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Architecture to achieve nuclear magnetic resonance spectroscopy
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We theoretically analyze the performance of the nuclear magnetic resonance (NMR) spectroscopy with a
superconducting flux qubit (FQ). Such NMR with the FQ is attractive because of the possibility to detect the
relatively small number of nuclear spins in a local region (≈μm) with low temperatures (≈mK) and low magnetic
fields (≈mT), in which other types of quantum sensing schemes cannot easily be accessed. A sample containing
nuclear spins is directly attached on the FQ, and the FQ is used as a magnetometer to detect magnetic fields from
the nuclear spins. Especially, we consider two types of approaches to NMR with the FQ. One of them is to use
spatially inhomogeneous excitations of the nuclear spins, which are induced by a spatially asymmetric driving
with radio-frequency (rf) pulses. Such an inhomogeneity causes a change in the dc magnetic flux penetrating a
loop of the FQ, which can be detected by a standard Ramsey measurement on the FQ. The other approach is
to use a dynamical decoupling on the FQ to measure ac magnetic fields induced by Larmor precession of the
nuclear spins. In this case, neither a spin excitation nor a spin polarization is required since the signal comes from
fluctuating magnetic fields of the nuclear spins. We calculate the minimum detectable density (number) of the
nuclear spins for the FQ with experimentally feasible parameters. We show that the minimum detectable density
(number) of the nuclear spins with these approaches is around 1021/cm3 (108) with an accumulation time of 1 s.

DOI: 10.1103/PhysRevA.101.052303

I. INTRODUCTION

Nuclear magnetic resonance (NMR) and magnetic reso-
nance imaging are attractive techniques to analyze proper-
ties of the nuclear spins and these techniques have a wide
variety of applications such as chemical analysis including
determination of the protein structure, the study for molecular
diffusion, and biological imaging [1–4]. Typically, in these
techniques, an oscillating magnetic field from the target nu-
clear spin ensemble is induced by irradiating radio-frequency
(rf) pulses and the magnetic field is detected by a surrounding
coil through inductive coupling. There are many variations of
the techniques to improve sensitivity and spatial resolution
such as dynamic nuclear polarization [5], superconducting
quantum interference device detected NMR [6], magnetic res-
onance force microscopy (MRFM) [7], microslot waveguide
NMR probes [8], and external high-Q resonators [9].
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Recently, a new approach to detect nuclear spins by us-
ing an electron spin of the nitrogen-vacancy (NV) center in
diamond has been demonstrated [10–12]. The NV center is
used as an effective two-level system (qubit) and has a long
coherence time such as 2 ms at room temperature [13–15].
It can be controlled by the microwave (MW) pulses and can
be read out via the detection of photoluminescence from the
NV center at room temperature. The nuclear spins with zero
or almost zero polarization have Larmor precession to induce
ac magnetic fields with random fluctuating amplitude and
phase. Such a randomized ac magnetic field can be detected
by implementing a spin echo or dynamical decoupling on
the NV centers [11,12,16]. In these schemes, intervals of
π pulses are swept so that the resonance can be observed
when the inverse of the intervals corresponds to twice the
Larmor frequency of the nuclear spins. Since the NV center
has long coherence time and strong coupling strength due to
the short distance between the NV center and nuclear spin,
the sensitivity of such NMR is approaching a level of a single
nuclear spin detection [16]. In the sensing approach using
qubits, the sensitivity can be improved by entangling qubits
[17] and the entanglement between NV centers has been
extensively studied [18,19]. However, since the NV center is
coupled with the nuclear spins via a dipole-dipole interaction
the strength of which decreases by 1/r3, where r denotes the
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distance between them, the NV center can only detect nuclear
spins with a distance of tens of nanometers in the current
technology.

In this paper, we propose an approach to detect nuclear
spins by using a superconducting flux qubit (FQ) [20]. The FQ
is an artificial atom with a size of a few μm. The FQ has been
considered as one of the promising systems to realize a quan-
tum computer. Extensive efforts have been devoted to improve
performance of the FQ [21–28] and multiqubit entanglement
has been realized [29]. It is possible to implement a single
qubit rotation with high fidelity, and also we can read out the
FQ by using a microwave resonator or a Josephson bifurcation
amplifier where a readout visibility can reach more than 80%
[22,23,30,31]. The frequency of the FQ can be shifted by
changing a magnetic flux penetrating a qubit loop. Therefore,
we can measure magnetic fields by using the FQ [32]. There
is inductive coupling between the FQ and an electron spin
[33–37]. The coupling strength is approximately scaled as 1/r
as long as r is comparable to or smaller than the characteristic
length of the FQ, where r denotes the distance between the
FQ and the spin. Hence it is in principle possible to detect
the spin far from the FQ [33,34,38]. There are many potential
applications by using this property such as a quantum memory
[33–35,39,40] or magnetic-field sensing [41,42]. Although
there are several types of research to detect local electron spins
using superconducting resonators [43–50], it is discussed that
the FQ has a reasonable advantage to detect electron spins
in a narrower region with high sensitivity [51]. Recently,
by using the FQ as a detector of magnetization of electron
spins, electron-spin resonance (ESR) was demonstrated, and
hundreds of electron spins with a volume of 50 fl can be
detected by a total accumulation time of 1 s [51]. These results
show the excellent potential of the FQ to detect nuclear spins,
and we theoretically investigate the performance of the FQ for
NMR.

We consider two schemes for NMR with the FQ to ana-
lyze their performance. In the first scheme, the FQ detects
a dc magnetic field from the nuclear spins by using spa-
tially inhomogeneous excitations of the nuclear spins. This
method has been used to realize the electron-spin resonance
with the FQ [51]. In this scheme, we use an on-chip rf-
MW line near the FQ for driving the nuclear spins and
controlling the FQ. The schematic of our setup is shown
in Fig. 1. The essential idea is that the partial excitation of
the spins by the asymmetric driving induces a difference of
the dc magnetic flux penetrating the loop of the FQ due
to the driving. In the second scheme, the FQ detects an
ac magnetic field from the nuclear spins which are induced
from the Larmor precession of the nuclear spins. Here, we
use a dynamical decoupling on the FQ to detect the ac
magnetic fields. This approach has been used to demon-
strate NMR with the NV centers in diamond as previously
discussed [11].

Our paper is organized as follows. In Sec. II, we review
the standard general magnetic-field sensing schemes with a
qubit. In Sec. III, we describe NMR spectroscopy with an FQ
using these two schemes. In Sec. IV, we show our numerical
results for the minimum detectable density and the minimum
detectable number of the nuclear spins. In Sec. V, we conclude
our discussion.
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FIG. 1. Schematic of our setup to implement NMR with a FQ
from the top view (a) and the side view (b). A spin sample containing
target nuclear spins is attached on the FQ. A static magnetic field is
applied along the z direction to polarize the nuclear spins. We will
drive the nuclear spins by ac currents through the rf-MW line until
the nuclear spin system reaches a steady state. The side of the FQ
square is a length of L. The distance between the spin sample and the
FQ is h. A line to apply rf pulses is located with a distance of zrf from
the FQ, and Bex is the external magnetic field applied for polarizing
the nuclear spins. Since Bex is applied in the z direction, this does not
affect the penetrating magnetic flux of the loop of the FQ. We define
the distance r j = | �r j | between the jth spin and the rf-MW line and
the angle θ j between �r j and the z axis.

II. MAGNETIC-FIELD SENSING WITH A FLUX QUBIT

Here, we review standard sensing schemes to detect either
dc or ac magnetic field with a flux qubit. The configuration of
the FQ and microwave line is the same as what is described in
Fig. 1. The target magnetic fields are assumed to be applied in
the x direction in the figure.

A. Dc magnetic-field sensing

The Hamiltonian of the dc sensing system using the FQ in
a laboratory frame is written as below:

Ĥ (FQ) = ε

2
σ̂ (FQ)

x + �

2
σ̂ (FQ)

z + εdc

2
σ̂ (FQ)

x

+ λMW cos(ωMWt )σ̂ (FQ)
x , (1)

where σ̂z(x) is the Pauli Z (X ) operator; ε = 2Ip(	 − 	0/2)
is the energy bias; Ip is the persistent current of the FQ;
	 = Bex,⊥L2 is the magnetic flux penetrating the FQ; 	0

is the magnetic flux quanta; Bex,⊥, which is used for qubit
control, is the x component of the external magnetic field; �

is the gap frequency of the flux qubit; εdc is the energy bias
by the applied dc magnetic field; λMW is the Rabi frequency
for the FQ; ωMW is the frequency of microwave pulses for
controlling the qubit. Throughout this paper, we set h̄ = 1.
We can diagonalize the flux qubit term by using ωFQ

2 Ẑ (FQ) =√
ε2+�2

2 Ẑ (FQ) = ε
2 σ̂ (FQ)

x + �
2 σ̂ (FQ)

z and ωFQ

2 X̂ (FQ) = �
2 σ̂ (FQ)

x −
ε
2 σ̂ (FQ)

z , as

Ĥ (FQ) = ωFQ

2
Ẑ (FQ) +

(εdc

2
+ λMW cos(ωMWt )

)

×
(

ε

ωFQ
Ẑ (FQ) + �

ωFQ
X̂ (FQ)

)
. (2)

In the rotating frame of the qubit frequency defined by a uni-
tary operator Û = Exp[−it (ωFQ/2)Ẑ (FQ)], the Hamiltonian
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becomes

Ĥ ′(FQ) = εdc

2

ε

ωFQ
Ẑ (FQ) + λMW

2

�

ωFQ
X̂ (FQ), (3)

where we use the rotating-wave approximation for the qubit
and we assume that ωMW = ωFQ. Later we ignore the time
evolution by control pulse for the qubit because the pulse
width is small enough compared to the measurement time.
When the control pulse is not applied (λMW = 0), the Hamil-
tonian is described as

Ĥ ′(FQ) = �ωdc

2
Ẑ (FQ). (4)

�ωdc = εdcε/ωFQ denotes a detuning of the qubit when a dc
magnetic field is applied. The basic strategy for the sensing
of applied dc magnetic field is to know the deviation of the
frequency from the original one, i.e., �ωdc. First, prepare
the |+〉 = (|0〉 + |1〉)/

√
2 state by applying a π

2 pulse to the
qubit. Second, let this state evolve by the Hamiltonian for a
time τ . Finally, we read out the state by a projection opera-
tor described by P̂y = 1+Ŷ (FQ)

2 . By repeating these processes
within a total time Ttot, we can obtain the average value of the
projective measurements. Since the expectation value of P̂y

has a dependence on �ωdc, we can derive the value of �ωdc

and estimate dc magnetic field from the average of them.

B. Ac magnetic-field sensing

To detect an ac magnetic field, we can perform a dynamical
decoupling on a qubit. The Hamiltonian of the qubit with the
applied ac magnetic field in a laboratory frame is

Ĥ (FQ) =ωFQ

2
Ẑ (FQ) +

(εac

2
cos(ωact ) + λMW cos(ωMWt )

)

×
(

ε

ωFQ
Ẑ (FQ) + �

ωFQ
X̂ (FQ)

)
, (5)

where εac is the energy bias by the applied ac magnetic field
and ωac is the frequency of the applied ac magnetic field. In the
rotating frame of the qubit frequency defined by a unitary op-
erator Û = Exp[−it (ωFQ/2)Ẑ (FQ)], the Hamiltonian becomes

Ĥ ′(FQ) = εac

2
cos(ωact )

ε

ωFQ
Ẑ (FQ) + λMW

2

�

ωFQ
X̂ (FQ), (6)

where we assume ωac � ωFQ, ωMW = ωFQ and use the
rotating-wave approximation for the qubit. When the control
pulse is not applied (λMW = 0), the Hamiltonian is described
as

Ĥ ′(FQ) = λac

2
cos(ωact )Ẑ (FQ), (7)

where λac = εacε/ωFQ is the change due to the ac magnetic
field and ωac is the frequency of the ac magnetic field. To
detect this change by an ac magnetic field, we can implement
the spin echo on the qubit by using the following sequence.
First, prepare a |+〉 state by applying a π

2 pulse to the qubit.
Second, let this state evolve by the Hamiltonian for a time
τ while we perform π pulses with time τ . Finally, we read
out the state by a projection operator described by P̂x = 1+σ̂x

2 .
It is worth mentioning that the time interval of the π pulses
should be approximately set as τ 	 2π/ωac so that the qubit
flip interval can synchronize with the ac magnetic field for
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FIG. 2. Schematic of the nuclear spins excited by asymmetric
driving. The arrows in the spin sample denote the nuclear spins
which are polarized to parallel or antiparallel to the Bex. (a) In the
strong driving limit, the nuclear spins are completely unpolarized,
which is represented by Î/2, where the signals from the nuclear spins
to the FQ are canceled out. (b) With optimized driving power, the
polarization rate of the nuclear spins is spatially inhomogeneous so
that the FQ can detect the change in dc magnetic fields penetrating
the loop of the FQ. The ρ̂th, j is the state of the jth nuclear spin at
a thermal state. Although we consider completely polarized spins
in this figure for simplicity, our idea can be also applied with not
completely polarized spins.

the sensitive detection, where we assume the pulse lengths
are much shorter than τ . Similar to the dc magnetic-field
sensing, by repeating these processes within the total time
Ttot , we can experimentally obtain the average value of the
projective measurements. Since the expectation value of P̂x

has a dependence on the λac, we can estimate the amplitude of
the ac magnetic fields from the average value.

III. NMR SENSING SCHEME WITH A FLUX QUBIT

Here, we describe two sensing schemes to detect the NMR
signal with the FQ. The first scheme uses the dc magnetic-
field sensing and we call this a Ramsey measurement with
asymmetric driving. The other scheme uses a spin echo or a
dynamical decoupling on the FQ to detect ac magnetic fields
induced by the Larmor precession of the nuclear spins. The
schematic of our setup is shown in Fig. 1. A spin sample
containing nuclear spins is directly attached on the FQ. The
gyromagnetic ratio of the proton is the largest among typ-
ical nuclear spins. This means that, as a proof of principle
experiment of NMR using the FQ, it is suitable to use the
protons as the target spins. Therefore, throughout this paper,
we consider the spin sample which includes the proton spins
homogeneously.

A. NMR using Ramsey measurement with asymmetric driving

We describe NMR using a Ramsey measurement with
asymmetric driving. The FQ detects a magnetic flux penetrat-
ing the qubit loop. The magnetic flux is derived by integrating
the x component of magnetic flux from spins. Here, we con-
sider the case that the size of the spin samples is large enough
compared to the FQ and the spins are thermally polarized
before the driving. When we drive the spins asymmetrically,
the total magnetic flux from the spins arises, and this generates
changes in the FQ signals before and after the driving as
shown in Fig. 2. On the other hand, if all spins become
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completely mixed states due to the strong driving, the total
magnetic flux penetrating the qubit loop is canceled out, and
the FQ cannot obtain any signal change.

The Hamiltonian of our sensing system is written by using
the Hamiltonian for the FQ, the spins, and the interaction
between them as below:

Ĥ = Ĥ (FQ) + Ĥ (int) + Ĥ (spin), (8)

Ĥ (FQ) = ε

2
σ̂ (FQ)

x + �

2
σ̂ (FQ)

z , (9)

Ĥ (int) = 1

2

M∑
j=1

γ
(
B(FQ)

j · σ̂
(spin)
j

)
σ̂ (FQ)

x , (10)

Ĥ (spin) = 1

2

M∑
j=1

(
ω j σ̂

(spin)
z, j + 4λrf, j σ̂

(spin)
x, j cos ωrft

)
. (11)

Here σ̂
(spin)
z(x), j is the Pauli Z (X ) operator for the jth spin,

σ̂
(spin)
j = (σ̂ (spin)

x, j , σ̂
(spin)
y, j , σ̂

(spin)
z, j ) is the spin vector of the jth

spin, M is the total number of the spins, γ is the gyromagnetic
ratio of the spins, B(FQ)

j is the magnetic field induced by

the FQ at the jth spin, ω j = ω + δω j = γ B( j)
ex is the Larmor

frequency of the jth spin, B( j)
ex = Bex + δB( j)

ex is the external
magnetic field at the jth spin, ω = γ Bex is the average fre-
quency of the spins, δω j = γ δB( j)

ex is the frequency deviation
of the jth spin from the average, δB( j)

ex denotes randomized
local magnetic field from the environment at the jth spin,
ωrf is the frequency of the applied rf magnetic field, λrf, j =
γμ0Irf

2πr j
cos θ j is the coupling strength of the jth spin with the

rf-MW line, μ0 is the vacuum permittivity, �r j (r j) is the vector
(distance) from the rf-MW line to the spin, θ j is the elevation
angle between the FQ surface and �r j (as shown in Fig. 1), and
Irf is the current in the rf-MW line. By diagonalizing the flux
qubit term, the Hamiltonian becomes

Ĥ = ωFQ

2
Ẑ (FQ) + 1

2

M∑
j=1

γ
(
B(FQ)

j · σ̂
(spin)
j

)

×
(

ε

ωFQ
Ẑ (FQ) + �

ωFQ
X̂ (FQ)

)

+ 1

2

M∑
j=1

(
ω j σ̂

(spin)
z, j + 4λrf, j σ̂

(spin)
x, j cos ωrft

)
. (12)

Next, we consider the Hamiltonian for a Ramsey measure-
ment with asymmetric driving in a rotating frame for the FQ
and the spins. The rotating frame for the FQ rotates at the fre-
quency of ω′ and that for the spins rotates at the frequency of
ωrf . More specifically, we are in a rotating frame defined by a
unitary operator Û = Exp[−it (ω′/2)Ẑ (FQ) − it (ωrf/2)σ̂ (spin)

z, j ].
In this rotating frame, the Hamiltonian becomes

ĤAD 	 ωFQ − ω′

2
Ẑ (FQ) + 1

2

M∑
j=1

(
γ̃
(
B(FQ)

z, j σ̂
(spin)
z, j

)
Ẑ (FQ)

+ 2λrf, j σ̂
(spin)
x, j + δω j σ̂

(spin)
z, j

)
, (13)

where γ̃ = γ ε/ωFQ. Here, we use the rotating-wave approx-
imation for the FQ, assume that ωrf = ω, and use Magnus

FQ

RF

Saturation
Pulse

×N

t

t

Init.

FIG. 3. The pulse sequence for a Ramsey measurement with
asymmetric driving. After the nuclear spins are excited by the rf
pulse, the Ramsey interference measurements performed N times.
Init. means the initialization of the FQ and σ̂z means the measurement
in the z direction.

expansion to approximate the term rotating at the frequency
of ω under the condition ωrf 
 γ |B(FQ)

j | [52]. (The detailed
calculation is in Appendix A.) The coupling strength between
the FQ and the jth spin γ̃ B(FQ)

z, j can be seen as the energy
splitting of the FQ due to the effective dc magnetic field
from the jth spin γ ′B(spin)

z, j . Here γ ′ = dωFQ

dB⊥
is the derivative

of the qubit frequency with respect to the magnetic field B⊥
penetrating the loop of the FQ, and B(spin)

z, j denotes the dc
magnetic field at the FQ induced by the jth spin. When we
consider a case without driving the nuclear spins (λrf, j = 0),
we can simplify the Hamiltonian as follows:

ĤAD = 1

2

⎛
⎝ωFQ − ω′ + γ ′

M∑
j=1

B(spin)
z, j σ̂

(spin)
z, j

⎞
⎠Ẑ (FQ)

+ 1

2

M∑
j=1

δω j σ̂
(spin)
z, j . (14)

Here, we assume that the nuclear spins reach a thermal
equilibrium state so that we can classically treat the nuclear
spins. By tracing out the freedom of the nuclear spin state,
only the magnetization from the nuclear spin state remains in
the Hamiltonian to affect the dynamics of the FQ and we can
ignore the constant term δω j〈σ̂ (spin)

z, j 〉. Especially, we define

〈σ̂ (spin)
z, j 〉

th
as an expectation value of the Pauli Z operator for

the jth spin in the case of the thermalized nuclear-spin state
without the rf driving. On the other hand, we define 〈σ̂ (spin)

z, j 〉
st

as an expectation value of the Pauli Z operator for the jth spin
when the nuclear-spin state is in steady state by the rf driving.
It is worth mentioning that the effect of the inhomogeneous
broadening of the nuclear spins δω j is implicitly included
in 〈σ̂ (spin)

z, j 〉
st

and 〈σ̂ (spin)
z, j 〉

th
. The dependence of 〈σ̂ (spin)

z, j 〉
st

and

〈σ̂ (spin)
z, j 〉

th
on δω j will be discussed later in detail.

We can use a pulse sequence of the standard dc magnetic-
field sensing for the detection of the nuclear spins as shown
in Fig. 3. In our scheme, the difference of the spin po-
larization before and after the rf driving induces an effec-
tive dc magnetic field to the FQ. By setting ω′ = ωFQ +∑M

j=1 γ ′B(spin)
z, j 〈σ̂ (spin)

z, j 〉
th

, the detuning caused by the rf driving
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is defined as

�ωFQ = γ ′
M∑

j=1

B(spin)
z, j

(〈
σ̂

(spin)
z, j

〉
st − 〈σ̂ (spin)

z, j

〉
th

)
, (15)

and the Hamiltonian for the Ramsey measurement becomes

Ĥ ′
AD = 1

2
�ωFQẐ (FQ). (16)

In the end, the signal PAD is calculated as

PAD = Tr
[
e−iĤ ′

ADτAD |+〉〈+|(FQ)eiĤ ′
ADτADP̂ (FQ)

y

]

= 1

2
+ 1

2
sin �ωFQτAD,

	 1

2
+ 1

2
�ωFQτAD, (17)

where |+〉〈+|(FQ) = |+〉(FQ)(FQ)〈+| and we assume that
�ωFQτAD � 1.

To maximize the detuning �ωFQ, we optimize the position
of the rf-MW line and the Rabi frequency. For this purpose,
we need to calculate 〈σ̂ (spin)

z, j 〉
st

and 〈σ̂ (spin)
z, j 〉

th
. The density

matrix for the jth spin ρ̂ j at the thermal state is calculated

by using Boltzmann distribution as ρ̂th, j = exp[−ω j σ̂
(spin)
z, j

2kBT ]/Z

and Z = Tr{exp[−ω j σ̂
(spin)
z, j

2kBT ]}, where kB is the Boltzmann con-

stant and T is the temperature. We can get 〈σ̂ (spin)
z, j 〉

th
=

Tr[σ̂ (spin)
z, j ρ̂th, j] 	 ω

kBT , where we assume δω j � ω.
We will solve the Lindblad master equation of the jth spin

for calculating 〈σ̂ (spin)
z, j 〉

st
. It is worth mentioning that, while we

drive the nuclear spins by the rf pulses, the FQ is in a ground
state. In this case, we can trace out the FQ term from the
Hamiltonian by taking σ̂ (FQ)

z = −1. Then, the master equation
is given as

d ρ̂ j

dt
= −i[Ĥj, ρ̂ j] + L̂ j ρ̂ j, (18)

where Ĥj is the Hamiltonian for the jth spin and L̂ j is the
Lindblad superoperator for the jth spin. With rf driving, the
Hamiltonian for the jth spin is

Ĥj = 1

2

(
ω + δω j + γ̃ B(FQ)

z, j

)
σ̂

(spin)
z, j + 2λrf, j σ̂

(spin)
x, j cos ωrft .

(19)

In a rotating frame for the nuclear spin, the Hamiltonian is
described as

Ĥj,rot = 1

2
δω j σ̂

(spin)
z, j + λrf, j σ̂

(spin)
x, j , (20)

where we assume that ωrf = ω and δω j 
 γ̃ B(FQ)
z, j , and we

use the rotating-wave approximation. The superoperator L̂ j

is described as

L̂ j ρ̂ j = −�

2
(1 − s)[σ̂+, j σ̂−, j ρ̂ j + ρ̂ j σ̂+, j σ̂−, j − 2σ̂−, j ρ̂ j σ̂+, j]

− �

2
s[σ̂−, j σ̂+, j ρ̂ j + ρ̂ j σ̂−, j σ̂+, j − 2σ̂+, j ρ̂ j σ̂−, j],

(21)

where � is the longitudinal relaxation rate, σ̂+, j = σ̂
†
−, j =

|1〉 j j〈0| is the raising operator, and s = 1
2 + 1

2 〈σ̂ (spin)
z, j 〉

th
de-

notes a probability that the spin is excited at the thermal
equilibrium state.

For a given frequency deviation δω j , we solve the master
equation (18) for the steady state, and obtain the polarization
difference between the thermal and saturated state:

�
〈
σ̂

(spin)
z, j

〉 = 〈σ̂ (spin)
z, j

〉
st − 〈σ̂ (spin)

z, j

〉
th

= −〈σ̂ (spin)
z, j

〉
th

8λ2
rf, j

�2 + 8λ2
rf, j + 4δω2

j

. (22)

However, in the real systems, the nuclear spins are affected
by a low-frequency magnetic-field noise δB( j)

ex from the en-
vironment. To take into account this effect, we consider an
ensemble average of the frequency deviation with a Gaussian
weight as follows:

�
〈
σ̂

(spin)
z, j

〉 = −〈σ̂ (spin)
z, j

〉
th

∫ ∞

−∞

1

�̃
√

π
e− δω2

j
�̃2

× 8λ2
rf, j

�2 + 8λ2
rf, j + 4δω2

j

d (δω j )

= −〈σ̂ (spin)
z, j

〉
th

4λ2
rf, j

√
πe

�2+8λ2
rf, j

4�̃2

�̃
√

�2 + 8λ2
rf, j

erfc

⎡
⎣
√

�2 + 8λ2
rf, j

2�̃

⎤
⎦

(23)

where �̃ is the linewidth of the frequency δω j due to the
environmental magnetic-field noise and erfc[·] is a comple-
mentary error function. Since the energy relaxation is typ-
ically much weaker than the low-frequency magnetic-field
noise, we assume that � � �̃ throughout this paper [53–55]
and we set � = 10−3 × �̃ in the calculation. (It is worth
mentioning that our results are not significantly changed for
any value of � as long as the condition of � � 10−3 × �̃

is satisfied, which we numerically confirmed.) We need a

position dependence of 〈σ̂ (spin)
z, j 〉

st
to evaluate the effect of the

spatially inhomogeneous excitation of the nuclear spins after
the rf driving. To illustrate such an asymmetric excitation, the

density plot of the polarization difference �〈σ̂ (spin)
z, j 〉 is shown

in Fig. 4. As the nuclear spins are located closer to the rf-MW
line, the excitation ratio after the driving becomes larger so
that the spin excitation ratio can be spatially inhomogeneous
in our setup.

For more realistic estimation, we consider the effect of
the dephasing of the FQ and an imperfect readout. We adopt
a dephasing channel of the FQ such as Ê (ρ̂) = pρ̂ + (1 −
p)σ̂ (FQ)

z ρ̂σ̂ (FQ)
z for a density matrix of the FQ ρ̂, where p =

1
2 + 1

2 e−�
(FQ)
AD τAD denotes a probability to induce the dephasing

during the interaction time τAD, �
(FQ)
AD = 1/T ∗

2 denotes the
dephasing rate of the FQ, and T ∗

2 is the dephasing time for a
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FIG. 4. The polarization difference between the thermal and

saturated state �〈σ̂ (spin)
z, j 〉. The vertical axis denotes γμ0Irf/�̃R (nor-

malized current strength of the rf pulse), while the horizontal axis
denotes r j cos θ j/R where r j cos θ j denotes the z component of the
position vector �r j from the rf-MW line to the jth spin (as shown in
Fig. 1). In this calculation, we set the reference distance R = 1 μm,
temperature T = 20 mK, the magnetic field Bex = 5 mT, and the x
components of the jth spin position is 0.1 μm. At r j cos θ j = 0, since

λrf, j = 0, �〈σ̂ (spin)
z, j 〉 becomes zero.

Ramsey measurement. The qubit state before the readout step
can be described as

ρ̂AD = 1 + e−�
(FQ)
AD τAD

2

(
e−iĤ ′

ADτAD |+〉〈+|(FQ)eiĤ ′
ADτAD

)

+ 1 − e−�
(FQ)
AD τAD

2

×(σ̂ (FQ)
z e−iĤ ′

ADτAD |+〉〈+|(FQ)eiĤ ′
ADτAD σ̂ (FQ)

z

)
. (24)

After the readout by P̂y we can get the signal as

P′
AD 	 1

2
+ 1

2
e−�

(FQ)
AD τAD�ωFQτAD,

�ωFQ = γ ′
M∑

j=1

B(spin)
z, j �

〈
σ̂

(spin)
z, j

〉
. (25)

Supposing a perfect measurement apparatus (MA) was
available, the MA would provide us with a specific detection
signal (such as a large electrical current) if and only if the
state of the FQ is |e〉(FQ) while the MA would not generate
such detection signal with a state of |g〉(FQ), where |e(g)〉(FQ)

denotes that the state of the FQ is the excited (ground)
state. However, the measurement apparatus is imperfect in
the actual experiment, and the measurement results may not
correspond to the actual state of the FQ. To include such an
imperfection, we adopt a model in which the FQ is depolar-
ized due to the interaction with the MA by the following error
channel:

Ê (ρ̂AD) = (1 − η)ρ̂AD + η
Î

2
, (26)

where η is the depolarization ratio. We assume that a projec-
tive measurement can be implemented only after the FQ is
affected by this error channel. In this case, the signal can be
described as

P̃′
AD 	 1

2
+ 1

2
(1 − η)e−�

(FQ)
AD τAD�ωFQτAD.

In order to quantify the accuracy of the measurement
process, we define a probability that the imperfect MA shows
the detection signal (that is expected to occur when the FQ
is excited) as p(detect). Especially, we consider conditional
probabilities such as p(detect||e〉(FQ)) [p(detect||g〉(FQ))] to
observe the MA detection signal when the FQ state is
prepared in |e〉(FQ) [|g〉(FQ)]. By using our error model,
we can calculate these as p(detect||e〉(FQ)) = 1 − η

2 and
p(detect||g〉(FQ)) = η

2 . The so-called visibility V is defined as
V = p(detect||e〉(FQ)) − p(detect||g〉(FQ)). In our model, the
visibility is described as V = 1 − η. From this relationship,
the signal of the FQ can be described as

P̃′
AD 	 1

2
+ 1

2
Ve−�

(FQ)
AD τAD�ωFQτAD. (27)

Next, we consider the optimization of the interaction time
τAD. In our scheme, we measure dc magnetic fields from the
nuclear spins. According to the standard prescription of the
quantum metrology [17], we will consider the uncertainty of
the estimation of the target fields as follows:

δBdc =
√

P̃′
AD(1 − P̃′

AD)∣∣ dP̃′
AD

dBdc

∣∣√N
	 e�

(FQ)
AD τAD

V γ ′τAD

√
N

,

where Bdc =∑M
j=1 B(spin)

z, j �〈σ̂ (spin)
z, j 〉 is the effective dc mag-

netic field from the nuclear spins, N = Ttot/Trep is the number
of repetitions, and Trep is the time required for a single mea-
surement. The interaction time τAD to minimize this uncer-
tainty is τ

opt
AD = 1/�

(FQ)
AD = T ∗

2 and the sensitivity is maximized
at this interaction time.

To optimize the position of the rf-MW line and the current
of the rf pulse, we plot �ωFQ/�ωFQ,max in Eq. (15) as a
function of zrf and γμ0Irf/�̃R in Fig. 5. This shows that
�ωFQ/�ωFQ,max is optimized when γμ0Irf/�̃R 	 1 is satis-
fied for 1 < zrf < 3 μm. In the actual experiment, the current
in the rf-MW line can be as large as a few mA [56]. This
means that, as long as �̃ < 105 s−1, we can optimize the signal
by controlling the Irf . Therefore, in the calculation section
(Sec. IV), we fix the value of zrf , because we can obtain almost
the same optimal signal by choosing Irf for a given zrf as
shown in Fig. 5.

Actually, the rf pulse could induce the frequency shift of
the flux qubit. However, since the frequency of the FQ (more
than 5 GHz) is much larger than the frequency of ac current
(200 kHz), such frequency shifts caused by the rf pulse occur
as adiabatic changes of the quantum states of the FQ. So the
quantum state of the FQ after the rf pulses should remain in
the same state before the rf pulses, which does not affect the
performance of our scheme.
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FIG. 5. The signal of the FQ as a function of zrf and the
γμ0Irf/�̃R. L and h are 2 and 0.1 μm, respectively. We use the same
parameters as those used in Fig. 4 except the parameters mentioned
above. The size of the spin sample is 2.5L × 2.5L × 2L. �ωFQ,max is
the maximum value of �ωFQ in this plot region.

B. NMR using dynamical decoupling

We describe the NMR by using the dynamical decoupling
on the FQ. We adopt the same Hamiltonian as Eq. (12). We
detect Larmor precession of the nuclear spins, which induces
ac magnetic fields. We can use a pulse sequence shown in
Fig. 6 with 2n−1 π pulses. This technique has been used
to detect nuclear spins by using a single NV center [11].
It is worth mentioning that neither rf driving (λrf = 0) nor
polarization of the nuclear spins is required for this detection.
For simplicity, we consider the case of single nuclear spin
coupled with the FQ. In a rotating frame for the FQ which
rotates at the frequency of ωFQ, the Hamiltonian in Eq. (12)
for the FQ and the jth spin becomes

Ĥj = 1

2
γ̃
(
B(FQ)

j · σ̂
(spin)
j

)

× (Ẑ (FQ) + �

ε
e−i

ωFQ t

2 Ẑ (FQ)
X̂ (FQ)ei

ωFQt

2 Ẑ (FQ))+ ω j

2
σ̂

(spin)
z, j

	 1

2

(
γ̃ B(FQ)

z, j Ẑ (FQ) + ω j
)
σ̂

(spin)
z, j + γ̃

2
B(FQ)

⊥, j σ̂
(spin)
⊥, j Ẑ (FQ),

(28)

where B(FQ)
⊥, j =

√
(B(FQ)

x, j )
2 + (B(FQ)

y, j )
2

is the amplitude of the

magnetic field in an x-y plane, σ̂
(spin)
⊥, j = B(FQ)

x, j /B(FQ)
⊥, j σ̂

(spin)
x, j +

B(FQ)
y, j /B(FQ, j)

⊥, j σ̂
(spin)
y, j , and we use the rotating-wave approx-

imation for the FQ. In a rotating frame for the spin, the
last term can be regarded as a coupling of the ac magnetic
field from the nuclear spins and the magnetic field from the

FIG. 6. The pulse sequence for dynamical decoupling using n π

pulses.

FQ [57]. Similar to the case of the Ramsey measurement
with asymmetric driving, we use a relationship of γ̃ B(FQ)

⊥, j =
γ ′B(spin)

⊥, j , and rewrite the Hamiltonian where B(spin)
⊥, j is the ac

magnetic-field effect from nuclear spins. For ω j 
 γ̃ B(FQ)
z, j ,

the Hamiltonian is rewritten as

ĤDD, j = ω j

2
σ̂

(spin)
z, j + γ ′

2
B(spin)

⊥, j σ̂
(spin)
⊥, j Ẑ (FQ)

= |0〉〈0|(FQ) ⊗ Ĥ (spin)
0, j + |1〉〈1|(FQ) ⊗ Ĥ (spin)

1, j , (29)

where Ĥ (spin)
0, j = ω j

2 σ̂
(spin)
z, j + γ ′

2 B(spin)
⊥, j σ̂

(spin)
⊥, j and Ĥ (spin)

1, j =
ω j

2 σ̂
(spin)
z, j − γ ′

2 B(spin)
⊥, j σ̂

(spin)
⊥, j . We prepare an initial state of

|ψ±, j (0)〉 = |+〉(FQ) ⊗ |±〉(spin)
j . In this section, we consider a

case of n=1, which is called a spin echo. Let this evolve by
the Hamiltonian for a time τDD/2, and we obtain
∣∣∣ψ±, j

(τDD

2

)〉
= 1√

2
|0〉(FQ) ⊗ e−iĤ (spin)

0, j
τDD

2 |±〉(spin)
j

+ 1√
2
|1〉(FQ) ⊗ e−iĤ (spin)

1, j
τDD

2 |±〉(spin)
j . (30)

After performing a π pulse on the FQ, let the state evolve for
a time τDD/2, and we obtain

∣∣ψ±, j (τDD)
〉 = 1√

2
|1〉(FQ) ⊗ Ûa|±〉(spin)

j

+ 1√
2
|0〉(FQ) ⊗ Ûb|±〉(spin)

j , (31)

where Ûa, j = e−iĤ (spin)
1, j

τDD
2 e−iĤ (spin)

0, j
τDD

2 and Ûb, j =
e−iĤ (spin)

0, j
τDD

2 e−iĤ (spin)
1, j

τDD
2 . By reading out the state of the FQ

with a projection operator P̂x = 1+σ̂x
2 , we have

P± = Tr[P̂x|ψ±, j (τDD)〉〈ψ±, j (τDD)|]

= 1

2
+ 1

4
(spin)

j 〈±|(Û †
a Ûb + Û †

b Ûa)|±〉(spin)
j . (32)

So, the signal will be calculated as

P± 	 1 −
(

cos
ω jτDD

2
− 1
)2
(
γ ′B(spin)

⊥, j

)2
ω2

j

(33)

for ω j 
 γ ′B(spin)
⊥, j . It is worth mentioning that since the signal

does not depend on the initial spin state |±〉(spin)
j we obtain the

same signal as Eq. (33) even when the initial spin state is com-
pletely mixed such as ρ̂

(spin)
j = 1

2 |+〉〈+|(spin)
j + 1

2 |−〉〈−|(spin)
j .

This shows that the polarization of the nuclear spins is not
required to perform the NMR when we use the spin echo on
the FQ.

We generalize this idea to the case of M nuclear spins. The
state before the readout step is described as

|ψ+(τDD)〉 = 1√
2
|1〉(FQ) ⊗

M∏
j=1

Ûa, j |+〉(spin)
j

+ 1√
2
|0〉(FQ) ⊗

M∏
j=1

Ûb, j |+〉(spin)
j . (34)
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By reading out the state by P̂x, we obtain

PDD = 1

2
+ 1

4

M∏
j=1

(spin)
j 〈+|(Û †

a, jÛb, j + Û †
b, jÛa, j )|+〉(spin)

j

	 1 −
M∑

j=1

(
cos

ω jτDD

2
− 1
)2
(
γ ′B(spin)

⊥, j

)2
ω2

j

, (35)

for ω j 
 γ ′B(spin)
⊥, j . Similar to the case of the FQ coupled with

a single nuclear spin discussed above, we obtain the same
signal even when the initial spin state is completely mixed. We
can obtain the signal when we perform π pulses 2n−1 times,
which corresponds to the case of the dynamical decoupling:

PDD = 1

2
+ 1

4

×
M∏

j=1

(spin)
j 〈+|((Û †

a, j )
n(Ûb, j )

n

+ (Û †
b, j )

n(Ûa, j )
n
)|+〉(spin)

j . (36)

In this section, to understand the basic properties of the
NMR with the FQ via the ac magnetic fields from the nuclear
spins, we mainly discuss the simplest spin-echo case to per-
form a single π pulse on the FQ, while we show the detailed
calculation of the case to perform the dynamical decoupling
in Appendix C.

As is the case with the Ramsey measurement with
asymmetric driving, the nuclear spins are affected by low-
frequency magnetic-field noise δB( j)

ex from the environment.
To take into account this effect, we consider an ensemble
average of the frequency with a Gaussian weight as follows:

PDD 	 1 −
M∑

j=1

∫ ∞

−∞

1

�̃
√

π
e− δω2

j
�̃2

×
(
cos ω jτDD

2 − 1
)2

ω2
j

d (δω j )
(
γ ′B(spin)

⊥, j

)2

	 1 −
(

cos
ωτDD

2
− 1
)2 M∑

j=1

(
γ ′B(spin)

⊥, j

)2
ω2

, (37)

where we assume �̃ � ω. So, the signal does not depend on
the linewidth �̃ as long as the higher-order terms of |�̃/ω| are
negligible.

We consider the dephasing of the FQ and an imperfect
readout. Due to the dephasing, the density matrix of the total
system before the readout step is described as

ρ̂DD = 1 + e−�
(FQ)
DD τDD

2
|ψ±(τDD)〉〈ψ±(τDD)|

+ 1 − e−�
(FQ)
DD τDD

2

(
σ̂ (FQ)

z |ψ±(τDD)〉〈ψ±(τDD)|σ̂ (FQ)
z

)
,

(38)

where �
(FQ)
DD = 1/T2 is the dephasing rate of the FQ for

dynamical decoupling. Then, the signal with the imperfect

readout is described as

P̃′
DD 	 1

2
+ Ve−�

(FQ)
DD τDD

×
⎡
⎣1

2
−
(

cos
ωτDD

2
− 1
)2 M∑

j=1

(
γ ′B(spin)

⊥, j

)2
ω2

⎤
⎦. (39)

Although the signal described here is the case of the spin
echo, we show the signal form with the case of the general
dynamical decoupling in Appendix B.

In our scheme, we measure an amplitude of ac magnetic
fields generated by the nuclear spins. According to the stan-
dard prescription of quantum metrology [17], we will consider
the uncertainty of the estimation of the target fields as follows:

δBac =
√

P̃′
DD(1 − P̃′

DD)∣∣∣ dP̃′
DD

dBac

∣∣∣√N

where Bac =
√∑M

j=1 (B(spin)
⊥, j )

2
denotes effective ac magnetic

fields from the nuclear spins. The interaction time τDD is
numerically determined to minimize this uncertainty δBac.

IV. DETECTABLE DENSITY AND NUMBER OF NUCLEAR
SPINS BY NMR WITH THE FQ

To compare the performance of the two schemes (Ramsey
measurement and dynamical decoupling), we will calculate
the detectable density and the number of nuclear spins by us-
ing these two schemes. To calculate the minimum detectable
density of the nuclear spins, we consider a circumstance that
a large spin sample containing nuclear spins is attached on
the FQ with a minimum distance of h as shown in Fig. 1.
On the other hand, to calculate the minimum detectable
number of nuclear spins, we consider a spin sample the size
of which is smaller than the FQ. For the calculations, we
set the temperature T = 20 mK, the qubit gap frequency
�/2π = 5.37 GHz, the energy bias ε/2π = 0.112 GHz,
the persistent current Ip = 180 nA, the visibility V = 0.79,
the repetition time Trep 	 100 μs, the dephasing time for a
Ramsey measurement T ∗

2 = 1 μs, the dephasing time for a
dynamical decoupling with n = 1, 2, 4, 6, 8, and 10 is T2 =
5.00, 6.63, 8.91, 10.8, 12.4, and 13.6 μs, and the distance be-
tween the rf-MW line and the FQ is set as zrf = 2 μm. We use
these parameters based on recent experimental results shown
in [58]. Also, we assume that the target nuclear spin is a proton
with a gyromagnetic ratio of γ /2π 	 42.6 MHz/T, and the
electric current for the rf driving strength is optimized. These
parameters are summarized in Appendix D.

A. Minimum detectable density for NMR with the FQ

To calculate the minimum detectable density, we define the
signal-to-noise ratio (SNR). In our NMR with the FQ, the
signal is an amplitude of the effective magnetic field from
the nuclear spins while the noise is the uncertainty of the
estimation. When we fix the other parameters, both the signal
and noise just depend on the density of the nuclear spins. So
we define the minimum detectable density ρ

(spin)
min as to satisfy

Bdc(ρ (spin)
min ) = δBdc(ρ (spin)

min ) for the Ramsey measurement with
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FIG. 7. The minimum detectable density against the distance h
between the spin sample and the FQ by using the Ramsey mea-
surement with asymmetric driving (a) and the spin-echo scheme
(b). The red, blue, and green dots indicate the FQ size 2, 6, and
10 μm, respectively.

asymmetric driving and Bac(ρ (spin)
min ) = δBac(ρ (spin)

min ) for the
spin-echo scheme.

Also, we assume that the size of the spin sample containing
the nuclear spins is 2.5L × 2.5L × 2L. Around the edge of
the spin sample with this size, the Zeeman splitting of the
nuclear spin due to the magnetic fields from the FQ becomes
three orders of magnitude smaller than the largest Zeeman
splitting of the nuclear spins located above the FQ line. This
means that, although a much larger spin sample such as a few
millimeters is attached on the FQ in the real experiment [51],
the size adopted in our calculation is large enough to consider
the effective coupling between the FQ and the nuclear spins.

The numerical results for the minimum detectable density
against the height h and the size L for these two schemes are
shown in Fig. 7. These results show that, with h = 0.1 μm, the
minimum detectable density with the Ramsey measurement
with asymmetric driving is 2.28, 4.00, and 5.56 times smaller
than that with the spin-echo scheme for the size of 2, 6, and
10 μm, respectively. Also, these plots show that, to detect
the smaller density spins, it is helpful to increase the size
of the FQ and to close the distance between the FQ and the
spin sample. Furthermore, these results show that the FQ can
detect the spin sample with the density about 1022/cm3 at a

0.5 5 11 00.1
(     )

5×10

1×10

5×10

1×10

5×10

1×10

-3
(  

   
)

Ramsey measurement

FIG. 8. The minimum detectable density against the external
magnetic field Bex by using the Ramsey measurement with asym-
metric driving and the spin-echo scheme. The red closed circles are
the plot for the Ramsey measurement with asymmetric driving. The
blue open circles are the plot for the spin-echo scheme.

distance of 1 μm. It should be noted that, in our calculation,
we adopt a coherence time reported in the previous work [58]
where the size of the FQ is around 2 μm, and we use the
same coherence time of the FQ with different sizes for our
calculations. However, in real experiments, a larger FQ would
show a shorter coherence time. So, our calculations for the
FQ with the size larger than 2 μm would not be available in
the current technology, but they show potentially achievable
values in the near future technology that could provide us a
larger FQ with reasonably long coherence time. It is worth
mentioning that, in these calculations, we set the external
magnetic field as Bex = 4 mT. It is known that, if a magnetic
field larger than a certain threshold strength is applied, the FQ
could be damaged and would not work as a two-level system.
Such a threshold magnetic-field strength strongly depends on
the superconducting material, but it is typically around 4 mT
for the FQ with four Josephson junctions [51]. So, in this
paper, we mainly consider the applied magnetic fields around
4 mT.

Next, we calculate the minimum detectable density ρ
(spin)
min

against the Bex for the FQ of L = 2 μm. The numerical results
are shown in Fig. 8. These plots show that the ρ

(spin)
min with

a Ramsey measurement with asymmetric driving is inversely
proportional to the external magnetic field Bex. This is because
the signal of a Ramsey measurement with asymmetric driving
is proportional to the polarization of the spins and the po-
larization linearly increases with the external magnetic fields
in our parameter range. This means that if the polarization
of the nuclear spins is increased by employing the dynamic
nuclear polarization scheme the signal also increases [5]. The
ρ

(spin)
min using the spin-echo scheme has the minimum value at

a certain value of Bex for the following reasons. When the
magnetic field gets larger than that value, the signal decreases
due to a short interaction time between the FQ and nuclear
spins. On the other hand, when the magnetic field gets smaller
than that value, the interaction time becomes longer; however,
the signal decreases due to the dephasing of the FQ [see
Eq. (39)]. In this calculation, the ρ

(spin)
min using the spin-echo

scheme takes the minimum value at the Bex 	 1.8 mT. This

052303-9



KOICHIRO MIYANISHI et al. PHYSICAL REVIEW A 101, 052303 (2020)
-3

(  
   

 )

(    )
0                   2                 4                   6                   8                  10

2.0×10

1.5×10

1.0×10

5.0×10

FIG. 9. The minimum detectable density against the external
magnetic field Bex and the echo times. The red closed circles,
red open circles, blue closed circles, blue open circles, green
closed circles, and green open circles denote the echo times n =
1, 2, 4, 6, 8, and 10.

behavior is quantitatively the same for different sizes of FQs.
The minimum detectable density with the spin-echo scheme
takes the minimum value of ρ

(spin)
min 	 1021/cm3 for Bex 	

1.8 mT where ω = 2π × 100 kHz.
We also plot the magnetic-field dependence of the ρ

(spin)
min

for multiple π pulses in Fig. 9. These calculations show that,
by increasing both the number of the π pulses and the strength
of the applied magnetic fields, we can detect spins with a
smaller density. This comes from the fact that increasing the
number of the π pulses improves the coherence time, while
the time interval between the π pulses becomes shorter, which
requires higher Larmor frequency of the nuclear spins to syn-
chronize with the π pulse time interval on the FQ. However, it
is known that the FQ cannot stand the high external magnetic
field Bex, as we discussed before. Therefore, we consider a
case of the applied magnetic field of 4 mT that is close to the
strongest applied magnetic fields with the FQ, and we find that
the optimal number of the π pulses with this magnetic fields
is n = 8.

B. Minimum detectable number of nuclear spins by NMR with
the FQ

We discuss how to estimate the minimum detectable num-
ber of nuclear spins N (spin)

min . In the current experiments, a large
spin sample of millimeter size is attached on the FQ [51]. In
this setup, the FQ has finite couplings with all nuclear spins
in the large spin sample; thus, it is not straightforward to
estimate the number of the detected spins. If we naively sum
up the number of the spins that have a finite coupling with
the FQ, we need to consider every spin in the spin sample,
which turned out to be quite large. So, for the estimation of
the N (spin)

min , we will consider the case that the spin sample is as
small as the FQ. More specifically, we consider the setup as
shown in Fig. 10. Since the NMR signal comes from B(spin)

z, j
for a Ramsey measurement asymmetric driving while the
NMR signal comes from B(spin)

⊥, j for the dynamical decoupling
scheme, the optimized way to put the spin sample for each
scheme should be different. The size of the spin sample is
l × l × h′ where l (h′) denotes the width (height), and we set

RF-MW line
Dynamical decoupling

Flux Qubit

h
l

L
zRF

(b)
Ramsey measurement

L

Flux Qubit
RF-MW line

zRF

(a)

Dynamical decoupling

Bex

Flux Qubit

L

RF-MW line

zRF

(c) RF-MW lineL

zRF

(d)

ab

c

h
l

h
l

Bex

Bex
Bex

FIG. 10. The schematic for sensing the minimum detectable spin
number. The size of the spin sample is l × l × h′. The distance
between the spin sample and the FQ is set as h = 0.1 μm. The center
of the spin sample is attached to the FQ in three ways. (a) The spin
sample center is put on the middle of the FQ line that is closest to the
rf-MW line. (b) The spin sample center is set at the center of the FQ.
(c) The spin sample center is put on the middle of the FQ line that
is orthogonal to the external magnetic field. (d) The top view of the
schematic setup in (a), (b), and (c).

h = 0.1 μm (the distance between the spin sample and the
FQ) and h′ = 0.1 μm. In this calculation, we assume that all
nuclear spins are saturated with strong driving fields for the
Ramsey measurement. For a given value of l , we calculate the
minimum density ρ

(spin)
min such that the SNR becomes unity in

this setup (similar to the case in the previous subsection), and
the N (spin)

min can be calculated as l × l × h′ × ρ
(spin)
min .

The calculation results for the N (spin)
min are shown in Fig. 11.

In this calculation, we set Bex = 4 mT and use the dynamical
decoupling with n = 8. When we use the FQ with the size
of L = 2 μm and the spin sample with the width l of a
few hundred nm, the N (spin)

min can be around 108 either by

L
L

L
L
L

L

(       )

FIG. 11. The minimum detectable number of the nuclear spins
against the size of the spin sample. In the legends, (a), (b), and
(c) represent the sample configurations shown in Fig. 9. The NMR
with the setup (a) and (c) detects the minimum number of the nuclear
spins when the size of the spin sample is much smaller than the size
of the FQ, while the NMR with the setup (b) detects it when the size
of the spin sample is comparable with that of the FQ.
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using the Ramsey measurement scheme in the setup (a) or the
dynamical decoupling scheme with n = 8 in the setup (b). The
behaviors of the N (spin)

min using a Ramsey measurement with
asymmetric driving drastically change when the size of the
spin sample is around 2L. Actually, N (spin)

min for the spin sample
with the size more than 2L increases more rapidly than that
with the spin sample with the size less than 2L. This is because
the spin sample with a size much larger than 2L contains many
nuclear spins that are only weakly coupled with the FQ due
to the long distance between them. With the setup (b), the
dynamical decoupling scheme can detect the smallest number
of spins when the size of the spin sample is approximately
equal to the size of the FQ. This is reasonable because the
spin sample with the size either much larger or smaller than L
makes the average FQ spin coupling weaker for the dynamical
decoupling scheme case. The reason why the setup (b) is
better than the setup (c) in the dynamical decoupling scheme
at l 	 L is that in the setup (b) the spin sample can exactly
cover the FQ, which provides us with the optimized average
coupling strength. N (spin)

min for other Bex can be estimated by
using both calculation results in Figs. 10 and 11.

As we discussed above, we can approximately detect
108 nuclear spins with our schemes in realistic conditions.
We compare this performance with that by using the other
methods. First, we compare the detectable number with the
experimental results of the ESR with the FQ [51]. In this
experiment, the FQ could detect the ≈400 electron spins
with an accumulation time of 1 s. To take the ratio of the
gyromagnetic ratio of the electron and that of the proton into
consideration, it is presumed that the order of the detectable
nuclear spins is around 108, which is consistent with our
numerical results. An NMR using a conventional rf microcoil
can detect ≈5 × 1011 nuclear spins at room temperature and
static magnetic field of 11.7 T with a 10-min acquisition time
[59]. The polarization of the nuclear spins is almost the same

for this condition and our condition. Compared to this number,
the FQ can detect 103 times smaller nuclear spins.

V. CONCLUSION

In conclusion, we theoretically investigate the performance
of the nuclear magnetic resonance when we use the supercon-
ducting flux qubit as the detector. For NMR with the FQ, we
discuss a Ramsey measurement and a dynamical decoupling.
In the former scheme, we asymmetrically drive the nuclear
spins by the rf signals, and the FQ detects the dc magnetic-
field change due to the driving. In the latter scheme, the FQ
detects the ac magnetic field from the nuclear spins due to the
Larmor precession. We show that, in either case, the minimum
detectable density (number) of the nuclear spins for the FQ
is around 1021/cm3 (108) with an accumulation time of 1 s.
Our proposed NMR with the FQ is attractive because of the
possibility to detect the nuclear spins at a local region (≈μm)
with low temperature (≈mK) and low magnetic fields (≈mT).
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APPENDIX A: DETAILED CALCULATION OF EQ. (13)

Here, we describe the calculation to derive Eq. (13) in de-
tail. Equation (12) in a rotating frame defined by a unitary op-
erator Û = Exp[−it (ω′/2)Ẑ (FQ) − it (ωrf/2)

∑M
j=1 σ̂

(spin)
z, j ] is

written as

ĤAD = Û ĤÛ † − iÛ
d

dt
Û † = Û

⎡
⎣ωFQ

2
Ẑ (FQ) + 1

2

M∑
j=1

γ
(
B(FQ)

j · σ̂
(spin)
j

)( ε

ωFQ
Ẑ (FQ) + �

ωFQ
X̂ (FQ)

)

+ 1

2

M∑
j=1

(
ω j σ̂

(spin)
z, j + 4λrf, j σ̂

(spin)
x, j cos ωrft

)⎤⎦Û † −
⎛
⎝ω′

2
Ẑ (FQ) +

M∑
j=1

ωrf

2
σ̂

(spin)
z, j

⎞
⎠

= ωFQ − ω′

2
Ẑ (FQ) + 1

2

M∑
j=1

γ
{
B(FQ)

z, j σ̂
(spin)
z, j + B(FQ)

x, j

(
e−iωrf t σ̂

(spin)
+, j + eiωrf t σ̂

(spin)
−, j

)

+ B(FQ)
y, j

(
ieiωrf t σ̂

(spin)
−, j − ie−iωrf t σ̂

(spin)
+, j

)}[ ε

ωFQ
Ẑ (FQ) + �

ωFQ

(
cos ω′t X̂ (FQ) + sin ω′tŶ (FQ))]

+ 1

2

M∑
j=1

[
(ω j − ωrf )σ̂ (spin)

z, j + 4λrf, j cos ωrft
(

cos ωrft σ̂
(spin)
x, j + sin ωrft σ̂

(spin)
y, j

)]
. (A1)

By using the rotating-wave approximation for the FQ,
only Ẑ (FQ) remains for the FQ term. Regarding the spin
terms, we use the Magnus expansion to approximate the

term rotating at the frequency of ωrf under the condi-
tion ωrf 
 γ |B(FQ)

j | [52] and σ̂
(spin)
z, j remains for the spin

term.
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FIG. 12. The minimum detectable density against T ∗
2 by using

the Ramsey measurement with asymmetric driving.

APPENDIX B: SIGNAL OF NMR USING THE GENERAL
DYNAMICAL DECOUPLING SCHEME

We derived the signal for NMR using dynamical decou-
pling with one π pulse in Eq. (35). Here, we describe the
signal for NMR using dynamical decoupling with 2n−1 π

pulses.
When we use the dynamical decoupling with even n, the

signal PDD,n in Eq. (36) becomes

PDD,n 	 1 −
M∑

j=1

⎡
⎣2

n
2 −1∑
i=0

cos

(
2i + 1

2
τDDω j

)⎤⎦
2

×
(

cos
ω jτDD

2
− 1
)2
(
γ ′B(spin)

⊥, j

)2
ω2

j

(B1)

for ω j 
 γ ′B(spin)
⊥, j . When the n is odd except for one, the

signal PDD,n in Eq. (36) becomes

PDD,n 	 1 −
M∑

j=1

⎛
⎝1 + 2

n−1
2 −1∑
i=0

cos[(i + 1)τDDω j]

⎞
⎠

2

0 2 4 6 8 10 12 14
T2

* s)

FIG. 13. The minimum detectable density against T2 by using
the dynamical decoupling with 2n − 1 π pulses. The red, blue,
green, purple, orange, and gray circles are the plots for the spin-echo
schemes with the echo times n = 1, 2, 4, 6, 8, and 10.

×
(

cos
ω jτDD

2
− 1
)2
(
γ ′B(spin)

⊥, j

)2
ω2

j

(B2)

for ω j 
 γ ′B(spin)
⊥, j . Similar to the case of the FQ coupled with

a single nuclear spin discussed above, we obtain the same
signal even when the initial spin state is completely mixed.

The signal considering the effect of low-frequency
magnetic-field noise, dephasing of the FQ, and the imperfect
readout, which is Eq. (39) for the case of n = 1, is

P̃′
DD,n 	1

2
+ Ve−�

(FQ)
DD τDD

×
⎧⎨
⎩

1

2
−
⎡
⎣2

n
2 −1∑
i=0

cos

(
2i + 1

2
τDDω

)⎤⎦
2

×
(

cos
ωτDD

2
− 1
)2 M∑

j=1

(
γ ′B(spin)

⊥, j

)2
ω2

⎫⎬
⎭ (B3)

TABLE I. The list of the parameters used in the calculation.

Parameter Meaning

T 	 20 mK Temperature
ε/2π 	 0.112 GHz The energy bias of the FQ
�/2π 	 5.37 GHz The gap frequency of the FQ
Ip 	 180 nA The persistent current of the FQ
V = 0.79 The visibility
Trep 	 100 μs The repetition time
T ∗

2 = 1 μs The dephasing time for a Ramsey measurement
T2 = 5.00, 6.63, 8.91, The dephasing time
10.8, 12.4, and 13.6 μs for a dynamical decoupling
for n = 1, 2, 4, 6, 8, and 10 with 2n − 1π pulses
zrf = 2 μm The distance between the rf-MW line and the FQ
γ /2π = 42.6 MHz The gyromagnetic ratio of the target spin (proton)
L = 2, 6, and 10 μm The size of the FQ
0.1 � h � 1 μm The distance between the spin sample and the FQ
1019 < ρ

(spin)
min < 1023 The minimum detectable density of the spins
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for n even. Regarding the dynamical decoupling with odd n,
the signal considering those effects is

P̃′
DD,n 	1

2
+ Ve−�

(FQ)
DD τDD

×

⎡
⎢⎣1

2
−
⎛
⎝1 + 2

n−1
2 −1∑
i=0

cos [(i + 1)τDDω]

⎞
⎠

2

×
(

cos
ωτDD

2
− 1
)2 M∑

j=1

(
γ ′B(spin)

⊥, j

)2
ω2

⎤
⎦. (B4)

APPENDIX C: MINIMUM DETECTABLE DENSITY
AGAINST T ∗

2 and T2

Here, we calculate the minimum detectable density against
T ∗

2 and T2 for the FQ of L = 2μm in Bex = 4 mT. The
numerical results are shown in Figs. 12 and 13.

APPENDIX D: SUMMARY OF PARAMETERS

We summarize the parameters used in our calculation in
Table I.
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