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Recent developments surrounding resource theories have shown that any quantum state or measurement
resource, with respect to a convex (and compact) set of resourceless objects, provides an advantage in a tailored
subchannel or state discrimination task, respectively. Here we show that an analogous, more general result is
also true in the case of dynamical quantum resources, i.e., channels and instruments. In the scenario we consider,
the tasks associated to a resource are input-output games. The advantage a resource provides in these games
is naturally quantified by a generalized robustness measure. We illustrate our approach by applying it to a
broad collection of examples, including classical and measure-and-prepare channels, measurement and channel
incompatibility, local operations assisted by classical communication, and steering, as well as discussing its
applicability to other resources in, e.g., quantum thermodynamics. We finish by showing that our approach
generalizes to higher-order dynamics where it can be used, for example, to witness causal properties of

supermaps.
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I. INTRODUCTION

The advantage of quantum information processing over its
classical counterpart has become evident over the previous
decades. There are numerous tasks known for which a quan-
tum resource is needed in order to gain an advantage over all
classical protocols. For example, in quantum key distribution
[1,2] entanglement is necessary for unconditionally secure
key generation [3], while it is also a resource for telepor-
tation [4] and measurement based quantum computation [5]
amongst many other tasks.

Whereas some quantum resources have been proven also to
be sufficient for certain tasks, e.g., entanglement for random-
ness certification [6] and Bell nonlocality for communication
complexity protocols [7], no resource is expected to be useful
for every task. This raises the question of which tasks require
a given resource and leads to the notion of resource theories
[8]. Resource theories are defined through free objects and
free operations. Free objects are those that do not possess a
given resource while free operations are transformations that
leave the set of free objects invariant. As an example, in the
resource theory of entanglement, the free objects are separable
states while the free operations are local operations assisted by
classical communication (LOCC) [9].

Previously, much effort has been devoted to constructing
resource theories for properties of quantum states, such as co-
herence [10-12], reference frames [13,14], thermodynamical
properties [15], and utility for stabilizer quantum computation
[16,17]. Here, we want to focus our attention on objects
describing the dynamics of quantum systems, e.g., channels
and instruments.

We develop an extremely general technique for finding
tasks that certify dynamical quantum resources, and which
encompass nondynamical resources that have previously been
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studied [10-24], such as states and measurements as special
cases, thereby providing a unifying framework to certify such
resources. More precisely, we show that dynamical quantum
resources can outperform their corresponding resourceless
objects in tailored input-output games. In these games, one
party inputs a state from an ensemble into a channel, another
party performs a measurement on the output, and different
input-output pairs are given a score. The framework induces
a natural quantifier for this outperformance—the generalized
robustness—and we will show how this quantifier relates to
the highest obtainable payoff in input-output games.

We exhibit the generality of our approach by applying it to
several examples, including properties of quantum channels
related to breaking of entanglement [25,26] as well as in-
compatibility [27]. Beyond properties of individual dynamical
objects, our technique is also applicable to sets of channels,
quantum instruments, and to higher-order dynamics (e.g.,
supermaps and superinstruments [28]), objects for which such
operational advantages have not previously been identified.
This results in simple, operationally motivated quantifiers for
resources such as incompatibility of channels and testers [29],
maps unreachable by local operations assisted by classical
communication, and causal nonseparability [30].

II. INPUT-OUTPUT GAMES

The operational tasks we will use to quantify quantum dy-
namical resources are generalizations of quantum discrimina-
tion games, called input-output games. Consider two players
Alice and Bob, both of whom receive an input label x in each
round of the game. Upon receiving x Alice randomly prepares
a state from the state assemblages A = {p(i, x), 0jjx}i» and
sends her state through a channel from the collection A =

{Af”B}‘X| of |X| channels to Bob. After receiving the output

x=1
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FIG. 1. Simple input-output game: Alice inputs a state from an
a priori known ensemble £ = {p(i), ;} into the channel A*~5. Bob
performs a measurement M = {M ,—}J. on the output of the channel.
The goal is to choose the A% maximizing the overall payoff
P(A*~B £, M, Q) that depends on the input ensemble, the channel,
the measurement performed on the output, and the reward function
Q = {w;;} i

state, Bob performs a measurement x from the set of POVMs
M = {M},}; .. For each input x, and pair of preparation i and
measurement result j, the players receive a score according to
areward function 2 = {w;j,}i j.x, Where w; j, are real numbers.
The tuple G = (A, M, Q) defines an input-output game, while
the collection of channels A chosen by the parties is thus the
“strategy” for the game. The quantifier of success then takes
the form

P(A,G) =) pli, Dwiutr[ AL (oM ]. (1)

i,j,x

For the case of a single channel, i.e., |[X| = 1, the game is
illustrated in Fig. 1.

Any input-output game gives rise to a class of equiva-
lent games obtained by scaling and shifting the payoff. In
order to use such games to quantify dynamical resource it
will be necessary to restrict ourselves to a class of “canon-
ical” input-output games, for which miny P(A, G) =0 and
maxp P(A, G) = 1. Note that any input-output game can be
brought to this form, and henceforth we will implicitly assume
that all input-output games are canonical.

It is interesting to note that, for games with non-negative
reward functions, summing over i in Eq. (1) gives a minimum-
error discrimination task. Namely, defining the operators
ojix = 2, pli, X)w;jx A28 (0;,) and a probability distribu-
tion p(j, x) := trloj]/N with N = Zj_x trloj] allows one
to write P(A, G) = NZJ.’X p(j, x)te[6M ], where &), is
normalized. This is a minimum-error discrimination task with
premeasurement information, i.e., the information about the
ensemble x is known before choosing the measurement on the
output.

III. QUANTIFICATION OF RESOURCES

In this section we introduce our main resource theoretical
tool: the generalized robustness. The generalized robustness
is a quantifier that measures the relative distance of an object
from a convex and compact set of objects, called the free
objects. Intuitively, it is the amount of noise needed to corrupt
a resource. More precisely, we denote a convex and com-
pact subset of collections of channels by F (which includes
channels as trivial collections) and call this the free set. The
(generalized) robustness Ry (A) of a collection A with respect

to the free set F' is defined as

Rr(A) inqzr >0 A+iA F 2)
=min {r > eFyt.
g A 1+1¢
T . % 3 A— B XI
The optimization is over all collections A := {Af B }oq- By

solving for A in the above equation and using the linearity
and positivity of the (canonical) payoff function one can
write. P(A, G) = [1 + Rp(A)IP(T, §) — Rr(A)P(A, G) <
[14+Rr(A)]P(T, G), where T € F. Hence we arrive at

P(A,G)
maxrer P(T, G)

where the maximization is taken over all free collections
IeF.

Using the celebrated Choi isomorphism we can map any
channel A to a bipartite state J, = 521.1. [)(Jj] @ ALl)jl]
with a fixed marginal [31,32], where d is the dimension of
the channel input. As this mapping is one-to-one, one can
evaluate the robustness within the image of the isomorphism,
i.e., on a subset of bipartite quantum states. Using techniques
developed in Refs. [23,24] (see Appendix A) the robustness
can be cast as a conic optimization problem

1+ Rp(A) =max ) [Vl pses], @)
X

< 1+ Rr(A), 3)

suchthat ¥ >0, t[YT]|<1VT €Jg,

where Y = @, Y, constitutes a witness, Jya-» denotes the Choi
states of the channel Aﬁ”B , and Jr is the image of the free set
F under the Choi isomorphism. Note that, in order to evaluate
the robustness in the above form, there is a crucial assumption
of Slater’s condition being satisfied (see Appendix A for de-
tails). We will implicitly assume that this holds—as is indeed
the case in all the applications we consider—throughout the
rest of this paper.

IV. MAIN RESULT

We have already seen that the generalized robustness mea-
sure and the advantage over the free set in input-output games
are linked; cf. Eq. (3). In order to operationalize this link, one
wishes to implement a witness as in Eq. (4) in a way that
resembles an input-output game; cf. Eq. (1). To do so, we
write

Ye=d ) pli,X)wijx0 ® Njies )
ij

where g;, are quantum states, 1;, are positive semidefinite
operators satisfying Z?:l njix < 1forallx, p(i, x) is a proba-
bility distribution, and w; ;, are real numbers [33]. Note that for
every x the collection {7 }’;_, can be completed into a POVM
by adding an element 9,41y =1 — Z;zl njx for which the
reward function is taken to be zero. Hence an optimal witness
corresponds to an input-output game up to normalization. To
see that the minimum value of the game is zero, one can solve
A from Eq. (2) resulting in A = [1 + Rr(A)IT — Rr(A)A,
where I € F. Putting the expression to the Choi picture,
multiplying the resulting equation by an optimal witness, and
taking the trace on both sides gives in tr[YJ;] = 0. Noting
that the normalization of a game does not affect Eq. (3), we
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combine Eq. (3) with Eq. (4) and write

P(A, G)

where the supremum is taken over all input-output games G.
We have thus proven our main result.

Theorem 1. Let F be a convex and compact set of col-
lections of channels. For any A not in F there exists a
tailored input-output game G for which A outperforms any
point in F'. Moreover, this outperformance is quantified by the
generalized robustness according to Eq. (6).

An alternative approach to giving an operational charac-
terization of single-channel resources was recently given in
[34] by applying known results for state resources to the Choi
state of a channel. Indeed, it is known that any state resource
provides an advantage in a tailored subchannel discrimination
task [23] and in the Choi picture this shows that any channel
resource can provide a similar advantage [34]. Although sim-
ilar in spirit, our approach presents two significant advantages
as a suitable extension of the former results regarding state
resources to the realm of dynamical objects. First, as we will
see in Sec. VII, our approach generalizes readily to higher-
order dynamical objects and sets thereof, thereby providing a
unified characterization of a wide array of different classes
of resources. The game-theoretic characterization of these
more general scenarios has not previously been considered
in the literature, and such scenarios cannot be reduced to
discrimination tasks in the same manner as channel resources.
Secondly, in contrast to the approach of [34], our approach
does not require applying channels on subsystems of larger,
entangled states and performing joint measurements on such
states. The experimental resources required to experimentally
implement the protocol are thus significantly reduced.

Finally, before discussing applications of our main result,
let us first outline more explicitly how the tailored input-
output game for a given resource can be constructed. First,
one must obtain the optimal witness Y. In scenarios where the
free set is characterized by positive semidefinite constraints,
as for compatible channels or unsteerable instruments, it
can be obtained by simply evaluating the robustness cone
program with semidefinite programing techniques. This can
be done efficiently using numerical methods. In scenarios
where the free set is not characterized by such constraints,
e.g., for incompatibility breaking channels, one can find a
witness by heuristic methods such as semidefinite programing
hierarchies. Then, in order to get the canonical input-output
game from the obtained witness, one writes down the operator
Schmidt decomposition for the witness together with the
appropriate normalization to put it in the form of Y, as in
Eq. (5), thereby obtaining the elements of the game.

V. EXAMPLES OF CHANNEL RESOURCES

In this section, we present task-oriented characterizations
of resources related to quantum channels and sets thereof
using our technique.

A. Entanglement and incompatibility breaking channels

In the study of quantum correlations, one typically asks if
a given quantum state can violate a classical criterion such
as separability, unsteerability, or a Bell inequality. Answering
the converse question of whether a state belongs to some of
these classes is typically very hard. However, alternative ways
of characterizing the states satisfying the first two criteria are
known and they relate naturally to our framework [18,35]. As
a first application of Theorem 1, we focus on properties of
channels related to separability and unsteerability. The chan-
nels corresponding to states with these properties (through
the inverse Choi isomorphism) are those that break the en-
tanglement of all states (separability) or incompatibility of all
measurements (unsteerability). Entanglement breaking chan-
nels are also known to coincide with measure-and-prepare
channels [25], whereas incompatibility breaking channels are
so far lacking a simple characterization [27].

Both entanglement and incompatibility breaking channels
form convex and compact subsets of channels and, hence,
using our framework one can define the corresponding ro-
bustnesses and deduce a task-oriented characterization of
these sets. We note that for entanglement breaking channels
our result complements the witnessing techniques presented
in Ref. [33], where the authors develop a resource theory
of quantum memories, i.e., channels that are not of the
measure-and-prepare form, and discuss the implementation
of measurement-device-independent witnesses for such chan-
nels. On top of a witness, our result provides a simple task-
oriented quantifier for such memories. Our result can also
be used to characterize interesting subsets of measure-and-
prepare channels, such as those corresponding to POVMs, i.e.,
ones sending only a classical message. Formally, these chan-
nels can be written A*~8(p) = 3" tr[N,0lla)(al, where {|a)}
is an orthonormal basis. Interestingly, this complements recent
studies on semiquantum games [22] and measure-and-prepare
scenarios by providing an alternative operational quantifier for
the advantage a channel with a quantum message provides
over all classical messages in a specific input-output game.

B. Compatibility of channels

A natural property of a set of channels is that of compati-
bility, i.e., the question whether a set of channels can be seen
as part of a single channel. More precisely, a set of channels
{A.}, is called compatible if there exists a broadcast channel
A such that A, = tr\,[A] [27]. Clearly the set of compatible
channels is convex, hence fitting to the realm of Theorem 1.

As for entanglement breaking channels, an interesting
special case is obtained when considering compatible sets of
channels with trivial outputs. The compatibility of measure-
and-prepare channels with trivial outputs corresponds to the
compatibility of POVMs. Motivated by recent developments
on the connection between compatibility of measurements
and communication tasks [19-22,24,36], we spell out ex-
plicitly this example. A set {A,;}, , of POVMs is called
compatible, or jointly measurable, if there exists a joint mea-
surement {G,}, and probability distributions p(alx, A) such
that Ay = ), plalx, A)Gy. A set {Ay,}, . of POVMs can be
seen as a set of measure-and-prepare channels {A,}, by defin-
ing A478(0) =), tr[Aun0lla)(al. The common channels
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are characterized as those that first measure a single POVM
{G,},, produce a classical output A, and postprocess the output
according to some probability distribution p(a|x, A). This in-
deed gives a one-to-one correspondence between compatible
sets of POVMs and compatible sets of trivial-output channels
[37]. In this way, joint measurability can be witnessed through
input-output games. In the case of trivial output channels the
witness formula takes a simpler form:

Ztr[YxJAA] = Z w;jxtr[Agc0icl{aln jicla)

X a,i,j.x

Z Daxtr[AgcOx ], (7

where @.,0y 1= Zi_j w;jc{alnjila) gix. One can further nor-
malize the operators g, by pushing the relevant factors into the
payoff function. In this way, the input-output game becomes
a witness of the incompatibility of the measurements. This
shows that in the formalism of input-output games, incom-
patible measurements can perform better than compatible
ones in measure-and-prepare scenarios where only classical
information is sent forward; cf. Ref. [22] for a more detailed
discussion on the connection between incompatibility and the
quantumness of the sent message. Note that in the case of joint
measurability, the explicit form of an optimal witness can be
calculated via semidefinite programing.

C. Further examples in other domains

Besides the cases discussed in the previous section our
methods can also be applied to other scenarios that have not
yet been studied in the literature. The first example is so-called
G-covariant operations.

Any transformation of a physical system requires a refer-
ence frame. For instance, a rotation of a qubit state on the
Bloch sphere requires a notion of direction, i.e., asymmetry.
On the contrary, lack of symmetry in the reference frame puts
a restriction on what transformations can be implemented.
Mathematically, the lack of symmetry is described by sym-
metry transformations [13,14]. Denote by G the group of
transformations that leaves the reference frame invariant and
let Uy(0) = UgQUgT with g € G be a unitary representation of
the group G. The G-covariant operations A that can be im-
plemented under this restriction are those that commute with
all symmetry transformations, i.e., [A, U] = 0 for all g € G.
The set of all G-invariant operations is convex and compact
and hence the asymmetry of a channel can be witnessed using
the approach developed.

Another relevant example can be found in the context of
quantum thermodynamics, namely that of decomposability
into thermal operations. In quantum thermodynamics, ther-
mal operations refer to a set of transformations that can be
implemented without the need of an external source of work
[38]. Thermal operations are defined by £(0) = trg[Usg(0 ®
fﬂ)U;R]. The initial state of the system § is denoted by
o and 13 = exp(—BHg)/trlexp(—BHR)] is a Gibbs state of
the reservoir. The global unitary transformation is such that
[Usg, Hs ® Hg] = 0, i.e., it is energy preserving. Theorem 1
shows that relevant classes of channels—for example, those
that cannot be implemented as a convex mixture of sequences

of thermal operations acting on lower-dimensional systems
[38,39]—can be harnessed to provide operational advantages
in input-output games.

A third example is true quantum decoherence. Quantum
decoherence can sometimes be explained by classical fluctua-
tions in the ambient fields, i.e., by random unitary dynamics.
However, in systems of dimension three or higher there exist
decohering channels, i.e., unital channels, that are not of this
form [40]. Such decoherence is sometimes referred to as one
of true quantum nature [41]. Random unitary channels form
a convex subset of channels and, hence, one can define a
measure of true quantum decoherence (of a unital channel)
as the generalized robustness with respect to random unitary
channels. As with the previous examples, the possibility of
true quantum decoherence can be witnessed through input-
output games.

VI. QUANTUM INSTRUMENTS

Before discussing the generalization of our technique to
higher-order dynamics, we explicitly formulate it for quan-
tum instruments I = {ape} 0 i.e., collections of completely
positive maps summing up to a channel. These are another
crucial resource in quantum information that has not previ-
ously been given a general, task-based characterization. We
define the robustness analogously to that in Eq. (2). As in the
case of channels, the robustness is preserved under the Choi
isomorphism.

To make a connection between the robustness and
input-output games, one writes the payoff function as
P, g) = Zi,j,x,a pli, x, a)wijxatr[lalx(gilx,a)Mj\x,a] and no-
tices that a witness has the structure Y = @, Y,.. Note
that every element Y,, can be decomposed as Y, =
d Zi,j p(, x, a)wijxaQiT|x,a ® Njjx.a- In Appendix A we show
that our Theorem 1 holds true when replacing collections of
channels with collections of instruments, thereby providing a
way to witness resources based on quantum instruments using
input-output games.

Note that in the case of instruments our input-output game
is postselected on the output a of the instrument applied. How-
ever, one can always remove this by labeling the outcomes of
the instruments by b, thereby introducing an additional index,
and then considering the game with w; j v 4.5 = 84,5®i,j x,a-

This approach to witnessing and quantifying instruments
encompasses new classes of resources that existing methods
cannot be directly applied to. For example, an interesting
convex subset for single instruments on bipartite systems is
given by those that are implementable through local opera-
tions and classical communication (LOCC). Such instruments
are of interest in, for example, the study of the resource theory
of entanglement, in which they are free operations [42-44].
For finitely many rounds of LOCC the set of instruments is
compact. For unbounded numbers of rounds, one can consider
the closure of these operations in order to fit them in our
framework [9].

As another example, a natural notion of compatibility for
a set of instruments {Ialx}a,x is defined as the existence of a
common instrument together with classical postprocessings
such that I,y = ), p(alx, A)I, [45]. This definition is equiv-
alent to unsteerability of channels [46], i.e., the nonexistence
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of an incoherent channel extension. Compatibility of sets of
instruments clearly defines a convex set. Moreover, note that
steering on the level of quantum states is a special case of
channel steering, i.e., instruments with one-dimensional input
systems.

VII. HIGHER-ORDER DYNAMICS

Thus far we have focused on quantifying properties of
quantum dynamics (e.g., channels and instruments). Now we
will see that the same game-theoretic approach can be gener-
alized also to higher-order dynamics, i.e., transformations of
dynamical objects. Such higher-order dynamics have become
an increasingly active field of research, from their role in
studying quantum causality [30] to their use as operations
in resource theories [47], but thus far have been given no
operational resource theoretic study.

Formally, higher-order dynamics are “supermaps” that map
a set of channels to another channel [28,48]. For simplic-
ity, we focus here on supermaps of two channels, but the
following generalizes immediately to any number of chan-
nels. A supermap S thus transforms the channels A¢, Ap to
A8 = S(A¢, Ap). For S to be valid, (i) A*~® must be
a valid channel whenever Ac, Ap are channels and (ii) S
must give valid channels when applied locally to part of some
bipartite channels, i.e.,Z ® S (where 7 is the identity channel)
must map the bipartite channels to channels [48-50] (see
Appendix B for details).

The generalization of our approach to higher-order dy-
namics requires also a generalization of input-output games
to collaborative games between several players. As before,
Alice and Bob prepare states from an ensemble £ and perform
the measurement M, respectively; Charlie and Dave measure
quantum instruments I¢ = {I¢}; and I” = {I?}, and for each
tuple (i, j, k, £) the parties get a score according to a reward
function Q = {a)i_]‘k[}l-jke, where ;e € R. The tuple G =
(€, M, I, I, Q) thus defines a collaborative game in which
the parties choose a supermap S in order to maximize the pay-
off function P(S,G) =), P(Dw;jrett[SUE, IP)(00)M;].
As for input-output games we will assume that all collabo-
rative games are in a canonical (positive, normalized) form.

As before, we can define the robustness of a supermap S
with respect to a (convex, compact) free subset of supermaps
F as

®)

S+18
RF(S)zm_in{t>0‘ aal eF},
S

141

where one minimizes over all supermaps S. Using similar
techniques as earlier in the paper (see Appendix B for de-
tails) one can show the following analog of Theorem 1 for
supermaps.

Theorem 2. Let F be a convex and compact subset of
supermaps. Then for every S ¢ F' there exists a collaborative
game G such that, using S, there is a strategy that outperforms
any S € F. Moreover, this outperformance is quantified by the
generalized robustness as

P(S.9)
—————— =14+Rr((S). 9
gp maxs., P, 0) +Rr(S) €))

Let us note two important points regarding this result.
First, Theorem 2 is readily generalizable further to sets of
supermaps and, indeed, the proof in Appendix B considers
this case; we have avoided stating it in this form here simply
to avoid further cluttering the notation, and because the exam-
ples discussed below do not make use of this. As channels
(and therefore states and measurements) are special cases
of supermaps, this result thereby provides a unified game-
theoretic characterization of these resources, placing them on
the same footing. Secondly, we emphasize that while game-
theoretic quantification of certain channel-based resources
has previously been considered, no such consideration has
previously been given to higher-order dynamics. Moreover,
the approaches used for channel resources of reducing them
to state-discrimination tasks via the Choi picture [34] does
not—unlike input-output games—appear to be readily gener-
alizable to higher-order operations.

Applications to higher-order resources

One of the key problems in the study of supermaps is to
understand their structure: can they be understood as com-
posing channels in parallel (with joint encoding and decoding
maps), sequentially in a circuit [28] (with or without memory
[51]), or do they even compose channels in a way that can
be understood causally [30,52-54]? Supermaps in some of
these categories are known to provide advantages to those in
others (e.g., sequential vs parallel in metrology tasks [55-58],
or “causally nonseparable” ones in information theoretic tasks
[59-63]). In general, however, these advantages have not been
understood in any unified fashion. Theorem 2 is applicable to
all these sets of higher-order resources (which are, in fact,
characterized through positive semidefinite constraints via
the Choi picture [28,52,54]), and shows that they all indeed
provide operational advantages in collaborative games.

Just as channels can be generalized to instruments, there is
also a natural generalization from superchannels to superin-
struments which already have found applications in analyzing
several tasks [48,50,64,65]. In Appendix C we show that
Theorem 2 can indeed be generalized to sets of such objects,
emphasizing its utility in providing operational advantages to
the most general form of dynamical resource. It can thus, for
example, be used to operationally witness the incompatibil-
ity of sequential superinstruments, often known as quantum
testers [66].

With interest in supermaps and superinstruments contin-
uing to grow rapidly—they provide, e.g., the natural tool to
describe free transformations between channel resources—we
expect new higher-order resources to emerge and become rel-
evant. Our systematic approach to quantifying such resources
should provide a key tool for understanding them as they are
uncovered.

VIII. CONCLUSIONS

We have presented a general framework for finding task-
oriented characterizations for quantum resources. Our results
apply to a broad range of quantum objects with a convex (and
compact) free set. The applicability of this framework is ex-
emplified on the level of quantum channels, instruments, and
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supermaps. As quantum measurements and states are special
cases of channels, the technique applies to these objects as
well, thereby providing a unified approach to characterizing
such resources.

On top of giving quantum resources a task-oriented char-
acterization, our framework comes with a simple quantifier.
Namely, the outperformance of the resourceless objects by
resourceful objects is exactly quantified by the generalized
robustness measure.

In future research it will be interesting to see if the level
of trust required (in the preparation of the objects used
in the input-output games) can be reduced without impact-
ing the generality of our results. One possible candidate
for this would be to consider measurement-device indepen-
dence on the measurement performed on the output of the
channel.

Note added. Recently, we became aware of four related
but independent works by Mori [67] and Carmeli et al.
[68] proving a connection between channel incompatibil-
ity and state discrimination, by Yuan et al. [69] proving
a connection between entanglement breaking channels and
input-output games, and by Lipka-Bartosik et al. connecting
the robustness of instruments to teleportation-based quantum
games [70].
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APPENDIX A: CONIC PROGRAMING AND
EVALUATING THE ROBUSTNESS FOR SETS OF
CHANNELS AND INSTRUMENTS

A convex cone is a subset C of a vector space V if it is
convex and one has ax € C for all x € C and a > 0. The dual
cone C* is defined as C* = {y | (x|y) > OVx € C}. A generic
cone program is of the following form [71]:

m)?x tr[AX], (A1)

such that ®[X] < B, X e€C,

where @ is a linear operator and > denotes the partial order
in the positive semidefinite cone. Following from Lagrange
duality the dual cone program reads

myin tr[BY ], (A2)

such that ®T[Y] —AeC*, Y >0.

Similar to the case of SDPs, the solutions of the primal and
dual problem coincide, i.e., strong duality holds if and only if
Slater’s condition is satisfied and the primal problem is finite
[71].

The channel robustness in Eq. (2) of the main text can be
formulated as a cone program. Namely

1+Rrp(A)=min 1+71, (A3)
t
such that r > 0, (A4)
A+tA .
+ = A €F, (AS5)
141¢
A is a set of channels. (A6)

Solving A from the constraint in Eq. (A5) of the above
cone program gives A = %[I‘ — A], where T = (1 +7)A and
A € F. Hence the optimization problem in Eq. (2), or more
precisely the optimization problem plus one, can be cast in
the Choi picture as

1
1+ Rr(A) = n}in —tr[Jrl, (A7)

X

suchthat Jr —Jp, >0, Jre CJF,

where Jy = @,Jps-8, Jr = OyJra-s, and Cj, = {aJi | a >
0, A € F} is the conic hull of J. This optimization problem
is now in the form of the cone program (A1). The dual cone
program can be obtained from Eq. (A2) and the dual cone
constraint can be further simplified (see Ref. [24] for more
details) such that the resulting dual program reads

14+Rr(A) = m;lx tr[Y J ],

suchthat Y >0, t[YT]<1VT eJr. (A8)

For sets of instruments one follows the above calculations.
The only difference is that each instrument element is treated
as its own block.

The solutions of the primal and dual problems coincide if
the so-called Slater’s condition is fulfilled. In our scenario
these conditions simply state that the positive semidefinite
constraint in the primal problem can be satisfied in the strict
form Jpr — Jo > 0. In our examples this condition is satisfied
as the maximally mixed state is in the free sets (in the Choi
picture). Hence one has a positive full rank point, which can
be scaled up to be strictly larger than a given J,.

APPENDIX B: QUANTUM SUPERMAPS

A quantum supermap is a linear higher-order transforma-
tion that maps a set of quantum channels A = {Aj, ..., A,}
(which, a priori, may have different input and output Hilbert
space dimensions d/, d? so that A; : H! — H?) into a quan-
tum channel S(A) : 'H{) — ’Hg [28,48,50]. Moreover, just as
a quantum channel must map quantum states to states even
when applied to part of a bipartite state (which means they
must be completely positive maps), a quantum supermap must
map channels to channels even when applied locally to part of
some bipartite channels.

More formally, a linear map S must satisfying the follow-
ing conditions to be a valid supermap [50].

(i) TPP (trace-preserving preserving). If all A; € A are
trace-preserving (TP), then S(A) must also be TP.

(i) CCPP (completely complete-positivity preserving). If
the A; € A are bipartite completely positive maps from H! ®
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HI' - HO @ U, then S® Z(A) is a completely positive
map, where Z is the identity map on channels in the primed
Hilbert spaces.

A supermap is thus a completely-CPTP preserving
(CCPTP) map.

The characterization of supermaps is more easily expressed
in the Choi picture. There, supermaps are represented as
process matrices [49], which were first introduced as maps
from CP maps to probabilities in the study of indefinite causal
orders [30,52]. The process matrix W of a supermap S is a
matrix satisfying the following constraints.

(1) PSD (positive semidefiniteness): W > 0.

(i1) Normalization: tr[W] =1 (note that, to ensure cor-
respondence with the case of channels, we use a different
normalization than is used elsewhere in the literature on
process matrices).

(iii) Validity: Ly (W) = W, where Ly is the projector onto
the linear subspace of valid process matrices as defined in
Refs. [49,52].

For the case of supermaps on two channels that we consider
in the main text, the validity constraint takes the form

try0,n0,0,W = 17,
trp,0,0,W = tro, (tr,0,0,W) ® 1",
try,0,0,W = tro, (tr,0,0,W) ® 12,
tro,W = tro, (tro,W) ® 19
+ tro, (tro,W) ® 192
— tro,0,(tro, W) ® 19%,  (B1)

where the labels I; and O; represent the Hilbert spaces H! and
HY, respectively.

The conic programing approach described in the main text
and in more detail in the previous section for channels can
be generalized simply to sets of supermaps. To this end, it
will again be useful to work in the Choi picture where there
supermaps are represented by process matrices as described
above. Then, it is readily seen that Eqgs. (A3) to (A7) hold
with A replaced by S = {S,}, a set of supermaps, J5 by
W = @,Ws,, etc. One thus finds (subject, as before, to Slater’s
condition holding for F')

I+ Rp(S) =max ) [V, Ws,]. (B2)

suchthatY >0, tr[YT]<1VT € Wp,
where Wy is the collection of sets of process matrices repre-
senting the sets of supermaps in F. The case treated in the
main text corresponds to |X| = 1.

With the definition of the Choi map used in the main text
and the process matrix normalization constraint, the prob-
ability of observing outcomes i, ..., iy, ip When perform-
ing instruments I, ..., I, followed by a final measurement
M = {M,,};, when the input is p [i.e., measuring M on
S, ..., 1;))(p)] is given by

SuWs(p" @ ® e U @My)], (B3

where D = dJ [],d}d?. Writing the witness ¥ = &,Y, with
[52,72]

Yo=D Y pli.X)0ij...jkx

by j1seees Junok

X pi{x®Jll_THX®...®JL_TM ®’7/{|x’ (B4)

where the w; ;.. ;. « chosen to ensure the J;, are all Choi maps
of instruments and the n; POVM elements, one then arrives at

P(S,G)
up ————
¢ maxger P(S, G)

where the supremum is over all collaborative games G. This
thereby proves Theorem 2 of the main text.

In the examples we mention in the main text, Slater’s
condition is easily seen to be satisfied by taking the maximally
noisy process (whose process matrix is proportional to 1),
which is contained in the free sets we consider [52,54].

=1+ Rr(S), (BS)

APPENDIX C: QUANTUM SUPERINSTRUMENTS

As mentioned in the main text, Theorem 2 can be gen-
eralized readily to sets of “quantum superinstruments” (also
called probabilistic supermaps). Formally, a quantum superin-
strument is a collection T = {7,}, of maps, where each 7, is
CCPP and ), 7, is TPP and thus a valid quantum supermap
[48,64]. In the process matrix picture, each 7, is simply rep-
resented by a positive semidefinite matrix W, with > Wy a
valid process matrix [50].

For clarity and simplicity of presentation, let us here
present just the case of superinstruments acting on two CP
maps with input and output dimensions d; the general case
follows immediately as elucidated in the previous section on
quantum supermaps. In analogy to the generalization from
quantum channels to instruments, to go to the case of superin-
struments one writes the payoff function for the collaborative
game (where the sets of ensembles, instruments, and states
making up the game are now indexed by x as well) as

P(T,G)= Y pli,x, a)oijea

i,j,k,l,x,a

X [ Tape (B 0 I o) (Qite.a)Mjea]- - (C1)

Considering a free set F of collections of quantum su-
perinstruments, one then defines the robustness with re-
spect to F analogously as in the previous cases, writes the
witness Y = @, Y4, and decomposes each Y, as Y, =
& Zijkﬂax P, x, a)wijkfaxpiTx,a ® JIkT|x,a ® Jl’fu,a & Njix.a-

In the case where ) 7, has a sequential realization,
superinstruments are often called quantum testers [59] or pro-
cess POVMs [29]. Sequential superinstruments are known to
provide advantages over parallel ones in some tasks [64,65];
in some of these, such as the problem of probabilistically
inverting unknown unitaries [50], general superinstruments
provide yet a further advantage.

In addition to quantifying the advantage of superinstru-
ments with particular causal structures using collaborative
games, one can also use these games to study, e.g., the compat-
ibility of sequential superinstruments [66]. A set of sequential
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superinstrument {7}, , is called compatible if (in analogy
to compatibility for POVMs) there exists a joint sequen-
tial superinstrument {/C,}, such that T, = Y, p(alx, A)K;.
Compatible superinstruments form a free set that our approach
can readily be applied to.

The study of superinstruments is still in its infancy—e.g.,
the concept of compatibility has not yet been studied for
general superinstruments—but our results show already that,
as such properties become understood, they can be quantified
using the game theoretic approach we introduce.
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