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High-fidelity manipulation is key to the physical realization of fault-tolerant quantum computation. Here,
we present a protocol to realize universal nonadiabatic geometric gates for silicon-based spin qubits. We find
that the advantage of geometric gates over dynamical gates depends crucially on the evolution loop for the
construction of the geometric phase. Under appropriate evolution loops, all geometric single- and two-qubit gates
can outperform their dynamical counterparts for both systematic and off-resonance noises. We also perform
randomized benchmarking using noise amplitudes consistent with experiments in silicon. For the static noise
model, the averaged fidelities of geometric gates are around 99.90% or above, while for the time-dependent
1/ f -type noise, the fidelities are around 99.98% when only the off-resonance noise is present. We also show that
the improvement in fidelities of the geometric gates over dynamical ones typically increases with the exponent
α of the 1/ f noise, and the ratio can be as high as 4 when α ≈ 3. Our results suggest that geometric gates with
judiciously chosen evolution loops can be a powerful way to realize high-fidelity quantum gates.
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I. INTRODUCTION

Spin qubits [1] in semiconductor quantum dots are promis-
ing candidates for physical realization of quantum computa-
tion due to their all-electrical control and prospect for scala-
bility [2]. Silicon-based spin qubits (SSQs) stand out owing
to their relatively long coherence time [3] and high-fidelity
gate operations, which benefit from isotopically enriched 28Si
[4–16] where the nuclear noise is substantially suppressed,
as well as techniques operating around certain sweet spots
[17–22]. Meanwhile, to further reduce the noises via quan-
tum control, techniques such as dynamical decoupling [23],
dynamical corrected gates [24], and pulse engineering [13,25]
have been put forward. However, the gate fidelity on SSQ still
needs to be improved to achieve the stringent requirement set
by fault-tolerant quantum computation [26].

In contrast to the dynamical phase for which errors ac-
cumulate during the evolution, the geometric phase benefits
from its global property [27–29], i.e., it is determined only by
the closed path of the cyclic evolution and is robust against
certain types of local noises. This nice feature has inspired
geometric quantum computation (GQC) [30,31]. By using
adiabatic cyclic evolution, the geometric gates have been
demonstrated [30–37]. However, the adiabatic limit means
that the gates are rather slow, which consequently exposes the
qubit to the environment for an overly long time, making it
infeasible for realistic quantum computation. To lift the adi-
abatic limit and speed up the quantum gate, implementation
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of nonadiabatic geometric gates based on Abelian [38–42]
and non-Abelian [43,44] phases has been proposed. The non-
Abelian geometric gates have been successfully demonstrated
in various systems in experiments [45–56]. However, their
realization in quantum dot systems usually requires manip-
ulation of three or more energy levels [57,58], and is difficult
to apply to spin qubits which typically involve two levels. The
Abelian geometric gates have been demonstrated in two-level
systems [41,42]. In these cases, the geometric gate can be ro-
bust against the systematic noise but is more vulnerable to the
off-resonance noise (sometimes called “off-resonance effects”
[59] or “frequency-detuning error” [60] in the literature).
Usually in single-qubit cases, the off-resonance noise is the
leading error in many systems, such as the superconducting
circuit and silicon-based quantum dots. Recently, experiments
based on the superconducting platform [60] have shown that
several individual single-qubit gates can be robust to the off-
resonance noise. Typically, the geometric gate works well
under the quasistatic noise approximation as demonstrated
before [42], where noise is assumed to vary with a much
longer time scale compared to that of the gate operation. For
the realistic time-dependent noise, one may suppose that the
geometric gate is performing effectively for the low-frequency
components of the noise. However, whether the geometric
gate can still outperform the dynamical gate at high frequen-
cies remains unclear. On the other hand, the noise spectrum
on which the noise is concentrated for the silicon quantum dot
may be different compared to the superconducting circuits.
Thus, it is very important to evaluate the geometric gate within
a wide range of noise spectra.

In this work, we present a full theoretical proposal to
implement universal GQC in SSQ. Compared to other spin
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FIG. 1. Illustration of the SSQ. (a) Spin qubits in the silicon-
based double quantum dot. The single-qubit gate is obtained by
operating the magnetic field, while the two-qubit gate is implemented
with their Heisenberg interaction. (b) The evolution paths of state
|ψ+〉. The geometric phase can be achieved through the cyclic evo-
lution along the path A-B-C-D-A and A-B-C′-D-A, which correspond
to the geometric gates in paths 1 and 2, respectively.

qubits [57,58,61], our geometric qubit uses the Abelian geo-
metric phase to realize both the single- and two-qubit gates,
which only involves a two-level structure without introduc-
ing any auxiliary state. We analyze the effect of systematic
noises and off-resonance noises which is typical in the silicon
system. Comparing the fidelity of the geometric gates and
their dynamical counterparts, we find that the robustness of
the geometric gates against noises depends crucially on the
path taken during the cyclic evolution. By carefully choosing
the evolution loop, both off-resonance noises and systematic
noises can be effectively suppressed. On the other hand, to
quantitatively determine the improvement afforded by the
geometric gates, we perform randomized benchmarking (RB),
which is conducted by comparing the sequences composed
of the dynamical and the designed geometric gates within
the single-qubit Clifford group. We find that, for the static
Gaussian noise, the averaged fidelities of geometric gates
are around 99.90% or above. Meanwhile, we also consider
the time-dependent noise, namely the 1/ f type whose power
spectral density is proportional to 1/ωα where α indicates
the correlation within the noise. We find that both the off-
resonance and systematic noise can be suppressed well.
For large α, the geometric gates improve the fidelity by
a factor of 2 or more over the dynamical ones. Our re-
sults suggest that geometric quantum gates can be a power-
ful alternative to realize high-fidelity quantum manipulation
of SSQ.

II. UNIVERSAL NONADIABATIC GEOMETRIC GATES

A. Geometric single-qubit gate

We first show how to implement the nonadiabatic geomet-
ric single-qubit gates using a SSQ. As shown in Fig. 1(a), the
two electron spins are confined in the silicon-based double-
quantum-dot system with each electron occupying either the
left (L) or right (R) dot. The electron can be either spin
up |↑〉 or spin down |↓〉. The basis states for the single
qubit are therefore {|0〉 = |↑〉, |1〉 = |↓〉}. Each dot experi-
ences a magnetic field of BL = (BL

x (t ), 0, Bh
z + BL

z ) or BR =
(BR

x (t ), 0, Bh
z + BR

z ). Here, the magnetic fields are in energy
units and we use h̄ = 1 for convenience. Specifically, Bh

z

denotes the static homogeneous magnetic field in the z direc-
tion which can be as large as GHz in the experiment to lift the
spin degeneracy [16]. BQ

z (Q = L, R) is the local inhomoge-
neous component to obtain distinct resonance frequencies for
an individual qubit. The effective Zeeman splitting for each
spin is therefore EQ

z = gμB(Bh
z + BQ

z ). Apart from the static
magnetic field, BQ

x (t ) = BQ,0
x + BQ,1

x cos(ωQt + φ) denotes the
transverse time-dependent oscillating field perpendicular to
Bh

z where BQ,0
x and BQ,1

x are the amplitudes of the oscillat-
ing magnetic field, with ωQ and φ being the frequency and
phase, respectively. In experiments, the transverse oscillating
field can be introduced by using the electron-spin resonance
[6,7,16] or electron dipole spin resonance [9,12,62,63] tech-
niques. In the rotating frame and under the rotating-wave
approximation, when ωQ matches the Larmor frequency, the
Hamiltonian for each SSQ can be written as

H1(t ) = �(t )

2
(cos φ σx + sin φ σy), (1)

where � is the Rabi frequency related to the amplitude of
the oscillating magnetic field. In experiments, both � and φ

are time dependent and can be controlled conveniently. Here,
we note that for simplicity, we focus on the spin degree of
freedom and ignore the valley-spin coupling [64] in this paper.
Recent experiment [65] suggests that the valley splitting in a
silicon metal-oxide-semiconductor (Si-MOS) device can be
as large as 0.8 meV so that it can be safely neglected. On
the other hand, the valley may play a more significant role
in Si/SiGe devices [66,67]. A detailed investigation on how
the valley affects the gate fidelity is beyond the scope of this
work and will be pursued in the future.

To implement the nonadiabatic single-qubit geometric
gates, the entire evolution time is divided into three parts. In
each part, the Rabi frequency � and the phase φ satisfy

∫ T1

0
�(τ )dτ = θ,

{
φ1 = φ − π

2
, τ ∈ [0, T1]

}
,

∫ T2

T1

�(τ )dτ = π,

{
φ2 = φ + γ + π

2
, τ ∈ [T1, T2]

}
, (2)

∫ T

T2

�(τ )dτ = π − θ,

{
φ3 = φ − π

2
, τ ∈ [T2, T ]

}
,

which leads to the evolution operator at the final time as

U (γ , θ, φ) = U (T, T2)U (T2, T1)U (T1, 0)

= cos γ + i sin γ

(
cos θ sin θe−iφ

sin θeiφ − cos θ

)
= eiγ �n·�σ , (3)

where �n = (sin θ cos φ, sin θ sin φ, cos θ ) is the unit vector
on the Bloch sphere with 0 � θ � π and 0 � φ < 2π . �σ =
(σx, σy, σz ) are the Pauli matrices. Thus, U (γ , θ, φ) corre-
sponds to rotations around the axis �n by an angle −2γ . Since
all parameters here can be controlled independently, one is
able to achieve arbitrary single-qubit operation.
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It is straightforward to demonstrate that U (γ , θ, φ) is the
desired geometric gate by taking the two orthogonal states,

|ψ+(t )〉 = cos
θ (t )

2
|0〉 + sin

θ (t )

2
eiφ(t )|1〉,

|ψ−(t )〉 = sin
θ (t )

2
e−iφ(t )|0〉 − cos

θ (t )

2
|1〉, (4)

as the evolution states of the geometric gate. After the nona-
diabatic cyclic evolution (at final time T ), these two orthog-
onal states acquire an extra global phase: U (γ , θ, φ)|ψ±〉 =
e±iγ |ψ±〉. The evolution operator can then be rewritten as
U (γ , θ, φ) = eiγ |ψ+〉〈ψ+| + e−iγ |ψ−〉〈ψ−|, where the global
phase γ is determined by the solid angle enclosed by the
cyclic evolution [68]. Here, we elaborate on how the geo-
metric phase can be achieved by the evolution state |ψ+(t )〉,
and that for |ψ−(t )〉 can be understood in a similar way. As
seen in Fig. 1(b), in the first part of the evolution, |ψ+(0)〉
starts from a given point A on the Bloch sphere, corresponding
to θ = θ (0) and φ = φ(0), and evolves along the geodesic
line up to the north pole B. In the second part, it goes down
to the south pole D along another geodesic line, which is
γ apart from the previous one. Finally, it goes back to the
starting point at the end of the third part. It is shown that after
the cyclic evolution, the state |ψ+(t )〉 traces out an orange-
slice-shaped loop A-B-C-D-A. Since the evolution is always
along geodesic lines, the dynamical phase is canceled out (see
Appendix A). Besides, we can see that the parallel-transport
condition also satisfies 〈ψ±|U †(γ , θ, φ)H1U (γ , θ, φ)|ψ±〉 =
0 [41]. Therefore, we conclude that U (γ , θ, φ) represents a
pure geometric gate. The key point of our geometric gate here
is to use a three-part path to form an enclosed loop such that
the pure geometric phase is obtained. Although this method
is similar to the previous works in Refs. [58,69–71], there
are significant differences. In those previous works, multiple
orange-slice-shaped loops are required to realize arbitrary
single-qubit gates. In contrast, a single orange-slice-shaped
loop in our work is sufficient, which is simpler and thereby
accumulates less noise in experimental environments.

B. Geometric two-qubit gate

Next, we show how to realize the geometric two-qubit gate.
As depicted in Fig. 1(a), the neighboring two spins confined in
the two quantum dots are coupled by the exchange interaction
J . The corresponding Hamiltonian is [63]

H2(t ) = J (t )(SL · SR − 1/4) + SL · BL + SR · BR. (5)

Here, SL and SR denote the spin of the electron in the left
and right quantum dots, respectively. In the two-qubit basis
{|00〉, |01〉, |10〉, |11〉} the Hamiltonian in Eq. (5) is

H2(t )=

⎛
⎜⎝

Ez + J (t )/2 0 0 0
0 δEz/2 J (t )/2 0
0 J (t )/2 −δEz/2 0
0 0 0 −Ez + J (t )/2

⎞
⎟⎠,

(6)

where Ez = Bh
z + (BL

z + BR
z )/2 and δEz = BL

z − BR
z . Note that

we have lifted the zero-point energy by J/2 and shut down
the oscillating magnetic field. To suppress the error in the
exchange interaction we consider operating the qubit near the

sweet spot [17–21] so that J 
 Ez, δEz [62,63]. Now, H2(t )
can be further divided into two parts H2(t ) = H0

2 + H ′
2 where

H ′
2 = J (t )

2 | ↑↓〉〈↓↑ | + H.c. is the perturbation term and H0
2 is

the remaining free Hamiltonian. Therefore, in the interaction
picture H2(t ) can be rewritten as

H2I (t ) = J (t )

2
(eiδEzt |01〉〈10| + H.c.). (7)

Further, we assume that the exchange interaction J (t ) is oper-
ated in an oscillating way by introducing a microwave-driven
field [14,72,73] as J (t )/2 = j0 + j(t ) cos(ω jt + ψ ). Under
the rotating wave approximation, Eq. (7) reduces to

H2R(t ) = j(t )
2 (cos ψ σ̃x + sin ψ σ̃y), (8)

where σ̃x and σ̃y are the effective Pauli matrices in the
{|01〉, |10〉} subspace. Similar to the single-qubit case, we
can construct the two-qubit geometric gate by dividing the
evolution time into three segments,∫ T1

0
j(τ )dτ = ϑ,

{
ψ1 = ψ − π

2
, τ ∈ [0, T1]

}
,

∫ T2

T1

j(τ )dτ = π,

{
ψ2 = ψ + ξ + π

2
, τ ∈ [T1, T2]

}
, (9)

∫ T

T2

j(τ )dτ = π − ϑ,

{
ψ3 = ψ − π

2
, τ ∈ [T2, T ]

}
.

In this way, the achieved evolution operator is

U2(ξ, ϑ,ψ )

= U2(T, T2)U2(T2, T1)U2(T1, 0)

=

⎛
⎜⎝

1 0 0 0
0 cos ξ + i sin ξ cos ϑ i sin ξ sin ϑe−iψ 0
0 i sin ξ sin ϑeiψ cos ξ − i sin ξ cos ϑ 0
0 0 0 1

⎞
⎟⎠,

(10)

with 0 � ϑ � π and 0 � ψ < 2π . It is easy to find that by
setting ϑ = ξ = π/2 and ψ = 0, Eq. (10) is equivalent to
an iSWAP gate. On the other hand, H2R(t ) actually belongs to
the XY -interacted Hamiltonian [74] where the Hamiltonian
only appears in the effective σx and σy terms in the consid-
ered subspace. For comparison, one can also construct the
iSWAP gate in the dynamical way by only one step, iSWAP ≡
exp[−iH2R

π
j ]. In fact, the iSWAP gate can be regarded as half

of the CNOT gate [74], i.e., the CNOT gate can be obtained
by applying the iSWAP gate twice combined with appropriate
single-qubit operations.

III. ROBUSTNESS PROOF

Here, we demonstrate how geometric gates are less sen-
sitive to the considered noises compared to their dynamical
counterparts. Before turning to this demonstration, we show
how to obtain arbitrary SSQ dynamical rotations. In the
absence of noise, the dynamical operator corresponding to the
Hamiltonian in Eq. (1) is

R(r, γ ) ≡ exp

[
−i

γ

2
(cos φ σx + sin φ σy)

]
, (11)
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where R(r, γ ) denotes the rotation in the x-y plane by an angle
γ , and the rotation axis r in the plane is determined by φ. As
the Rabi frequency � is assumed to be constant, R(r, γ ) is
actually a single-piece rotation. An arbitrary single-qubit gate
requires two nonparallel axis rotations on the Bloch sphere.
This can be implemented by setting φ to be 0 (π ) and π

2 (−π
2 ),

which corresponds to rotations around the x̂ (−x̂) and ŷ (−ŷ)
axes, respectively. For other rotations out of the plane, one can
decompose it into a x-y-x composite pulse sequence,

R(x̂, γa)R(ŷ, γb)R(x̂, γc), (12)

or a y-x-y sequence,

R(ŷ, γa)R(x̂, γb)R(ŷ, γc). (13)

One should not confuse the composite pulses here with the ge-
ometric gates, the latter of which is also composed of multiple
pieces. First, for the geometric gate, the Rabi frequency � and
the phase φ are divided into three distinct parts so as to form
the cyclic evolution loop, while it is not required to do so for
the dynamical gate. Second, each part in the geometric gate
has a strong intrinsic connection to ensure that the dynamical
phase can be canceled during the evolution, and only the
desired geometric phase remains. In this way we can use the
merit of the geometric phase, which can be demonstrated less
sensitive to the noise as shown later. In contrast, the dynamical
rotation directly uses the noncyclic dynamical phases, and
thus is more vulnerable to noise that is concerned in silicon.

Next, we compare the fidelity between the geometric gates
and the dynamical counterparts in the noise environments. We
assume that a SSQ suffers from two types of noise, namely,
the off-resonance noise [59] and the systematic noise. Thus,
the dynamical rotation subjected to noise reads

R(r, γ ) = exp

[
−i{(1 + ε)H1(t ) + δσz} γ

�

]
, (14)

where δ and ε are the off-resonance noise and systematic
noise, respectively. For the single-qubit operation, systematic
noise leads to an error in the Rabi oscillation. Meanwhile,
when the Larmor frequency and the oscillating magnetic field
are not resonant, the error in frequency detuning (i.e., off-
resonance noise) appears [59] (see Appendix B), which is
assumed to be dominant for single-qubit gates in silicon. The
word “detuning” has a different meaning in semiconductor
spin qubits, where it is typically defined as the energy dif-
ference between the neighboring dots which is used to control
the exchange interaction J . To avoid ambiguity and maintain
consistency to the SSQ literature, we rephrase the “frequency-
detuning error” as the “off-resonance noise” in this paper. In
the two-qubit case, one is required to consider the spin-orbit
interaction [20], the detuning noise due to charged impuri-
ties [4], and also the systematic noise from the microwave-
driven effect [22]. Nevertheless, the spin-orbit interaction
effect and the detuning noise can be safely neglected in the
interaction picture and under the rotating wave approximation
(cf. Appendix C). In this way, Eq. (14) is applied to both the
single- and two-qubit cases.

For simplicity, we assume that both the systematic noise
and the off-resonance noise are constant during the gate oper-
ation, and are independent from each other. We also assume

the noise is weak enough compared to the Rabi oscillation,
|δ| 
 1

T

∫ T
0 �(t )dt and |ε| 
 1

T

∫ T
0 �(t )dt . Then, the fidelity

of the x̂-axis rotation according to Eqs. (3) and (14) can be
expanded as

F1,d (x̂, γ ) = 1 − γ 2

8
ε2 + (cos γ − 1)δ2,

F1,g(x̂, γ ) = 1 − π2 sin4(γ /4)

2
ε2 − 8 cos4(δ/4)δ2, (15)

with respect to ε and δ up to second order. Here, F1,d (x̂, γ )
and F1,g(x̂, γ ) denote the fidelity for the dynamical and geo-
metric gate, respectively. Then, the fidelity difference between
them is

�F1 = F1,g(x̂, γ ) − F1,d (x̂, γ ) = �F1,ε + �F1,δ,

�F1,ε = 1
8 [γ 2 − 4π2 sin4(γ /4)]ε2,

�F1,δ = −2[1 + 2 cos(γ /2) + cosγ ]δ2,

(16)

where �F1,ε and �F1,δ denote the case with respect to the
systematic noise and off-resonance noise, respectively. One
can easily verify that �F1,ε � 0 in the regime −π � γ � π

which is enough to perform the desired rotation angle. This
means the geometric gate is less sensitive to the systematic
noise compared to the dynamical one. Unfortunately, �F1,δ �
0 in this region, suggesting that the geometric gate performs
worse than the dynamical one when the off-resonance noise is
dominant. This fact implies that the performance of geometric
gate may be affected by the detailed noise structure in the
Hamiltonian.

Therefore, one possible way is to seek another evolution
path to acquire the geometric phase, which may be immune
to the off-resonance noise. Observing the evolution path on
the Bloch sphere as shown in Fig. 1(b), by modulating φ2

in Eq. (2), we are allowed to select various geodesic lines
to evolve the orthogonal state during the second part of
evolution. Here, we take the evolution of |ψ+(t )〉 to ex-
plain. By choosing φ′

2 = φ2 − γ ′, |ψ+(t )〉 can go along a
new path B-C′-D, and thus traces out another enclosed loop
A-B-C′-D-A. The geometric phase then turns from γ to γ −
γ ′, and the corresponding new geometric operator becomes

U ′(γ ′, γ , θ, φ) = ei(γ−γ ′ )�n·�σ . (17)

As a simple but profound example, we take γ ′ = π , while
keeping other parameters unchanged. As shown in Fig. 1(b),
we denote the new path as “path 2” (in dashed-red line)
and the original one as “path 1” (in solid-blue line) for
comparison. One can see that the geodesic line related to
path 2 is tilted by π from the original one. In this case,
we have γ2 = γ1 − π , and the corresponding solid angle is
changed from −2γ to −2γ + 2π , so that the target evolution
operator U ′(π, γ , θ, φ) is equivalent to U (γ , θ, φ) (except
for a negative sign). We surprisingly find that, although the
new operator remains the same as before, the noise resilience
for them can be substantially different. This can be seen by
further expanding the fidelity of the new operator in path 2 and
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FIG. 2. Fidelity of the CNOT gate as a function of the (a) system-
atic and (b) off-resonance noises. The black solid lines denote the
results for the dynamical gates, while the solid and dashed red lines
indicate the geometric gate in paths 1 and 2, respectively.

we have

�F2
2,ε = 1

4 [γ 2 − 4π2 cos4(γ /4)]ε2,

�F2
2,δ = [8 cos(γ /2) − 4(1 + cosγ )]δ2. (18)

Here, for the considered region −π � γ � π , we always
have �F2

2,ε � 0 and �F2
2,δ � 0. Therefore, the new operator

related to path 2 is robust against the off-resonance noise
but is more sensitive to the systematic noise. This result is
inverse to the previous geometric gate in path 1. Thus, if
the systematic noise is dominant, we may select path 1 to
construct the geometric gate, otherwise take path 2 when
the qubit suffers mainly from the off-resonance noise. Note
that the expansion results for the ŷ-axis rotation is similar
and we are not going to show the detail again. On the other
hand, since the Hamiltonian related to the two-qubit gate acts
like the single-qubit case in the {|01〉, |10〉} subspace, we can
also analyze it using the same method. Therefore, arbitrary
single- and two-qubit dynamical gates can be improved by the
proper geometric gates. For the construction of the CNOT gate,
both the single-qubit gates and the two-qubit iSWAP gate are
involved. Thus, we plot the fidelity of the CNOT gate to show
the advantage of the geometric gates as shown in Fig. 2. It is
clearly shown there, for both the off-resonance noise and the
systematic noise, that the fidelity of the dynamical CNOT gate
can be improved by the proper geometric gates.

IV. NUMERICAL VERIFICATION OF ROBUSTNESS

To test the superiority of the geometric gates, we carry out
RB [75–77] which is a powerful technique to investigate gate
fidelities under specific noise conditions. In RB, instead of
studying an arbitrary single-qubit gate, we focus ourselves
on a finite subset, i.e., the Clifford group [78]. The RB
process is implemented by averaging the gate fidelity over
gate sequences randomly drawn from the Clifford group and
over different noise realizations. Then, we can quantitatively
compare the performance of the dynamical gates and the
geometric gates. For the dynamical Clifford elements, except
for the x̂- and ŷ-axis rotations, each Clifford element can be
divided into the combination of R(x̂, γ ) and R(ŷ, γ ). We find
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δ
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Geometric−path1
Geometric−path2

FIG. 3. Results of the RB for the single-qubit Clifford gates
under the static noise model. The results in (a) and (b) are with
respect to the off-resonance noise and systematic noise, respectively.

that the mean gate number per Clifford element is 1.875. To
compare the dynamical gates and geometric gates fairly, each
R(x̂, γ ) or R(ŷ, γ ) in the dynamical element is replaced by the
corresponding geometric gate.

We first consider the static noise model. In our RB sim-
ulation, ε and δ in each run are drawn from the Gaussian
distribution, namely, σ 2

ε : N (0, σ 2
ε ) and σ 2

δ : N (0, σ 2
δ ), where

σ 2
ε and σ 2

δ are the variance with respect to the noise. In
Ref. [16], the typical Rabi frequency is about 500 kHz, and
the variance of the off-resonance noise is 10–20 kHz, such
that we consider σδ = σε = 0.02 for simulation. The averaged
fidelity is obtained by fitting the resulting fidelity curve to
(1 + e−dn)/2, where d denotes the averaged error per gate,
and n is the Clifford gate number. In Fig. 3(a), we show the
benchmarking results when only the off-resonance noise is
present. We find that the geometric gates in path 2 outperform
the dynamical gates, where the averaged fidelity is 0.9990.
However, those gates in path 1 perform even worse than the
dynamical ones, since they are highly sensitive to the off-
resonance noise. When only the systematic noise is present
[Fig. 3(b)], the geometric gate in both paths perform better
than the dynamical ones. We also find that the geometric gates
in path 1 are standing out, and the fidelity can be as high as
0.9997.

Although the geometric gates are superior to the dynamical
gates in the static noise model, whether it can persist for
the time-dependent noise remains unknown. In experiments,
the time-dependent noise is commonly modeled by the 1/ f
type, whose power spectral density has the form S(ω) =
A/(ωt0)α . Here, A represents the amplitude of the noise, the
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FIG. 4. Average error per gate d vs noise amplitude Aδt0 for 1/ f -
type noise with different noise exponent α. d is obtained by fitting the
fidelity curves resulting from the RB.

exponent α denotes how much the noise is correlated, and
t0 is an arbitrary time unit, depending on the magnitude of
the Rabi frequency. In this work, we are using the method in
Refs. [77,79] to simulate the 1/ f noise, where we are able
to generate the noise spectrum with 0 � α � 3. In Ref. [77],
we have shown that, for small α, the noise is not correlated
at all, and is closed to the whitelike noise, while for the large
α, the randomness of the noise is reducing and the noise is
rising or lowering in a relatively long time scale, so that the
noise is closed to the quasistatic model. Therefore, we may
expect the better performance of the geometric gates for the
large α.

In Fig. 4, we show the dependence of the error d on the
off-resonance noise amplitude Aδ for both the dynamical and
geometric gates. When α is small enough, i.e., α = 0.5, one
can see that the errors for the geometric gates are even larger
than the dynamical ones. This means that the geometric gates
cannot offer any improvement, because the noise is far away
from the static model due to the small α. When it comes to
the intermediate value of α = 1, the geometric gates in path 2
start to offer improvement against the dynamical counterparts,
and the improvement is becoming more and more pronounced
as α keeps increasing. We also see that for any α value, the
errors for the geometric gates in path 1 are the largest. This
result is consistent with the case in the static noise model.
According to the experimental data in Ref. [11], the α value
of the off-resonance noise at the low-frequency domain is
2.5. And, the noise spectrum there has been measured to be
S(ω) ≈ C1/ω

2.5 with C1 = 3 × 1013. Converting these data to
our unit, we have At0 = C1tα+1

0 . If we take the Rabi frequency
to be 500 kHz, which means t0 = 2 μs, we get At0 ≈ 10−7.
Substituting this noise amplitude into the error results as
shown in Fig. 4(e), the fidelity of the geometric gates in path
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(f)

FIG. 5. Average error per gate d vs noise amplitude Aεt0 for 1/ f -
type noise with different noise exponent α. d is obtained by fitting the
fidelity curves resulting from the randomized benchmarking.

2 is as high as 0.9998. For comparison, the fidelity for the
dynamical ones is 0.9995. In Fig. 5, we also show the error
results for the systematic noise. We find that when α � 1.5,
the geometric gates in both paths can surpass the dynamical
ones. For all the α values, the geometric gates in path 1
outperform the ones in path 2.

In order to fully reveal the advantage of the geometric gate,
we further define the improvement ratio κ as the error of the
geometric gates divided by that of the dynamical counterparts
under the same noise conditions. As we can see in Figs. 4
and 5, the error curves for both the geometric and dynamical
gates are almost parallel in the considered noise amplitude
region, such that the ratio can be well defined. In Fig. 6, we
plot the improvement ratio versus the noise exponent α. For
the off-resonance noise, the ratio of the geometric gate in path
1 is always below 1, while that value for the gate in path 2
tends to increase with the exponent α. As we can see, the
crossing point where the geometric gate starts to outperform
the dynamical one is about 1.2. This means the geometric gate
can be working well in a rather wide region of α. According
to the experiments, the α value of the off-resonance noise can
be about either 2.5 [3,11] or 1 [11,12,80], which corresponds
to the low-frequency and high-frequency domain of the noise
spectrum, respectively. We can also see that, when α � 2, the
geometric gate can improve the dynamical gate by a factor
of 2 or more. This result is strong evidence to show the
advantage of the geometric gate, and is directly relevant to the
experiment considering off-resonance noise dominating for
single-qubit gates in silicon. While for the systematic noise,
the improvement ratio offered by the geometric gates in path
1 can be as high as 4 when α = 3. And that value for those
geometric gates in path 2 can be also larger than 1 when
α � 1.5. Thus, the geometric gate may be a powerful tool to
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FIG. 6. Improvement ratio κ vs exponent α where κ is defined
as the error of the geometric gates divided by that of the dynamical
counterparts. The dashed black line indicates κ = 1.

achieve high-fidelity quantum gates for the experimental noise
environment.

V. CONCLUSIONS

We propose the implementation of the universal GQG
on silicon spin qubits. By theoretical analysis, we find that
the advantage of the geometric gates over the dynamical
counterparts is sensitively depending on the path taken for the
geometric phase. We also perform randomized benchmarking
to quantitatively determine how much improvement the geo-
metric gates can offer. For both the static and 1/ f -type noise
model, the fidelities of the geometric gates can be around
99.90% or above for both the off-resonance and systematic
noise. For the off-resonance noise which is dominant for
single-qubit gates in silicon, the proper geometric gates can
improve the fidelity of the dynamical gates by a factor of
more than 2 in the experimental noise environment. Therefore,
our proposal paves a way for implementing the high-fidelity
geometric quantum gate for the silicon spin qubits.
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APPENDIX A: DYNAMICAL AND GEOMETRIC PHASES

Traditionally, the global phase of the qubit state is assumed
to be trivial since it is not a physically observable. However,
Berry’s work revealed that this global phase cannot be ignored
because it is required for the state to satisfy the Schrödinger
equation. As stated in the main text, the orthogonal state
|ψ+(t )〉 can be described as a point on the Bloch sphere.
After a cyclic evolution for a period T on the Bloch sphere,
it goes back to the starting point and gets a global phase factor
f (t ), such that the state satisfying the Schrödinger equation
associated with |ψ+(t )〉 can be denoted as

|ψ̃〉 = ei f (t )|ψ+(t )〉. (A1)

Substitute it into the time-dependent Schrödinger equation

H (t )|ψ̃〉 = ih̄
d|ψ̃〉

dt
, (A2)

and note that |ψ+(T )〉 = |ψ+(0)〉; we have

f = α + β, (A3)

where

α = −1

h̄

∫ T

0
〈ψ̃ |H (t )|ψ̃〉dt

= −1

h̄

∫ T

0
〈ψ+|H (t )|ψ+〉dt,

β =
∫ T

0
〈ψ̃ |i d

dt
|ψ̃〉dt . (A4)

α and β are the dynamical and geometric phase, respectively.
Next, we show how to cancel out the dynamical phase during
the cyclic evolution, i.e., α = 0. Without loss of generality, a
general two-level Hamiltonian has the form

H (t ) = h̄

2

(
�(t ) �(t )e−iη(t )

�(t )eiη(t ) −�(t )

)
. (A5)

By inserting Eqs. (A1) and (A5) into Eq. (A3), we can get

θ̇ = � sin(η − φ),

φ̇ = � − � cos(η − φ) cot θ, (A6)

and further

� = ±
√

(� − φ̇)2 + θ̇ cot2 θ tan θ

ψ = φ − arctan

{
± θ̇ cot θ

� − 2φ̇

}
. (A7)

Combining Eqs. (A5) and (A7) into α, we can get

α =
∫ T

0

{
sin2 θ

cos θ
φ̇ − �

cos θ

}
dt . (A8)
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Now, it is clear that, when � = 0, if we take φ̇ = 0, then the
dynamical phase can be canceled out. This implies the state
|ψ+(t )〉 would evolve along the geodesic line. According to
Eq. (A6), we further have η − φ = ±π/2.

APPENDIX B: NOISE MODEL OF SINGLE-QUBIT GATES

The Hamiltonian for a single spin qubit is

HQ
1,s = gμB

{(
Bh

z + BQ
z

)
Sz + BQ

x (t )Sx
}

= 1
2

{
ωQ

z σz + (
ω

Q
1 + δω

Q
1

)
cos(ωQt + φ)σx

}
, (B1)

where ωQ
z = gμB(Bh

z + BQ
z ), ω

Q
1 = gμBBQ

x , and δω
Q
1 is owing

to the drift of the oscillating magnetic field. ωQ
z is the Larmor

frequency. In experiments, the oscillating magnetic field can
be implemented either by using the electron-spin-resonance
or electron dipole spin-resonance techniques. In both cases,
ω

Q
1 
 ωQ

z . Thus, under rotating wave approximation, the
Hamiltonian can be rewritten in the rotating frame as

HQ
1,eff = ωQ

z − ωQ

2
σz +

(
ω

Q
1 + δω

Q
1

)
2

(cos φ σx + sin φ σy).

(B2)

Here we can see that if ωQ �= ωQ
z , the off-resonance effect

occurs. In the experimental environment, the off-resonance

noise can be mainly ascribed to the charge noise [11,12] which
we assume to be the leading error for single-qubit gates.

APPENDIX C: NOISE MODEL OF TWO-QUBIT GATES

The Hamiltonian in Eq. (5) suffering from noise in the two-
qubit case can be described as [20]

H2(t ) = J (t )′(SL · SR − 1/4) + SL · BL

+ SR · BR + DLSL
x − DRSR

x . (C1)

Here, J (t )
2

′ = j0 + δ j1 + ( j(t ) + δ j2) cos(ω jt + ψ ) where δ j1
is the detuning noise due to the charge impurity affecting the
detuning parameter, and δ j2 is the systematic noise owing to
the drift of the microwave-driven field. DL/R is the noise effect
due to the spin-orbit interaction [20]. Equation (C1) can be
rewritten in the matrix form,

H2(t )=

⎛
⎜⎝

Ez + J (t )′/2 −DR DL 0
−DR δEz/2 J (t )′/2 DL

DL J (t )′/2 −δEz/2 −DR

0 DL −DR −Ez + J (t )′/2

⎞
⎟⎠.

(C2)

TABLE I. Clifford gates used in the randomized benchmarking simulation.

Clifford element Dynamical Geometric

C0 = Î R(x̂, 2π ) U
( − π, π

2 , 0
)

C1 = R
(
x̂, − π

2

)
R
( − x̂, π

2

)
U

( − π

4 , π

2 , π
)

C2 = R
(
x̂, π

2

)
R
(
x̂, π

2

)
U

( − π

4 , π

2 , 0
)

C3 = R(x̂, π ) R(x̂, π ) U
( − π

2 , π

2 , 0
)

C4 = R
(
ŷ, − π

2

)
R
( − ŷ, π

2

)
U

( − π

4 , π

2 , − π

2

)
C5 = R

(
ŷ, π

2

)
R
(
ŷ, π

2

)
U

( − π

4 , π

2 , π

2

)
C6 = R(ŷ, π ) R(ŷ, π ) U

( − π

2 , π

2 , π

2

)
C7 = R

(
ẑ, − π

2

)
R
(
x̂, π

2

)
R
( − ŷ, π

2

)
R
( − x̂, π

2

)
U

( − π

4 , π

2 , 0
)
U

( − π

4 , π

2 ,− π

2

)
U

( − π

4 , π

2 , π
)

C8 = R
(
ẑ, π

2

)
R
(
x̂, π

2

)
R
(
ŷ, π

2

)
R
( − x̂, π

2

)
U

( − π

4 , π

2 , 0
)
U

( − π

4 , π

2 , π

2

)
U

( − π

4 , π

2 , π
)

C9 = R(ẑ, π ) R(x̂, π )R(ŷ, π ) U
( − π

2 , π

2 , 0
)
U

( − π

2 , π

2 , π

2

)
C10 = R(x̂ + ẑ, π ) R

( − ŷ, π

2

)
R(x̂, π ) U

( − π

4 , π

2 , − π

2

)
U

( − π

2 , π

2 , 0
)

C11 = R(x̂ − ẑ, π ) R
(
ŷ, π

2

)
R(x̂, π ) U

( − π

4 , π

2 , π

2

)
U

( − π

2 , π

2 , 0
)

C12 = R(x̂ + ŷ, π ) R
(
x̂, π

2

)
R
(
ŷ, π

2

)
R
(
x̂, π

2

)
U

( − π

4 , π

2 , 0
)
U

( − π

4 , π

2 , π

2

)
U

( − π

4 , π

2 , 0
)

C13 = R(x̂ − ŷ, π ) R
(
x̂, π

2

)
R
( − ŷ, π

2

)
R
(
x̂, π

2

)
U

( − π

4 , π

2 , 0
)
U

( − π

4 , π

2 ,− π

2

)
U

( − π

4 , π

2 , 0
)

C14 = R(ŷ + ẑ, π ) R
(
x̂, π

2

)
R(ŷ, π ) U

( − π

4 , π

2 , 0
)
U

( − π

2 , π

2 , π

2

)
C15 = R(ŷ − ẑ, π ) R

( − x̂, π

2 )R(ŷ, π
)

U
( − π

4 , π

2 , π
)
U

( − π

2 , π

2 , π

2

)
C16 = R

(
x̂ + ŷ + ẑ, 2π

3

)
R
(
x̂, π

2

)
R
(
ŷ, π

2

)
U

( − π

4 , π

2 , 0
)
U

( − π

4 , π

2 , π

2

)
C17 = R

(
x̂ + ŷ + ẑ, 4π

3

)
R
( − ŷ, π

2

)
R
( − x̂, π

2

)
U

( − π

4 , π

2 , − π

2

)
U

( − π

4 , π

2 , π
)

C18 = R
(
x̂ + ŷ − ẑ, 2π

3

)
R
(
ŷ, π

2

)
R
(
x̂, π

2

)
U

( − π

4 , π

2 , π

2

)
U

( − π

4 , π

2 , 0
)

C19 = R
(
x̂ + ŷ − ẑ, 4π

3

)
R
( − x̂, π

2

)
R
( − ŷ, π

2

)
U

( − π

4 , π

2 , π
)
U

( − π

4 , π

2 , − π

2

)
C20 = R

(
x̂ − ŷ + ẑ, 2π

3

)
R
( − ŷ, π

2

)
R
(
x̂, π

2

)
U

( − π

4 , π

2 , − π

2

)
U

( − π

4 , π

2 , 0
)

C21 = R
(
x̂ − ŷ + ẑ, 4π

3

)
R
( − x̂, π

2

)
R
(
ŷ, π

2

)
U

( − π

4 , π

2 , π
)
U

( − π

4 , π

2 , π

2

)
C22 = R

( − x̂ + ŷ + ẑ, 2π

3

)
R
(
ŷ, π

2

)
R
( − x̂, π

2

)
U

( − π

4 , π

2 , π

2

)
U

( − π

4 , π

2 , π
)

C23 = R
( − x̂ + ŷ + ẑ, 4π

3

)
R
(
x̂, π

2

)
R
( − ŷ, π

2

)
U

( − π

4 , π

2 , 0
)
U

( − π

4 , π

2 ,− π

2

)
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To simplify Eq. (C2), we divide it into two parts H2(t ) =
H2,s + H ′

2,s where

H2,s =

⎛
⎜⎝

Ez 0 0 0
0 δEz/2 0 0
0 0 −δEz/2 0
0 0 0 −Ez

⎞
⎟⎠ (C3)

is the free Hamiltonian. For both spin-orbit interaction noise
DL/R and the detuning noise δ j1, they can be effectively
suppressed by operating near certain sweet spots [22,81]
or supersweet spots [20]. In addition, the latest experi-
ment has shown that in the silicon device the spin-orbit
interaction is only several MHz [82] which is far weaker
than the Zeeman field Ez and δEz considered in this work.
Thus, we have δ j1, DL/R 
 Ez, δEz. In this way, H ′

2,s is
regarded as a perturbation. In the interaction picture

and under the rotating wave approximation, Eq. (C3) is
transformed into

H2,eff =

⎛
⎜⎜⎝

0 0 0 0
0 δ j1

1
2 [ j(t ) + δ j2]e−iψ 0

0 1
2 [ j(t ) + δ j2]eiψ δ j1 0

0 0 0 0

⎞
⎟⎟⎠.

(C4)

It is clear that the spin-orbit interaction noise DL/R and the
detuning noise δ j1 can be safely canceled out due to the
rotating wave approximation and only the systematic noise
δ j2 remains.

APPENDIX D: CLIFFORD GATES FOR RB

In Table I, we provide the single-qubit Clifford gates used
in the randomized benchmarking simulation.
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