.

that from the principle of least action, which indicates that the
presence of higher levels with finite anharmonicity needs to
be taken into account for accurate Hamiltonian modeling.

Next, both the frequency of the control transmon, ω1, and
the drive amplitude � are swept with �/2π varied from 0
to 600 MHz and �/2π from 0 to 100 MHz. From the poles
in the expressions of the Pauli coefficients found in Sec. IV A,
one expects that when � = − δ1

2 , −δ1, − 3δ1
2 , Heff will be a poor

model for H . A method for quantifying how well Heff captures
the full dynamics is discussed in Appendix A 1. The ZX
coefficient is shown in Fig. 5 and, up to −δ1, there is a sizable
ZX rate; however, past this point, the rate quickly goes to 0.
Intuitively, this phenomenon is explained by the fact that when
two transmons are detuned by an amount greater than their
anharmonicity, they begin to look like harmonic oscillators

FIG. 5. Two-dimensional ZX coefficient sweep (color scale in
MHz).
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with respect to each other. Therefore, since entanglement
cannot be created between two harmonic oscillators, the ZX
term approaches 0 as the detuning � grows large.

V. MODELING CLASSICAL CROSS TALK
FROM CR DRIVE

In Ref. [6], a CR gate with the parameters of Sec. IV B was
calibrated based on the block-diagonal effective Hamiltonian
in a scheme called partial Hamiltonian tomography. A large
IY term was found to be present, but clearly the results of
Sec. IV B predict no such term can arise from the Hamiltonian
model considered to this point. One potential model for the
source of this term that we investigate here is classical cross
talk induced on the target from driving the control.

To analyze this model, we go back to Eq. (4.6) and allow
for a drive term on the target qubit whose amplitude and phase
depend on the drive on the control. The total drive term then
takes the form

H̃d = �(t ) cos(ωdt + φc)B̃1 + A�(t ) cos(ωdt + φt )B̃2,

(5.1)

where B̃ j = U †(b†j + b j )U for j = 1, 2, A � 1 is a scale
factor modeling the amplitude of the cross-talk term, and
φt is the phase lag that occurs on the target. The values of
these parameters depend on the form of the cross-talk channel.
Since the cross-talk term corresponds directly to a rotation
on the target qubit, the condition for block diagonalization
�

�12
� 1 is unchanged and the methods discussed here can be

used to obtain an effective Hamiltonian.
Using the parameters of Ref. [6], we find the following

values for A, φc, and φt :

A = 0.071, φc = π, φt = −0.62, (5.2)

produce the Pauli coefficients seen in Fig. 6, which agree
well with those in Fig. 2(b) of Ref. [6]. It is important to
note that this agreement only suggests classical cross talk as
a potential source for the presence of the IY term in Ref. [6].
Potential sources of cross-talk channels are an area of current
investigation.

VI. DISCUSSION

We have provided detailed theoretical models of the cross-
resonance gate via effective block-diagonal Hamiltonian tech-
niques. For the idealized qubit model, analytic expressions
for the Hamiltonian components using the principle of least
action [14] were obtained. The only two nonzero compo-
nents are a large Stark-shift term on the control qubit from
off-resonant driving as well as the ZX term required for
generating entanglement. For the realistic transmon model,
effective Hamiltonians were constructed via both a perturba-
tive approach as well as the principle of least action. These
two approaches agree well in the weak-drive limit and predict
nonzero Pauli coefficients of the form A ⊗ B with A ∈ {I, Z},
B ∈ {I, X, Z}. The presence of extra Hamiltonian terms com-
pared to those from the ideal qubit case implies that higher

FIG. 6. All Pauli coefficients excluding ZI as a function of CR
drive amplitude for model with higher levels and a drive on target
representing classical cross talk.

levels play an important role to understand the precise error
terms for implementing a two-qubit gate.

In the experiment of Ref. [6], an IY term was found to
be present, in contrast to what is predicted from our analysis
with a single CR drive on the control transmon. We propose
that this discrepancy is a result of classical cross talk between
the two transmons and generalized the model to include this
effect via an additional phase-shifted drive term on the target
transmon. For a set of realistic model parameters, we found
good agreement between the theoretical results here and those
of Ref. [6], which implies classical cross talk may be a
significant issue in real systems. Understanding the cross-talk
channels leading to drive terms on the target transmon is an
important area of further research.

Various interesting questions remain as directions for fu-
ture research. First, it is useful to understand whether the
perturbative construction converges to that of the principle
of least action. For the standard two-block Schrieffer-Wolff
transformation, the perturbative construction does converge to
exact unitary rotation and ideally this property holds for the
multiblock case as well. It will also be interesting to apply
these methods to larger multiqubit systems, especially in the
context of finding points to avoid in frequency space when
dealing with fixed-frequency transmons in a circuit-QED ar-
chitecture. The results from a multiqubit analysis will have
an impact on future design considerations in superconducting
circuit systems.
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APPENDIX A: EFFECTIVE HAMILTONIANS

1. Effective Hamiltonian from principle of least action

Suppose one is given a Hamiltonian H on the Hilbert space
H with eigenvalues Ea and eigenvectors |sa〉,

H =
∑

a

Ea|sa〉〈sa|.

A Hermitian matrix Heff is said to be an effective Hamiltonian
for H with respect to the orthogonal subspaces {Ka} (∪aKa =
H) if the following are satisfied:

(1) Heff has the same energy spectrum as H ,
(2) Heff only has support on the Ka.
Suppose each subspace Ka has dimension dKa and let PKa

be the projector onto Ka. We set an orthonormal basis for
each Ka, denoted {|qKa

b 〉}, b = 1, . . . , dKa , to be the standard
basis for working in coordinates. Note that for each Ka, any
linear combination of the |qKa

b 〉 is still supported only on Ka.
The full orthonormal basis for H comprised of the union of
these bases will be denoted {|qa〉}. Heff is uniquely defined
by a unitary matrix T that maps the eigenvectors of H , |sa〉,
to the eigenvectors |ra〉 of Heff, with the eigenvalues being
preserved since T is unitary. From the desired form of Heff

having support only on the Ka, the sole restriction on the |ra〉
is that the first dK1 vectors have support only on K1, the next
dK2 have support only on K2, and so on.

Let us now discuss how to actually compute T . The first
step is to map the eigenvalues of H onto the {|qj〉} basis via
the eigenvector matrix X of H so that all of the freedom in
computing T comes from choosing a block-diagonal (with
respect to {|q j〉}) unitary matrix F . Since H = ∑

a Ea|sa〉〈sa|,
the columns of X are equal to |s j〉 when written with respect
to the basis {|qk〉},

X =
∑

j

|s j〉〈q j |, (A1)

and so

X †HX =
⎛
⎝∑

j

|q j〉〈s j |
⎞
⎠
(∑

a

Ea|sa〉〈sa|
)(∑

k

|sk〉〈qk|
)

=
∑

a

Ea|qa〉〈qa|.

The unitary matrix F now rotates into the desired eigenbasis
{|r j〉} and since the |r j〉 only have support on the subspaces
Ka, F represented in |q j〉 is a unitary block-diagonal matrix.
The total block-diagonalizing unitary T can be written as the
composition of F with X , where X is given in Eq. (A1) and

F =
∑

j

|r j〉〈q j |. (A2)

It is clear the freedom in choosing Heff comes entirely
from choosing F . Ideally, one would like to obtain a unique
Heff, given H . The approach given in Ref. [14] is to solve the
following optimization problem:

argminF (‖T − I‖2), (A3)

which means to find the unitary matrix F that minimizes the
2-norm (Euclidean) distance between T and I. The unique

FIG. 7. I (Heff ) parameter as a function of transmon detuning and
drive power.

solution of this problem is given by

F = XBD√
XBDX †

BD

,

where XBD is the projection of X onto the subspaces Ka and is
assumed to be nonsingular. Intuitively, this can be thought of
as first rotating H into its eigenvalue matrix and attempting to
rotate back to H under the constraint of block diagonality.

There are a variety of different metrics one could use to
quantify the extent to which Heff captures the dynamics of
H . For instance, one could directly compute the objective
function in Eq. (A3). Alternatively, one can see that H = Heff

if and only if X = XBD and, if the eigenvectors of H are highly
mixed across different blocks, then the quality of Heff as a
model of H decreases. As a result, one can define a simple
figure of merit, denoted I (Heff ), to be the normalized sum of
the squared magnitudes of the eigenvectors of H after being
projected onto the subspaces Ka,

I (Heff ) = tr(XBDX †
BD)

dim(H)
= ‖XBD‖2

2

dim(H)
.

Since

0 � tr(XBDX †
BD) � dim(H),

I (Heff ) ∈ [0, 1]. A plot of I (Heff ) for the parameters of Ref. [6]
is contained in Fig. 7, where the control transmon frequency
is fixed, ω1/2π = 5.114 GHz. As expected, I (Heff ) deviates
from 1 near the poles predicted from the perturbative analysis
in Sec. IV A.

2. Effective Hamiltonian from perturbative construction
of canonical transformations

In this section, we will discuss how to perturbatively
obtain a canonical transformation U = e−iS and an effective
Hamiltonian Heff that describes the dynamics of our system.
We will focus our attention on the case where we have an
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unperturbed Hamiltonian H0 that we can solve exactly and a
perturbative term H1 with order parameter λ, such that

H = H0 + λH1.

Obtaining Heff from H depends on the desired form we would
like Heff to have. Here, we derive an iterative procedure to
build the Hermitian matrix S which provides the desired form
of the Hamiltonian. Common examples of this method corre-
spond to diagonalization of H and modeling the dynamics on
the low-energy subspace as in the standard Schrieffer-Wolff
(SW) transformation. We apply these methods to provide
a complete perturbative solution to the simultaneous block
diagonalization of H into an arbitrary number of blocks. In
the case of two blocks, the standard SW transformation is
recovered.

The Hermitian operator S in U = e−iS can be expanded as

S =
∞∑

n=1

λnSn.

Computing powers of S results in the expressions

S = λS1 + λ2S2 + λ3S3 + λ4S4 + · · · ,

S2 = λ2S2
1 + λ3(S1S2 + S2S1) + λ4

(
S2

2 + S1S3 + S3S1
)+ · · · ,

S3 = λ3S3
1 + λ4(S2

1S2 + S1S2S1 + S2S2
1

)+ · · · ,

S4 = λ4S4
1 + · · · .

We can expand U = e±iS in an exponential series to obtain

e±iS = 1 ± i(λS1 + λ2S2 + λ3S3 + λ4S4 + · · · )

− 1

2!

[
λ2S2

1 + λ3(S1S2 + S2S1 + · · · )

+ λ4(S2
2 + S1S3 + S3S1 + · · · )]

∓ i

3!

[
λ3S3

1 + λ4
(
S2

1S2 + S1S2S1 + S2S2
1

)+ · · · ]
+ 1

4!

(
λ4S4

1 + · · · )+ · · · .

Collecting in powers of λ, we have

e±iS = 1 + λ(±iS1) + λ2

(
±iS2 − 1

2
S2

1

)

+ λ3

[
±iS3 − 1

2
(S1S2 + S2S1) ∓ i

6
S3

1

]

+ λ4

[
± iS4 − 1

2

(
S2

2 + S1S3 + S3S1
)

∓ i

6

(
S2

1S2 + S1S2S1 + S2S2
1

)+ 1

24
S4

1

]
. (A4)

Writing

eiS (H0 + λV )e−iS = eiSH0e−iS + λeiSVe−iS,

we first deal with eiSH0e−iS , from which an expression for
λeiSVe−iS will follow in a straightforward manner.

Expanding the exponentials in Eq. (A4) and collecting
powers in λ gives the following coefficients at each order:

λ0: H0,
λ1: i[S1, H0],

λ2: − 1
2 [S1, [S1, H0]] = − S2

1
2 H0 − H0

S2
1

2 + S1H0S1,

i[S2, H0] = iS2H0 − iH0S2,

λ3: i[S3, H0],

− i

6
[S1, [S1, [S1, H0]]]

= i
(3S2

1H0S1

6
− 3S1H0S2

1

6
+ H0S3

1

6
− S3

1H0

6

)
,

and

− 1

2
([S1, [S2, H0]] + [S2, [S1, H0]])

= 1

2
(2S1H0S2 + 2S2H0S1 − H0S1S2

− H0S2S1 − S1S2H0 − S2S1H0),

λ4: i[S4, H0],

− i

6
([S1, [S1, [S2, H0]]] + [S1, [S2, [S1, H0]]]

+ [S2, [S1, [S1, H0]]])

= i

6
H0
(
S2

1S2 + S1S2S1 + S2S2
1

)
+ − i

6

(
S2

1S2 + S1S2S1 + S2S2
1

)
H0

− i

2
S1H0(S1S2 + S2S1) − i

2
S2H0S2

1

+ i

2
S2

1H0S2 + i

2
(S1S2 + S2S1)H0S1,

1

24
[S1, [S1, [S1, [S1, H0]]]]

= 1

24

(
H0S4

1 − 4S1H0S3
1 + 6S2

1H0S2
2 − 4S3

1H0S2 + S4
1H0

)
,

− 1

2
[S2, [S2, H0]]

= −1

2

(
H0S2

2 − 2S2H0S2 + S2
2H0

)
,

− 1

2
([S1, [S3, H0]] + [S3, [S1, H0]])

= −1

2

[
H0(S1S3 + S3S1) − 2S1H0S3 − 2S3H0S1

+ (S1S3 + S3S1)H0
]
.

This gives, to fifth order in λ,

eiSH0e−iS = H0 + λ(i[S1, H0])

+ λ2

(
i[S2, H0] − 1

2
[S1, [S1, H0]]

)

+ λ3

{
i[S3, H0] − i

6
[S1, [S1, [S1, H0]]]
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− 1

2
([S1, [S2, H0]] + [S2, [S1, H0]])

}

+ λ4

{
i[S4, H0] − i

6

(
[S1, [S1, [S2, H0]]]

× [S1, [S2, [S1, H0]]] + [S2, [S1, [S1, H0]]]
)

+ 1

24
[S1, [S1, [S1, [S1, H0]]]] − 1

2
[S2, [S2, H0]]

− 1

2
([S1, [S3, H0]] + [S3, [S1, H0]])

}
.

Replacing H0 with λV , we see that to fifth order in λ,

eiSλVe−iS = λV + λ2(i[S1,V ])

+ λ3

(
i[S2,V ] − 1

2
[S1, [S1,V ]]

)

+ λ4

{
i[S3,V ] − i

6
[S1, [S1, [S1,V ]]]

− 1

2
([S1, [S2,V ]] + [S2, [S1,V ]])

}
.

Hence, in total,

eiS (H0 + λV )e−iS

= H0 + λ(i[S1, H0] + V )

+ λ2

(
i[S2, H0] − 1

2
[S1, [S1, H0]] + i[S1,V ]

)

+ λ3

{
i[S3, H0] − i

6
[S1, [S1, [S1, H0]]]

− 1

2
([S1, [S2, H0]] + [S2, [S1, H0]])

+ i[S2,V ] − 1

2
[S1, [S1,V ]]

}
+ λ4

{
i[S4, H0]

− i

6
([S1, [S1, [S2, H0]]] + [S1, [S2, [S1, H0]]]

+ [S2, [S1, [S1, H0]]]) + 1

24
[S1, [S1, [S1, [S1, H0]]]]

− 1

2
[S2, [S2, H0]] − 1

2
([S1, [S3, H0]] + [S3, [S1, H0]])

+ i[S3,V ] − i

6
[S1, [S1, [S1,V ]]]

− 1

2
([S1, [S2,V ]] + [S2, [S1,V ]])

}
+ O(λ5). (A5)

Equation (A5) can be written in a more compact fashion
by defining two sequences of functions { f j = f j ({Ai} j+1

i=1 )}∞j=0

and {H ( j) = H ( j)({Ai} j+2
i=1 )}∞j=0, where the Ai are indeterminate

variables indicating the number of inputs to each function,

eiS (H0 + λV )e−iS =
∞∑

k=0

λkH (k)({S j}k
j=1, H0,V

)
= λ0[ f0(H0)]

+ λ1
[

f1({S j}1
j=1, H0) + f0(V )

]
+ λ2

[
f2({S j}2

j=1, H0) + f1({S j}1
j=1,V )

]
+ λ3[ f3({S j}3

j=1, H0) + f2({S j}2
j=1,V )

]
+ λ4

[
f4({S j}4

j=1, H0) + f3({S j}3
j=1,V )

]
+ O(λ5).

The f j can be constructed in a straightforward manner which
allows for the computation of the perturbation to any order.
First, write all decompositions of k > 0 into a sum of non-
negative integers as follows:

k : (k),

k − 1 : (k − 1, 1), (1, k − 1),

k − 2 : (k − 2, 1, 1), (1, k − 2, 1), (1, 1, k − 2),

(k − 2, 2), (2, k − 2),

k − 3 : (k − 3, 1, 1, 1), (1, k − 3, 1, 1), (1, 1, k − 3, 1),

(1, 1, 1, k − 3), (k − 3, 1, 2), (k − 3, 2, 1),

(1, k − 3, 2), (2, k − 3, 1), (1, 2, k − 3), (2, 1, k − 3),

.

.

.

0 : (1, 1, 1, . . . , 1),

where (1, 1, 1, . . . , 1) has k indices. We now take each
( j1, . . . , jb) from the above expression and make the assign-
ment

( j1, . . . , jb) → ib

b!

[
S j1 ,

[
S j2 , . . . ,

[
S jn−1 ,

[
S jn , H0

]]
. . .

]]
.

As an example, we compute the fifth-order expression. We
have

(5),

(4, 1), (1, 4),

(3, 1, 1), (1, 3, 1), (1, 1, 3),

(3, 2), (2, 3),

(2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2),

(2, 2, 1), (2, 1, 2), (1, 2, 2),

(1, 1, 1, 1, 1).

This gives

f5({S j}5
j=1, H0)

= i

1!
[S5, H0] − 1

2!
([S4, [S1, H0]] + [S1, [S4, H0]])

− i

3!
([S3, [S1, [S1, H0]]] + [S1, [S3, [S1, H0]]]

+[S1, [S1, [S3, H0]]] + [S3, [S2, H0]] + [S2, [S3, H0]])

+ 1

4!
([S2, [S1, [S1, [S1, H0]]]]+[S1, [S2, [S1, [S1, H0]]]]

+[S1, [S1, [S2, [S1, H0]]]] + [S1, [S1, [S1, [S2, H0]]]]
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+[S2, [S2, [S1, H0]]] + [S2, [S1, [S2, H0]]]

+[S1, [S2, [S2, H0]]])

+ i

5!
[S1, [S1, [S1, [S1, [S1, H0]]]]].

Combining this with the expression for f4({S j}4
j=1,V ) already

computed gives the full fifth-order term,

λ5

[
i

1!
[S5, H0] − 1

2!
([S4, [S1, H0]] + [S1, [S4, H0]])

− i

3!
([S3, [S1, [S1, H0]]] + [S1, [S3, [S1, H0]]]

+ [S1, [S1, [S3, H0]]] + [S3, [S2, H0]] + [S2, [S3, H0]])

+ 1

4!
([S2, [S1, [S1, [S1, H0]]]] + [S1, [S2, [S1, [S1, H0]]]]

+ [S1, [S1, [S2, [S1, H0]]]] + [S1, [S1, [S1, [S2, H0]]]]

+ [S2, [S2, [S1, H0]]] + [S2, [S1, [S2, H0]]]

+ [S1, [S2, [S2, H0]]]) + i

5!
[S1, [S1, [S1, [S1, [S1, H0]]]]]

+
{

i[S4,V ] − i

6
([S1, [S1, [S2,V ]]] + [S1, [S2, [S1,V ]]]

+ [S2, [S1, [S1,V ]]]) + 1

24
[S1, [S1, [S1, [S1,V ]]]]

− 1

2
[S2, [S2,V ]] − 1

2
([S1, [S3,V ]] + [S3, [S1,V ]])

}]
.

Now that we can compute each f j , we are able to re-
cursively compute every order H ( j). What remains is to
compute the S j , which is done by noting that at each order,
H (k)({S j}k

j=1, H0,V ) contains only one term with Sk in it,
i[Sk, H0]. Hence, one can write

H (m)({S j}m
j=1, H0,V

)
= i[Sm, H0] + H (m)

x

({S j}m−1
j=1 , H0,V

)
, (A6)

and, assuming {S j}k−1
j=1 have already been computed, H (k)

x can
be computed as well. Hence, one need only solve for Sk

at each order to compute H (k). Sk is computed by ensuring
H (k) satisfies the required form set by the problem. We now
illustrate the method with two examples: diagonalization and
block diagonalization.

a. Example 1: Diagonalization

Suppose we want our effective dynamics to be diagonal at
each order m, that is, we want H (m) to be diagonal for every m
(H0 is diagonal and V is a perturbation containing off-diagonal
components). We have

H (0) = H0,

H (1)
x = H1.

One can see from Eq. (A6) that if H (m) is diagonal,∑
p

E (m)
p |p〉〈p| = i

∑
p

E (0)
p (S(m)|p〉〈p| − |p〉〈p|S(m) ) + H (m)

x .

(A7)

Without loss of generality, we can assume that S is an off-
diagonal matrix (has diagonal entries of 0) and so the above is
satisfied if

E (m)
p = 〈p|H (m)

x |p〉,

〈p|S(m)|q〉 = −i〈p|H (m)
x |q〉

E (0)
p − E (0)

q

, p �= q.

b. Example 2: Block diagonalization

Suppose we want our effective dynamics to be block diago-
nal at each order m, that is, we want H (m) to be block diagonal
for every m (H0 is block diagonal and V is a perturbation
containing off-block-diagonal components). We have

H (0) = H0,

H (1)
x = H1.

One can see from Eq. (A6) that if H (m) is block diagonal,

H (m) = H (m)
1 ⊕ · · · ⊕ H (m)

k ⊕ · · · ,

then acting subspace projectors Pj and Pk on both sides of
Eq. (A6) give

PjH
(m)
1 ⊕ · · · ⊕ H (m)

k ⊕ · · · Pk

= i
[
PjS

(m)(H (0)
1 ⊕ · · · ⊕ H (0)

k ⊕ · · · )Pk

− Pj
(
H (0)

1 ⊕ · · · ⊕ H (0)
k ⊕ · · · )S(m)

]
Pk + PjH

(m)
x Pk,

H (m)
j δ j,k = i(PjS

(m)PkH (0)
k − H (0)

j PjS
(m)Pk ) + H (m)

x j,k
,

and

iH (m)
x j,k

+ H (m)
j δ j,k = S(m)

j,k H (0)
k − H (0)

j S(m)
j,k .

Since S is an off-block-diagonal matrix (has block-diagonal
entries of 0), we have

H (m)
j = H (m)

x j, j
if j = k,

H (0)
j S(m)

j,k − S(m)
j,k H (0)

k = −iH (m)
x j,k

if j �= k.

In the case that H (0) is diagonal, we can solve easily for
S(m) at each order,

〈p|S(m)
j,k |q〉 =

−i〈p|H (m)
x j,k

|q〉
〈p|H (0)

j |p〉 − 〈q|H (0)
k |q〉 .

However, if H (0) is not diagonal, we need to use the following
matrix-vector correspondence: For any A, B, C,

(A ⊗ B)vec(C) = vec(ACBT ),

where “vec” is defined as vec(|a〉〈b|) = |a〉 ⊗ |b〉. Hence,

AB − BC = D ⇔
AB1T − 1BC = D ⇔

vec(AB1T ) − vec(1BC) = vec(D) ⇔
(A ⊗ 1 − 1 ⊗ CT )vec(B) = vec(D) ⇔

vec(B) = (A ⊗ 1 − 1 ⊗ CT )−1vec(D) ⇔
B = mat

[
(A ⊗ 1 − 1 ⊗ CT )−1vec(D)

]
.
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Letting

A = H (0)
j ,

B = S(m)
j,k ,

C = H (0)
k ,

D = −iH (m)
x j,k

,

allows for S(m)
j,k to be solved at each order m.

c. Summary of results for perturbative construction

The main result is

Heff = U †HU =
∞∑

m=0

λmH (m),

where

H (m) = H (m)
({S j}m

j=1, H0, H1
)

= i[Sm, H0] + H (m)
x

({S j}m−1
j=1 , H0, H1

)
.

At each order m, H (m)
x is a function of only {S1, . . . , Sm−1}

and so can be computed since we assume the lower order
{S1, . . . , Sm−1} is known. Hence, H (m)({S j}m

j=1, H0, H1) has
only one term containing Sm, i[Sm, H0]. Solving for Sm subject
to the desired dynamics allows for computation of H (m). For
instance, in the case of the SW transformation, the desired
dynamics is to have H (m) be block diagonal on Hl and He.

We have

H (0) = H0,

H (1)
x = H1.

If H (m) is block diagonal,

H (m) = H (m)
1 ⊕ · · · ⊕ H (m)

k ⊕ · · · ,

then, since S can without loss of generality be an off-block-
diagonal matrix (the block-diagonal entries of S are 0),

H (m)
j = H (m)

x j, j
if j = k,

H (0)
j S(m)

j,k − S(m)
j,k H (0)

k = −iH (m)
x j,k

if j �= k.

Note that if H (0) is diagonal, then

〈p|S(m)
j,k |q〉 =

−i〈p|H (m)
x j,k

|q〉
〈p|H (0)

j |p〉 − 〈q|H (0)
k |q〉 .

If H (0) is not diagonal, we use the following matrix-vector
correspondence:

(A ⊗ B)vec(C) = vec(ACBT ),

which holds for any A, B, C, where “vec” is defined as
vec(|a〉〈b|) = |a〉 ⊗ |b〉. Hence,

AB − BC = D ⇔ B = mat[(A ⊗ 1 − 1 ⊗ CT )−1vec(D)].

Letting A = H (0)
j , B = S(m)

j,k , C = H (0)
k , and D = −iH (m)

x j,k
al-

lows us to solve for S(m)
j,k at each order m.

APPENDIX B: MAKING THE RWA IN
THE DUFFING MODEL CASE

We move into a frame rotating at ωd on both qubits. The
unitary operator R corresponding to this frame transformation
is defined by the Hamiltonian H̃A = ωd (b†1b1 + b†2b2),

R = e−i[ωd (b†1 b1+b†2 b2 )]t .

This gives the Hamiltonian

H̃ (0)
sys − H̃A + R†H̃d R =: H̃drift + R†H̃d R.

Let us now focus on the term R†H̃d R and make the RWA,
which amounts to ignoring all excitations of energy cost 2ωd

or higher.
We have

R†H̃d R =
2∑

j=1

[
�Xj (t ) cos(ωdt ) + �Yj (t ) sin(ωdt )

]
R†B̃ jR

=
2∑

j=1

[
�Xj (t )

(
eiωd t + e−iωd t

2

)

− i�Yj (t )

(
eiωd t − e−iωd t

2

)]
R†B̃ jR.

First, let us analyze the term R†B̃1R,

R†B̃1R = e−iωd (b†1 b1+b†2 b2 )t B̃1eiωd (b†1 b1+b†2 b2 )t .

Let

B̃1 =
∑

i1,i2, j1, j2

B̃i1,i2, j1, j2
1 |i1d + i2〉〈 j1d + j2|

and

e−iωd (b†1 b1+b†2 b2 )t =
∑
i1,i2

e−iωd t (i1+i2 )|i1d + i2〉〈i1d + i2|,

where the index in each sum is taken from 0 to d − 1. If
�i = (i1, i2), �j = ( j1, j2), then

R†B̃1R =
∑
�i,�j

e−iωd t (i1+i2− j1− j2 )B̃
�i,�j
1 |i1d + i2〉〈 j1d + j2|,

and so, if

� j := �Xj (t )

(
eiωd t + e−iωd t

2

)
− i�Yj (t )

(
eiωd t − e−iωd t

2

)
,

then

R†H̃d R = �1

∑
�i,�j

e−iωd t (i1+i2− j1− j2 )B̃
�i,�j
1 |i1d + i2〉〈 j1d + j2|

+ �2

∑
�i,�j

e−iωd t (i1+i2− j1− j2 )B̃
�i,�j
2 |i1d + i2〉〈 j1d + j2|.
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Now we want to ignore all terms rotating at 2ω2 or higher. Let
us focus on the �X1 (t ) term first. We have

�X1 (t )
eiωd t + e−iωd t

2
e−iωd t (i1+i2− j1− j2 )B̃

�i,�j
1

= �X1 (t )

2
B̃

�i,�j
1 [eiωd t (1−i1−i2+ j1+ j2 ) + e−iωd t (1+i1+i2− j1− j2 )],

− i�Y1 (t )
eiωd t + e−iωd t

2
e−iωd t (i1+i2− j1− j2 )B̃

�i,�j
1

= −i�Y1 (t )

2
B̃

�i,�j
1 [eiωd t (1−i1−i2+ j1+ j2 ) − e−iωd t (1+i1+i2− j1− j2 )],

�X2 (t )
eiωd t + e−iωd t

2
e−iωd t (i1+i2− j1− j2 )B̃

�i,�j
2

= �X2 (t )

2
B̃

�i,�j
2 [eiωd t (1−i1−i2+ j1+ j2 ) + e−iωd t (1+i1+i2− j1− j2 )],

− i�Y2 (t )
eiωd t + e−iωd t

2
e−iωd t (i1+i2− j1− j2 )B̃

�i,�j
2

= −i�Y2 (t )

2
B̃

�i,�j
2 [eiωd t (1−i1−i2+ j1+ j2 ) − e−iωd t (1+i1+i2− j1− j2 )].

Looking at the terms in the brackets on the right-hand side,
we see that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if |i1 + i2 − j1 − j2| �= 1, then

eiωd t (1−i1−i2+ j1+ j2 ) = 0, e−iωd t (1+i1+i2− j1− j2 ) = 0;

if i1 + i2 − j1 − j2 = 1, then

eiωd t (1−i1−i2+ j1+ j2 ) = 1, e−iωd t (1+i1+i2− j1− j2 ) = 0;

if i1 + i2 − j1 − j2 = −1, then

eiωd t (1−i1−i2+ j1+ j2 ) = 0, e−iωd t (1+i1+i2− j1− j2 ) = 1.

Hence, in total,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if |i1 + i2 − j1 − j2| �= 1, then (RHd,diagR†)i1,i2, j1, j2 = 0;

if i1 + i2 − j1 − j2 = 1, then

(RH̃d R†)i1,i2, j1, j2 = �X1 (t )−i�Y1 (t )
2 B̃

�i,�j
1

+ �X2 (t )−i�Y2 (t )
2 B̃

�i,�j
2 ;

if i1 + i2 − j1 − j2 = −1, then

(RH̃d R†)i1,i2, j1, j2 = �X1 (t )+i�Y1 (t )
2 B̃

�i,�j
1

+ �X2 (t )+i�Y2 (t )
2 B̃

�i,�j
2 .

The full rotating-wave-approximated Hamiltonian becomes

HRWA = H̃drift + H̃d,RWA,

where

H̃drift := H̃ (0)
sys − H̃A,

H̃d,RWA := (R†H̃d R)RWA, (B1)

H̃A = ωd (b†1b1 + b†2b2),

and the matrix elements of (R†Hd,diagR)RWA are as defined by
the above cases.

APPENDIX C: PAULI COEFFICIENTS

The full set of Pauli coefficients of the form A ⊗ B for A ∈
{I, Z} and B ∈ {I, X,Y, Z} are given below,

IX

2 coeff
= − J�

� + δ1
+ �δ1 J�3

(� + δ1)3(2� + δ1)(2� + 3δ1)
,

IY

2 coeff
= 0,

IZ

2 coeff
= J2�2

2

[
δ3

1 − 2δ1�
2 − 2�3

δ1�2(δ1 + �)2(� − δ2)
+ δ2

1 + �2

�2δ2(δ1 + �)2

+ 6δ15+4δ4
1�−6δ3

1�
2+7δ2

1�
3+12δ1�

4+4�5

�2(δ1+�)2(2δ1+�)2(δ1+2�)(3δ1+2�)

+ 2

δ1(δ1 + �)(δ1 + � − δ2)

+ 2

(δ1 + �)(δ1 + � − δ2)2
+ 1

�(� − δ2)2

]
,

ZI

2 coeff
= − δ1�

2

2�(δ1 + �)

+ J2�2

2(δ1 + �)3

[
2
(
δ2

1 + δ1� + �2
)
(δ1 + �)

δ1�(δ2 − �)

+ 1

2
δ1

(4δ2
1

�3
+ 11δ1

�2
+ 3δ1

(2δ1 + �)2

− 2

δ1 + 2�
− 6

3δ1 + 2�
+ 12

�

)

+ 2(δ1 + �)2

δ1(δ1 + � − δ2)
+ 2(δ1 + �)2

(δ1 + � − δ2)2

− 2δ1(δ1 + �)

�δ2

]
,

ZX

2 coeff
= −J�

�

(
δ1

δ1 + �

)

+ J�3δ2
1 (3δ3

1 + 11δ2
1� + 15δ1�

2 + 9�3)

2�3(δ1 + �)3(δ1 + 2�)(3δ1 + 2�)
,

ZY

2 coeff
= 0,

ZZ

2 coeff
= J2

2(δ1 + �)2

(
�2

{
δ3

1 − 2δ1�
2 − 2�3

δ1�2(δ2 − �)

+ 1

2

[
4(3δ1 + �)

(
δ2

1 + δ1� + �2
)

�2(2δ1 + �)2

− 16�

3δ2
1 + 8δ1� + 4�2

]

+ 2δ1

�δ2
− 2(δ1 + �)

(δ1 + � − δ2)2
− 2(δ1 + �)

δ1(δ1 + � − δ2)

}

+ 2(δ1 + �)(δ1 + δ2)

� − δ2

)
.
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