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In the accompanying letter [Gong et al., Phys. Rev. Lett. 124, 210606 (2020)], we introduced a universal error
bound for constrained unitary dynamics within a well-gapped energy band of an isolated quantum system. Here,
we provide the full details on the derivation of the bound. In addition, we generalize the result to isolated quantum
many-body systems by employing the local Schrieffer-Wolff transformation, obtaining an error bound that grows
polynomially in time. We also generalize the result to Markovian open quantum systems and quantitatively
explain the quantum Zeno effect.
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I. INTRODUCTION

In quantum mechanics, the existence of large energy gaps
allows us to trace out the degrees of freedom of irrelevant
energy scale [1]. Consequently, we can treat a system within
a constrained subspace obtained by the projection of the
total Hilbert space. As long as the restricted subspace is
energetically well isolated from the remainder of the spec-
trum, a weak perturbative term that mixes the entire Hilbert
space can be treated as an action only on that subspace.
Such approximations have been utilized in various systems,
e.g., few-level atoms in quantum optics [2] and crystalline
materials as few-band systems in condensed-matter systems
[3]. One of the sophisticated approaches to perform the above
approximation is to build a perturbation theory on the basis
of the Schrieffer-Wolff transformation (SWT) [4], which is
a unitary transformation that gradually block diagonalizes the
Hamiltonian. First introduced to find an effective theory of the
Anderson impurity model [4–6], the SWT has widely been
applied to many different situations, such as the Bose- and
Fermi-Hubbard systems [7–9], quantum dots [10], and spins
in a cavity [11–13]. A constrained Hamiltonian obtained by
a simple projection can be considered to be associated with
the zeroth-order SWT. It is known from the first-order SWT
that the error caused by a simple projection is proportional
to the strength of the perturbation V and the inverse of the
gap �0 between the subspace of interest and the remainder of
the spectrum [14]. This means that the effective constrained
theory becomes increasingly accurate when the energy gap
becomes large.

Importantly, the projected Hamiltonian is also used to
describe the approximated constrained dynamics under the
large-gap condition. For example, quench dynamics in the
Bose- and Fermi-Hubbard models are implemented by ultra-
cold atoms in deep optical potentials, which enables us to
consider only a ground-state band [15–18]. Another notable

example is the recent finding of anomalous slow relaxation
dynamics of strongly interacting Rydberg systems [19]. The
slow dynamics is effectively described by the so-called PXP
model [see Eq. (67)] through a projection, which constrains
the dynamics in the Hilbert subspace where the adjacent Ryd-
berg excitations are forbidden [20]. The constrained dynamics
appears even beyond isolated systems such as a periodically
driven setup [21] and a dissipative setup [22]. For the latter
case, strong dissipation or measurement constrains the dy-
namics which constitutes the quantum Zeno effect [23–25].
Generalized techniques to apply the SWT to these setups have
also been developed [26,27].

Despite the broad applications of the constrained dynam-
ics, the exact evaluation of the error of the approximation
in the course of the dynamics has remained elusive both for
isolated and open systems. In particular, it remains unclear
how the error coming from the perturbation is amplified dur-
ing the time evolution. Furthermore, another problem appears
in quantum many-body systems; the norm of the perturbation
‖V ‖ diverges as the system size increases, so the conventional
perturbation analysis becomes inadequate [14]. Solutions to
these problems are necessary for the justification of effective
constrained dynamics.

In Ref. [28], we introduce an error of the expectation value
for a normalized observable between the exact dynamics and
the effective, constrained dynamics, and rigorously show that
it is universally bounded both in few- and many-body iso-
lated quantum systems. Such a universal error bound gives a
justification of approximated constrained dynamics in generic
unitary quantum dynamics, as long as the energy gap is suffi-
ciently large. In this paper, we provide the full details of the
derivation of the bound with several generalizations. The core
idea is to divide the error between the full quantum dynamics
and the constrained one into three terms: an error term for
the SWT transformation, a “Loschmidt-echo” term, and a
term for the inverse SWT transformation after time evolution.
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FIG. 1. Slopes k of Eq. (6) (blue thick curve) and Eq. (7) (red thin
curve) for various ‖V ‖

�0
. The latter is smaller when ‖V ‖ < 0.1887�0.

Asymptotically, both slopes scale linear with ‖V ‖2

�0
(dashed lines) with

prefactors 4 and 2, respectively.

Here, the first and third terms come from the generators of the
(inverse) SWT transformations. The second term is related to
the Loschmidt-echo process [29], in which we go forward in
time with the exact SWT Hamiltonian and then go backward
with the zeroth-order SWT effective Hamiltonian. We first
show that, for a general isolated unitary dynamics, the first
and the third terms give a constant error bound, while the
second term gives a bound that grows approximately linearly
[see Eq. (9)]. The proof is based on several fundamental
inequalities of matrix analysis [30,31]. We then extend our
rigorous bound to locally interacting quantum many-body
systems. Employing the local SWT [14], we obtain the error
bound for local observables based on the strength of the local
perturbation instead of the global perturbation ‖V ‖. In this
case, the accumulation of the error occurs as a result of the
spreading of initially local operators, which accelerates the er-
ror growth from a linear law to a power law no faster than t d+1

(d is the spatial dimension) due to the Lieb-Robinson bound.
Finally, we investigate a bound for open quantum systems,
especially those exhibiting quantum Zeno effect, where strong
dissipation or measurement constrains the dynamics. Using a
nonunitary version of the SWT different from Ref. [26], we
prove an error bound similar to the isolated case; the energy
scale of dissipation and that of the Hamiltonian take the roles
of �0 and ‖V ‖, respectively.

The rest of this paper is organized as follows. In Sec. II,
we show two error bounds with a rigorous proof for general
isolated quantum systems (see Fig. 1). In Sec. III, we analyze
locally interacting quantum many-body systems and show
that the error is bounded by a quantity that is again linearly
suppressed by the energy gap and grows only polynomially
in time. In Sec. IV, we consider a setup for open quantum
systems with strong dissipation or measurement. We show an
error bound for the quantum Zeno dynamics and demonstrate
its validity with simple models. In Sec. V, we summarize our
results and discuss future prospects.

II. UNIVERSAL ERROR BOUND FOR ISOLATED
QUANTUM SYSTEMS

In this section, we briefly review the general setup in
Ref. [28] and refine the asymptotic error bound into an exact

one. We further discuss an important special case of a single
(nondegenerate) isolated eigenenergy.

A. Setup and the main result

Let us briefly review the setup of gap-induced constrained
quantum dynamics. Consider an arbitrarily large quantum
system described by a Hamiltonian H0, which has an isolated
energy band �0 gapped from the remaining by

�0 ≡ min
λ∈�0,λ′∈�0\�0

|λ − λ′|, (1)

where �0 is the full spectrum of H0. We denote the projector
onto this energy band as P, which can be expressed as [30]

P =
∮

C0

dz

2π i
R0(z), R0(z) ≡ 1

z − H0
, (2)

where R0(z) is called the resolvent of H0 and C0 can be an
arbitrary closed contour that separates �0 from the remaining
spectrum. This formula will later become useful in Sec. II C.
With an additional coupling V applied, the entire Hamiltonian
becomes

H = H0 + V. (3)

We aim to provide two universal bounds that are explicitly
stated later in Theorem 1 as Eqs. (6) and (7). While the first
bound is unrestricted by the magnitude of the additional cou-
pling, the second bound (7) is valid when a condition ‖V ‖ <
1
2�0, which is sufficient to assure that the full Hamiltonian
H is also gapped due to Weyl’s perturbation theorem [31],
is satisfied. Here, ‖ · ‖ is the operator norm, i.e., the largest
singular value.

Our objective is to provide an observable-based quanti-
tative bound on the deviation of the constrained dynamics,
which is generated by the projected Hamiltonian onto the
isolated energy band HP ≡ PHP, from the actual dynamics
described by H . Given an observable O, which is assumed
to be normalized as ‖O‖ = 1 without loss of generality, we
define the error of the constrained-dynamics approximation
as

ε(t ) ≡ ‖P(eiHt Oe−iHt − eiHPt Oe−iHPt )P‖. (4)

As is clear from the equivalent variational definition of Eq. (4),

ε(t ) ≡ max
P|ψ〉 = |ψ〉,
〈ψ |ψ〉 = 1

|〈ψ |eiHt Oe−iHt |ψ〉 − 〈ψ |eiHPt Oe−iHPt |ψ〉|,

(5)

the error tells us in the worst case how much the observable’s
expectation value deviates between the actual dynamics and
the constrained one when we start from a state in �0.

Our main result is the following theorem:
Theorem 1 (Universal error bound). Given an energy gap

�0 and a bounded coupling strength ‖V ‖, the error defined in
Eq. (4) is rigorously upper bounded by

ε(t ) � 4‖V ‖
�0

+ 2(e2 ‖V ‖
�0 − 1)‖V ‖t, (6)
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FIG. 2. (a) Schematic illustration of the three steps of error
production. The blue solid and red dashed shapes correspond to
the operator evolution in Eq. (10) for the full coupling V and the
block-diagonal component Vdiag, respectively, and their difference
represents the error. Here S is the unitary SWT generated by an anti-
Hermitian operator T determined by Eq. (11), L(t ) is the Loschmidt-
echo operator (12), and SH1 (t ) is the SWT in the interacting picture
(13). (b) Explicit expression of the Loschmidt echo operator L(t ) =
e−iH1t eiH ′

1t , where H ′
1 ≡ H1 + V ′ [see Eq. (15)].

which is a linear function of time. Moreover, when ‖V ‖ <
1
2�0, we have another rigorous bound

ε(t ) � 4‖V ‖
�0 − 2‖V ‖ + 2 f

(
2‖V ‖

�0 − 2‖V ‖
)

‖V ‖t, (7)

which is again linear in t and the function f is given by

f (x) = (x − 1)ex + 1

x
. (8)

Before diving into the detailed proof, let us first make a few
remarks on Theorem 1. First, let us compare the time slopes in
Eqs. (6) and (7). For a sufficiently long time, a smaller slope
should give a tighter bound. As shown in Fig. 1, as long as
‖V ‖ < 0.1887�0, the slope in Eq. (7) is smaller. Second, in
the large gap regime �0 � ‖V ‖, we can easily check that the
slope in Eq. (6) asymptotically approaches 4‖V ‖2

�0
while that

in Eq. (7) approaches 2‖V ‖2

�0
. Also, the intercept in Eq. (7)

deviates from that in Eq. (6) by a quantity of the order of
‖V ‖2

�2
0

. Therefore, Eq. (7) turns out to be tighter in this large-gap

regime and the leading term (order ‖V ‖
�0

) indeed reproduces the
asymptotic bound in Ref. [28]:

ε(t ) � 4‖V ‖
�0

+ 2‖V ‖2

�0
t, (9)

where “�” means that there could be a tiny violation up to
O( ‖V ‖2

�2
0

).

B. Proof of the main result

The general idea of the proof has been mentioned in
Ref. [28]. The crucial point is to rewrite Eq. (4) following the
definition of the SWT as follows:

ε(t ) = ‖P[SH1 (t )†L(t )SOS†L(t )†SH1 (t ) − O]P‖. (10)

See Fig. 2 for a schematic illustration of such a decompo-
sition. In order to first obtain Eq. (6), here we require the
anti-Hermitian generator T in the unitary SWT S = eT to

satisfy

[H0, T ] = PV Q + QV P ≡ Voff . (11)

This is slightly different from the derivation in Ref. [28],
where H0 in Eq. (11) is replaced by H1 [see the definition in
Eq. (14)]. Formally, the other operators in Eq. (10) are defined
in a similar way as in Ref. [28]:

L(t ) = e−iH1t eiH ′
1t (12)

is the Loschmidt-echo operator and

SH1 (t ) = e−iH1t eT eiH1t = ee−iH1t TeiH1t
(13)

is the SWT in the interacting picture with respect to H1. Here

H1 ≡ HP + HQ = H0 + Vdiag, (14)

where Q = 1 − P, HQ ≡ QHQ and Vdiag ≡ PV P + QV Q =
V − Voff is the block-diagonal component of V .

H ′
1 ≡ SHS† = H1 + V ′ (15)

is related to H via the SWT. However, since H0 instead of H1

is used in Eq. (11) to determine T , the expression of V ′ differs
slightly from Eq. (10) in Ref. [28] unless V = Voff :

V ′ =
∞∑

n=1

1

n!
adn

T

(
V − 1

n + 1
Voff

)
, (16)

where adT ( · ) ≡ [T, · ]. With all the quantities in Eq. (10)
clarified above, we can straightforwardly verify its equiva-
lence to Eq. (4):

ε(t ) = ‖P(e−iH1t S†eiH ′
1t SOS†e−iH ′

1t SeiH1t − O)P‖
= ‖P(eiS†H ′

1St Oe−iS†H ′
1St − eiH1t Oe−iH1t )P‖

= ‖P(eiHt Oe−iHt − eiHPt Oe−iHPt )P‖, (17)

where we have also used the unitary invariance of the operator
norm and the identity eiH1t P = PeiH1t = PeiHPt , which arises
from PH1 = H1P = HP.

To proceed, we upper bound Eq. (10) by three terms

ε(t ) � ‖[S, O]‖ + ‖[L(t ), O]‖ + ‖[SH1 (t ), O]‖, (18)

where ‖P( · )P‖ � ‖ · ‖ and the inequality∥∥∥∥∥
[∏

α

Uα, O

]∥∥∥∥∥ �
∑

α

‖[Uα, O]‖ (19)

for unitaries Uα’s has been used. To prove Eq. (19), it is
sufficient to iteratively apply the inequality for two unitaries:

‖[UU ′, O]‖ = ‖U [U ′, O] + [U, O]U ′‖
� ‖[U, O]‖ + ‖[U ′, O]‖, (20)

where we have used the unitary invariance of operator norm.
By iteratively applying Eq. (20), we mean that we can first
choose U and U ′ in Eq. (20) to be U1 and

∏
α>1 Uα in

Eq. (19), respectively, to obtain ‖[
∏

α Uα, O]‖ � ‖[U1, O]‖ +
‖[
∏

α>1 Uα, O]‖. Then we choose U = U2 and U ′ =∏
α>2 Uα to obtain ‖[

∏
α Uα, O]‖ � ‖[U1, O]‖ + ‖[U2, O]‖ +

‖[
∏

α>2 Uα, O]‖, etc. Moreover, the norm of the commutator
between an operator and a unitary can be bounded in terms
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of the anti-Hermitian generator by rewriting the commutator
using the integral:

‖[eT , O]‖ = ‖eT Oe−T − O‖

=
∥∥∥∥
∫ 1

0
dλeλT [T, O]e−λT

∥∥∥∥
�
∫ 1

0
dλ‖eλT [T, O]e−λT ‖

= ‖[T, O]‖ � 2‖T ‖. (21)

This result applies directly to the first and the third terms
(where T is replaced by e−iH1t TeiH1t , whose norm is the same
as ‖T ‖) in Eq. (18), while for the middle term we should use
a time-dependent version of Eq. (21):

‖[L(t ), O]‖ = ‖L(t )†OL(t ) − O‖

=
∥∥∥∥
∫ t

0
dt ′L(t ′)†[e−iH1t ′

V ′eiH1t ′
, O]L(t ′)

∥∥∥∥
�
∫ t

0
dt ′‖[e−iH1t ′

V ′eiH1t ′
, O]‖

� 2
∫ t

0
dt ′‖e−iH1t ′

V ′eiH1t ′ ‖ = 2‖V ′‖t . (22)

Combining Eqs. (21) and (22) with Eq. (18), we obtain

ε(t ) � 4‖T ‖ + 2‖V ′‖t . (23)

The remaining problem is how we can bound ‖T ‖ and ‖V ′‖
in terms of the energy gap �0 and the coupling strength ‖V ‖.
We first recall that T is determined by Eq. (11). While the so-
lution is not unique, we can further impose the constraint that
T is off block diagonal, so that one of the off-block-diagonal
components TPQ ≡ PT Q can uniquely be determined from the
following Sylvester equation [32]:

H0PTPQ − TPQH0Q = VPQ ≡ PV Q, (24)

where H0P ≡ PH0P and H0Q ≡ QH0Q. Note that the singular
value spectrum of T coincides with the positive half of the
spectrum of iT , and in particular

‖T ‖ = ‖TPQ‖. (25)

To see this, we only have to note that T 2 = PT QT P +
QT PT Q is block diagonalized. This implies ‖T ‖2 =
max{‖PT QT P‖, ‖QT PT Q‖} = ‖QT P‖2 = ‖PT Q‖2 (due to
‖A‖2 = ‖A†A‖), which gives the desired result. By assump-
tion, it is possible to find E0 ∈ [min �0, max �0] (�0 is the
spectrum of H0) and r0 � 0 such that �0 is covered by [E0 −
r0, E0 + r0] and �0\�0 is covered by (−∞, E0 − r0 − �0] ∪
[E0 + r0 + �0,∞). Therefore, we can iteratively apply

TPQ = [(H0P − E0)TPQ − VPQ](H0Q − E0)−1 (26)

to obtain a formal solution to Eq. (24) as

TPQ = −
∞∑

n=0

(H0P − E0)nVPQ(H0Q − E0)−(n+1). (27)

The convergence of this series can be seen from the (no
slower than) exponential decay in the norm of the nth

term:

‖(H0P − E0)nVPQ(H0Q − E0)−(n+1)‖
� ‖H0P − E0‖n‖H0Q − E0‖−(n+1)‖VPQ‖

� rn
0

(r0 + �0)n+1
‖V ‖. (28)

Moreover, after summing these inequalities up and using
Eq. (25), we obtain [31]

‖T ‖ �
∞∑

n=0

rn
0‖V ‖

(r0 + �0)n+1
= ‖V ‖

�0
. (29)

Such a bound on ‖T ‖ allows us to bound ‖V ′‖ as

‖V ′‖ �
∞∑

n=1

1

n!

∥∥∥∥adn
T

(
V − 1

n + 1
Voff

)∥∥∥∥
�

∞∑
n=1

(2‖T ‖)n

n!
‖V ‖ = (e2‖T ‖ − 1)‖V ‖

� (e
2‖V ‖
�0 − 1)‖V ‖, (30)

where we have used ‖adT ( · )‖ � 2‖T ‖‖ · ‖ and ‖V −
1

n+1Voff‖ = ‖ n
n+1V + 1

n+1Vdiag‖ � n
n+1‖V ‖ + 1

n+1‖Vdiag‖ �
‖V ‖. The first main result Eq. (6) follows the combination of
Eqs. (29), (30), and (23).

So far, we have solely assumed the gap �0 > 0 to derive
the bound Eq. (6) based on the decomposition of the error
(4) into three terms: the SWT and the time-evolved SWT
that contribute to the constant term and the Loschmidt-echo
operator which is the source of the time-linear term. The
generator of the SWT is defined such that the commutation
relation with H0 (11) is satisfied.

To derive the second bound (7), we should choose another
T to satisfy

[T, H1] = −Voff , (31)

which coincides with the choice in Ref. [28]. According
to Weyl’s perturbation theorem [33], the spectral shift of
H1 = H0 + Vdiag compared with H0 is rigorously bounded by
‖Vdiag‖ � ‖V ‖. Accordingly, the energy gap of H1 satisfies

�1 � �0 − 2‖V ‖, (32)

implying that the perturbed energy band � stays isolated
if ‖V ‖ < 1

2�0. In this case, the energy gap in Eq. (29) is
replaced with �1 owing to the change in the definition of T ,
whose norm is now bounded by

‖T ‖ � ‖V ‖
�1

� ‖V ‖
�0 − 2‖V ‖ . (33)

We can thus bound the norm of

V ′ =
∞∑

n=1

1

n!
adn

T

(
n

n + 1
Voff

)
, (34)
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which is also replaced due to the modification in the definition
(31) of T , as follows:

‖V ′‖ �
∞∑

n=1

n(2‖T ‖)n

(n + 1)!
‖Voff‖ � f (2‖T ‖)‖V ‖

� f

(
2‖V ‖

�0 − 2‖V ‖
)

‖V ‖, (35)

where we have used ‖Voff‖ = ‖PV Q‖ � ‖V ‖ [cf. Eq. (25)]
and

∞∑
n=1

nxn

(n + 1)!
=

n∑
n=1

xn

n!
− x−1

∞∑
n=1

xn+1

(n + 1)!

= ex − 1 − x−1(ex − x − 1) = f (x), (36)

which is monotonically increasing on R+.
Finally, we mention that the results can readily be gener-

alized to the case of multiple energy bands. The only price
which we have to pay for this is to multiply π

2 to each
‖V ‖
�0

or ‖V ‖
�0−2‖V ‖ in the bounds. This is because the solution

X of the Sylvester equation AX − XB = Y with Hermitian
A and B always satisfies ‖X‖ � π

2
‖Y ‖
�

[31], where � ≡
minλ∈�A,λ′∈�B |λ − λ′| is the distance between the spectra of
A and B (denoted as �A and �B). However, it is far from clear
whether these bounds can (partially) be saturated in the worst
cases.

C. Case of a single isolated state

While the linear growth of the error and even the asymp-
totic saturation of the slope in the universal error bound can
be already achieved by a two-level energy band [28], things
become qualitatively different when the isolated energy band
consists of only a single state |ψ〉. In this case, the constrained
dynamics is simply “no dynamics” and we can actually prove
that the error for a normalized observable can never exceed
an O( ‖V ‖

�0
) constant even in the infinite-time limit, and thus a

time-linear term is unnecessary in the error bound. This result
can intuitively be understood from the standard perturbation
theory for static eigenstates, which tells us that |ψ〉 should
have a large overlap with the corresponding eigenvector of H
when the perturbation is sufficiently small compared to the
gap [1]. Accordingly, the evolved state e−iHt |ψ〉 also has a
large overlap with |ψ〉 and any observable should stay almost
unchanged. In the following, we translate this argument into a
rigorous proof.

Since the projector P = |ψ〉〈ψ | is of rank 1, we find
e−iHPt |ψ〉 = e−i〈ψ |H |ψ〉t |ψ〉 and hence the error can be rewrit-
ten as

ε(t ) = |〈ψ |eiHt Oe−iHt |ψ〉 − 〈ψ |O|ψ〉|
= | Tr[O(e−iHt PeiHt − P)]|, (37)

for which we can apply the Hölder inequality | Tr[A†B]| �
‖A‖1‖B‖ (‖A‖1 ≡ Tr

√
A†A is the Schatten-1 norm) [34] to

obtain

ε(t ) � ‖e−iHt PeiHt − P‖1 = 2‖e−iHt PeiHt − P‖, (38)

where ‖O‖ = 1 has been used. The equality in Eq. (38)
is due to the fact that e−iHt PeiHt − P is of rank 2 (unless

Γ

Re z

Im z Δd Δu

2 V

Δ0V V

FIG. 3. Poles (marked as “×”) of the resolvent R0(z) = (z −
H0 )−1 forming the spectrum of H0. An isolated eigenenergy (red)
is separated from the remaining (blue) by a gap �0 = min{�d, �u}.
When H0 is changed into H = H0 + V , the eigenvalues cannot shift
by more than ‖V ‖ [31] and should thus always be covered by the
shaded regions. Provided that ‖V ‖ < 1

2 �0, the circular contour 


with diameter �0 separates the isolated eigenenergies of both H0 and
H from the remaining.

P = e−iHt PeiHt , in which case the equality stays valid) and
traceless, so there are two eigenvalues which are the op-
posite of each other. Provided that ‖V ‖ < 1

2�0 so that the
isolated eigenenergy is ensured to stay isolated by Weyl’s
perturbation theorem [33], we have a well-defined projector
P′ = |ψ ′〉〈ψ ′| onto the perturbed eigenstate |ψ ′〉 of H . By
definition, [P′, H] = 0 and thus

ε(t ) � 2‖e−iHt (P − P′)eiHt − (P − P′)‖
� 4‖P − P′‖. (39)

So far, we have bounded the error for dynamics by that for
static eigenprojectors, and it suffices to show that ‖P − P′‖ is
a small quantity of the order of ‖V ‖

�0
.

To estimate the shift of the projector, we apply the pertur-
bative formula [30]

P′ − P =
∞∑

n=1

∮



dz

2π i
R0(z)[V R0(z)]n, (40)

where R0(z) is the resolvent of H0 given in Eq. (2) and 


can be an arbitrary closed contour that separates the isolated
eigenvalues in H0 and H from the remaining. The existence
of 
 is ensured when ‖V ‖ < 1

2�0, and, in particular, we can
choose it to be a circle centered at the isolated eigenenergy of
H0 and with diameter �0 (see Fig. 3). For such a particular
choice, we have

‖P − P′‖ � l

2π

∞∑
n=1

‖V ‖n(max
z∈


‖R0(z)‖)n+1

=
∞∑

n=1

(2�−1
0 ‖V ‖)n = 2‖V ‖

�0 − 2‖V ‖ , (41)

where l
 = π�0 is the length of 
 and maxz∈
 ‖R0(z)‖ =
2�−1

0 . Substituting Eq. (41) into Eq. (39), we obtain

ε(t ) � 8‖V ‖
�0 − 2‖V ‖ , (42)

implying that at any time the error is rigorously bounded by
a constant of the order of ‖V ‖

�0
. While Eq. (42) already estab-

lishes the desired result, it stays an open problem whether the
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constant bound is optimal, i.e., whether it can be saturated in
the worst case.

III. GENERALIZATION TO QUANTUM
MANY-BODY SYSTEMS

Let us turn to the case of isolated quantum systems with a
macroscopic number of degrees of freedom. As already men-
tioned in Ref. [28], for such quantum many-body systems we
typically encounter the situation in which V is a sum of local
operators, so its norm diverges in the thermodynamic limit and
we cannot apply the error bound in Eq. (6), let alone Eqs. (7)
and (9). Nevertheless, by making fully use of locality, we can
still derive a bound for local observables, which is of the order
of �−1

0 and grows no faster than polynomially in time. This
is achieved by a combination of the local SWT [14,35] and
the Lieb-Robinson bound [36–38]. We note that similar ideas
have been applied to prove the quantum adiabatic theorem for
many-body systems [39], which states that while the adiabatic
(instantaneous ground state) approximation generally breaks
down globally, it stays valid locally.

A. Local Schrieffer-Wolff transformation for quantum
many-body Hamiltonians

We consider a quantum many-body Hamiltonian defined
on a d-dimensional lattice �, where each site is associated
with a finite-dimensional local Hilbert space. The many-body
Hamiltonian takes the form of Eq. (3), where H0 and V are
local, i.e., they can be written as a sum of Hermitian opera-
tors supported on finite regions, whose norms are uniformly
bounded. Moreover, H0 is assumed to be commuting and
frustration-free [40] and admit an exactly degenerate low-
energy manifold HP. By commuting, we mean that all the
local terms in H0 commute with each other. By frustration-
free, we mean that each eigenstate in HP not only has
the lowest global energy by definition, but also minimizes
the local energy everywhere. We emphasize that assuming the
exact degeneracy is not a severe limitation of our theory, since
we can always recast the degeneracy-lifting perturbations
into V .

Without loss of generality, we assume HP to be the kernel,
i.e., the zero-energy eigenspace of H0, so that we can decom-
pose H0 into

H0 =
∑

j

H0 j, (43)

where H0 j is supported on a finite region Rj , which contains
the jth site, is positive semidefinite, and admits a nonempty
kernel, onto which the projector is denoted as Pj . Recalling
that H0 is assumed to be commuting and frustration-free, we
have

[H0 j, H0 j′ ] = [Pj, Pj′ ] = 0, (44)

and the projector onto the global kernel HP is given by

P = P� ≡
∏
j∈�

Pj, (45)

where we define for all A ⊆ �

PA ≡
∏

Rj∩A�=∅
Pj . (46)

We further require H0 to have an energy gap �0, and then
�0 uniformly lower bounds the gap of any locally truncated
Hamiltonian:

H0A ≡
∑

Rj∩A�=∅
H0 j . (47)

The many-body perturbation V can explicitly be written as

V =
∑
A⊆�

VA, (48)

where VA is Hermitian and supported on A. Since V is also
assumed to be local, we have VA = 0 whenever A is not
connected or the volume of A, which is defined as the number
of sites and is denoted as |A|, exceeds some threshold. Such a
(strict) locality implies that, even in the thermodynamic limit
|�| → ∞ (|�|: total number of sites), for all μ � 0 we can
define

‖V ‖μ ≡ max
j∈�

∑
A� j

‖VA‖eμlA < ∞, (49)

where lA ≡ maxx,y∈A dist(x, y) denotes the diameter of A.
Here dist is defined on a general graph as the minimal number
of edges that connect two vertices [41]. For example, in a
cubic lattice � ⊆ Zd , dist(x, y) ≡ ∑d

α=1 |xα − yα| with xα ∈
Z (yα ∈ Z) being the αth component of x (y). The quantity de-
fined in Eq. (49) measures the largest local interaction strength
in V . Obviously, we can get rid of max j∈� and set j = 0 or any
other site if the system is translation invariant, but our analysis
does not require this and thus applies equally to disordered
systems. In the following, we will also encounter quasilocal
interactions, which may have nonzero but exponentially small
(in terms of lA) ‖VA‖ for a large A and the interaction norm
‖V ‖μ in Eq. (49) is well defined only for a sufficiently small
μ. In particular,

‖V ‖� ≡ ‖V ‖μ=0 = max
j∈�

∑
A� j

‖VA‖ (50)

is always well defined in this case.
We are now well prepared to introduce the local SWT. This

is to be contrasted to the global SWT, which is nothing but the
conventional SWT (used in Sec. II) applied to a many-body
Hamiltonian. In the latter case, the generator of the SWT
is usually highly nonlocal, while that in the former case is
constructed to be local. To this end, instead of globally block
diagonalizing the many-body Hamiltonian, we require the
SWT to block diagonalize each local term. Provided that the
gap �0 is large enough, up to the first order, the local SWT
S = eT is chosen such that [14]

SHS† = H0 +
∑
A⊆�

DA(VA) + V ′ ≡ H1 + V ′, (51)

where DA(VA) ≡ PAVAPA + QAVAQA with PA being defined in
Eq. (46), QA ≡ 1 − PA, V ′ is a quasilocal interaction with
bounded ‖V ′‖μ for a sufficiently small μ (see Appendix A),
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and T is an anti-Hermitian local interaction determined by

T =
∑
A⊆�

LA(VA). (52)

Here the superoperator LA is defined as

LA(VA) ≡
∫ ∞

0
dτ (e−τH0A QAVAPA − H.c.)

= (QAH0AQA)−1QAVAPA − H.c.,

(53)

which satisfies

[H0,LA(VA)] = [H0A,LA(VA)]

= H0A(QAH0AQA)−1QAVAPA + H.c. (54)

= QAVAPA + H.c. = OA(VA) ≡ VA − DA(VA),

where we have used PAH0A = H0APA = 0, Eq. (44) and
[H0 j,VA] = 0 for all j ∈ � satisfying Rj ∩ A = ∅. We note
that the support of a local term LA(VA) in T is generally not
A but instead

RA ≡
⋃

Rj∩A�=∅
Rj . (55)

Also, using Eq. (25) and the fact that the gap of H0A is lower
bounded by �0, we have

‖LA(VA)‖ = ‖(QAH0AQA)−1QAVAPA‖ � ‖VA‖
�0

. (56)

While the local-SWT generator T has a divergent norm in
the thermodynamic limit, we can show from Eq. (56) that
the local interaction strength ‖T ‖� ≡ ‖T ‖μ=0 is finite and
linearly suppressed by the energy gap �0:

‖T ‖� = max
j∈�

∑
RA� j

‖LA(VA)‖

� max
j∈�

∑
A∩Rj′ �=∅,∃Rj′ � j

‖VA‖
�0

� max
j∈�

∑
x∈Rj′ ,∃Rj′ � j

∑
A�x

‖VA‖
�0

� w
‖V ‖�

�0
, (57)

where w is an order-1 integer that depends only on the
interaction range of H0 and the geometry of the lattice:

w = max
j∈�

∣∣∣∣∣∣
⋃

Rj′ � j

R j′

∣∣∣∣∣∣. (58)

For example, if H0 consists of on-site potentials (i.e., |Rj | = 1
for all j ∈ �), then w = 1 in any spatial dimension [14]; if H0

is defined on a 1D lattice and only involves nearest-neighbor
interactions (i.e., |Rj | = 2 for all j ∈ �), we have w = 3. In
the following, we will focus on the large-�0 regime. This
means �0 is large compared to ‖V ‖�, which sets a natural
time scale and is considered to be of order 1. In this regime,
not only ‖T ‖� [see Eq. (57)] but also ‖V ′‖� can be shown (see
Appendix A) to be of the order of �−1

0 . We will see that the
error growth for a local observable can be bounded by these
local interaction strengths.

B. Lieb-Robinson bound

We introduce another crucial ingredient for deriving the
error bound—the Lieb-Robinson bound [36–38]. For our
purpose, we consider a general setting where the many-
body Hamiltonian H (t ) = ∑

A⊆� HA(t ) is time dependent and
quasilocal, with ‖H (t )‖μ uniformly bounded by some time-
independent (but still μ-dependent) constant. The many-body
dynamics starting from time t ′ is thus determined by

i∂tU (t, t ′) = H (t )U (t, t ′), U (t ′, t ′) = 1, (59)

which has a formal solution U (t, t ′) ≡ −→
T e−i

∫ t
t ′ dsH (s) (

−→
T :

time ordering). Similar to the time-independent case [36], we
have an emergent “soft” light cone for operator spreading, as
is captured by the following theorem:

Theorem 2 (Lieb-Robinson bound). Given a quasilocal
time-dependent many-body Hamiltonian H (t ) with
well-defined ‖H (t )‖μ < ∞ for all μ < μ∗ and ∀t ∈ R,
then for two arbitrary local operators OX and OY and any
κ, η > 0 with κ + η < μ∗, we have

‖[U (t, t ′)†OXU (t, t ′), OY ]‖
� 2 min{|X |, |Y |}‖OX ‖‖OY ‖

× e−κ[dist(X,Y )− 2Cd
κ

( d
eη )d

∫ t
t ′ ds‖H (s)‖κ+η]

, (60)

where U (t, t ′) is the unitary time-evolution operator generated
by H (t ) during [t ′, t] and Cd is a constant (determined solely
by the lattice geometry) that validates |A| � Cd (lA + 1)d for
all A ⊆ � [42].

Here by soft, we mean that there can be a tiny leakage
from the light cone, i.e., the commutator does not rigorously
vanish but only decays exponentially outside the light cone,
as indicated by Eq. (60). The proof of this theorem can be
found in Appendix B, which generalizes the proof for the
time-independent case in Ref. [41] in a rather straightforward
way.

An important implication of Theorem 2 is the following:
for H = H0 + V with H0 being a commuting local Hamilto-
nian, as is the case of our setup (3), the Lieb-Robinson bound
of H is essentially determined by the interaction strength of
V , no matter how large the commuting interaction in H0 is.
This is because

‖[OX (t ), OY ]‖
= ‖[eiHt e−iH0t eiH0t OX e−iH0t eiH0t e−iHt , OY ]‖
= ‖[L(t )†eiH0t OX e−iH0t L(t ), OY ]‖, (61)

where the Loschmidt operator L(t ) is given by

L(t ) = eiH0t e−iHt . (62)

We emphasize that such a definition (62) is only applicable
throughout the present subsection and should not be confused
with that in Eq. (12). One can check that L(t ) satisfies

i
d

dt
L(t ) = V H0 (t )L(t ), V H0 (t ) ≡ eiH0tVe−iH0t . (63)

Since H0 is commuting and local, denoting l0 as the largest
diameter of a local term in H0, the diameter of eiH0tVAe−iH0t in
V H0 (t ) should be no more than lA + 2l0 and its support should
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be no larger than RA (55), implying

‖V H0 (t )‖μ � max
j∈�

∑
RA� j

‖VA‖eμ(lA+2l0 )

� we2μl0‖V ‖μ. (64)

That is, the local interaction strength in V H0 (t ) is bounded by
a time-independent quantity that does not rely on the energy
scale of H0. Applying Eq. (60) to V H0 (t ) gives

‖[OX (t ), OY ]‖ � 2eκl0 min{|X |, |Y |}‖OX ‖‖OY ‖
× e−κ[dist(X,Y )− 2wCd eη

κ
( d

eη )d e2(κ+η)l0 ‖V ‖κ+ηt]
, (65)

where the additional prefactor eκl0 comes from

dist(X0,Y ) � dist(X,Y ) − l0, (66)

with X0 being the support for eiH0t OX e−iH0t . Note that |X |
does not need to be replaced by |X0|, because we can equiv-
alently time evolve OY to obtain a prefactor min{|X |, |Y0|}
with Y0 being the support for e−iH0t OY eiH0t . Since |X0| �
|X | and |Y0| � |Y |, the optimal prefactor turns out to be
min{min{|X0|, |Y |}, min{|X |, |Y0|}} = min{|X |, |Y |}.

To demonstrate our findings, we consider the dynamics in
the parent Hamiltonian of the PXP model defined on a chain
with length N under the open boundary condition [20,43–45]:

H0 = �0

4

N−1∑
j=1

(
σ z

j + 1
)(

σ z
j+1 + 1

)
, V = �

2

∑
j

σ x
j , (67)

for which a graphical illustration is provided in Fig. 4(a).
The projector onto the degenerate low-energy manifold HP

is given as

P =
∏

j

Pj =
N−1∏
j=1

[
1 − 1

4

(
1 + σ z

j

)(
1 + σ z

j+1

)]
, (68)

which prohibits adjacent excitations. We show in Fig. 4(b) that
the operator spreading indeed relies on ‖V ‖� but is barely
affected by �0, which is implied from the Lieb-Robinson
bound. This is also quantitatively confirmed from the velocity
of the spreading (see Fig. 5). Note that while the Lieb-
Robinson bound itself depends only on the interaction V , it
is physically natural and yet consistent with the unsaturated
bound that the velocity be modified when the gap size be-
comes smaller. Such a behavior is observed, e.g., at smaller
�0 region for � = 3 as in Fig. 5(b).

C. Error bound

We are now well prepared to derive the error bound for
quantum many-body systems. To make full use of locality,
we focus on the error of a normalized local observable OX

supported on a finite region X . We first note that H1 in
Eq. (51), which is explicitly given by

H1 ≡ H0 +
∑
A⊆�

DA(VA), (69)

is block diagonalized and thus satisfies

PH1 = H1P = PHP. (70)

t

Ω t
[O

X
(t

),
O

Y
]

[O
X

(t
),

O
Y

]

|g
|e

Ω

Δ0

Ω Ω

(a)

(b)

Δ0

FIG. 4. (a) Schematic illustration of the parent Hamiltonian of
the PXP model defined in Eq. (67). (b) Growth of ‖[OX (t ), OY ]‖ with
the inset showing the collapse by rescaling the time as ‖V ‖�t . The
spreading of the operator depends on the local interaction strength
‖V ‖�(= �

2 ) while the amplitude of the commuting interaction �0

barely affects the result as long as the gap is sufficiently large. The
operators considered here are chosen as OX = σ

y
j=1 and OY = σ

y
j=6,

where the system size is N = 10. The red (left), green (middle), and
blue (right) lines denote � = 3.0, 2.0, 1.0, respectively, and the solid
and chained lines correspond to �0 = 10 and 100, respectively.

(a)

1/Δ0

t

j

(b)

FIG. 5. (a) The linear light-cone structure of ‖[OX (t ), OY ]‖,
where OX = σ

y
j=1 and OY = σ

y
j for the model defined in Eq. (67).

The white crossings denote the times when the threshold (= 1) is
exceeded and the white lines are guide to eyes. Here, the parameters
of the Hamiltonian are set as �0 = 10 and � = 2. (b) The inde-
pendence of the operator-spreading velocity from the commuting
interaction �0. The velocity is defined from the slope of the line
consisting of the points where the threshold is exceeded [such as the
white crosses in panel (a)]. The red (upper), green (middle), and blue
(lower) lines correspond to � = 3.0, 2.0, 1.0, respectively. In both
panels, the system size is taken as N = 10.
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This is because for the diagonal component DA(VA) of each
local term VA, we have

PDA(VA) = PPAVAPA

=
⎛
⎝ ∏

Rj∩A=∅
Pj

⎞
⎠
⎛
⎝ ∏

Rj∩A�=∅
Pj

⎞
⎠PAVAPA

=
⎛
⎝ ∏

Rj∩A=∅
Pj

⎞
⎠PAVAPA = PAVAPA

⎛
⎝ ∏

Rj∩A=∅
Pj

⎞
⎠

= PAVAPA

⎛
⎝ ∏

Rj∩A�=∅
Pj

⎞
⎠
⎛
⎝ ∏

Rj∩A=∅
Pj

⎞
⎠

= PAVAPAP = DA(VA)P, (71)

where we have used [PAVAPA,
∏

Rj∩A=∅ Pj] = 0 [due to
Eq. (44) and the zero overlap between the supports of VA

and
∏

Rj∩A=∅ Pj], P2
A = PA, and PPA = PAP = P ⇔ PQA =

QAP = 0. It follows that

PDA(VA) = DA(VA)P = PDA(VA)P = PVAP, (72)

the sum of which gives rise to Eq. (70). This relation means
that a local projection followed by a global projection is
equivalent to a single global projection. We note that the
two widely used expressions of the PXP Hamiltonian in the
literature: Hloc = 1

4

∑
j (1 − σ z

j−1)σ x
j (1 − σ z

j+1) [20,43] and
Hglo = P

∑
j σ

x
j P [P is given in Eq. (68)] [44,45] correspond

to Eqs. (69) and (70), respectively. These two Hamiltonians
are qualitatively different, in the sense that the former is local
while the latter is highly nonlocal. However, as a result of
Eq. (70), both Hamiltonians give rise to exactly the same
constrained dynamics if we start from a state in HP.

Thanks to Eq. (70), we can still rewrite the error in Eq. (10)
by choosing S and H1 to be the local SWT and the locally pro-
jected Hamiltonian (69), respectively. While all the operators
are on the many-body level, we can still apply Eq. (18) to
obtain

ε(t ) � ‖eT OX e−T − OX ‖ + ‖L(t )OX L(t )† − OX ‖
+‖eTH1 (t )OX e−TH1 (t ) − OX ‖, (73)

where T is now the local Schrieffer-Wolff generator given in
Eq. (52), L(t ) = e−iH1t ei(H1+V ′ )t = −→

T ei
∫ t

0 dt ′e−iH1t ′V ′eiH1t ′
is the

Loschmidt operator, and TH1 (t ) = e−iH1t TeiH1t is the local
Schrieffer-Wolff generator in the interaction picture with re-
spect to H1. Recalling the special case μ = 0 in Eq. (49),

‖V ‖� = ‖V ‖μ=0 ≡ max
j∈�

⎛
⎝∑

A� j

‖VA‖
⎞
⎠, (74)

we can bound the first term in Eq. (73) as

‖eT OX e−T − OX ‖ �
∫ 1

0
dλ‖eλT [T, OX ]e−λT ‖ = ‖[T, OX ]‖

�
∑

A∩X �=∅
‖[TA, OX ]‖ �

∑
x∈X

∑
A�x

2‖TA‖

� 2|X |‖T ‖�. (75)

As for the remaining two terms, it is argued in Ref. [28] on the
basis of the light-cone picture that they should be of the order
of ‖V ‖�

�0
and grow no faster than polynomially in time. In the

following, we briefly review the argument and translate it into
a rigorous result by using the Lieb-Robinson bound.

Let us first consider the rightmost term in Eq. (73). Once
we succeed in bounding this term by a quantity that is
polynomially large in time, we can also derive a polynomial
bound on the middle term. We start with transferring the time
dependence in the SWT generator onto the local observable
OX :

‖eTH1 (t )OX e−TH1 (t ) − OX ‖
�
∥∥[TH1 (t ), OX

]∥∥ = ∥∥[T, OH1
X (t )

]∥∥, (76)

where OH1
X (t ) ≡ eiH1t OX e−iH1t is the observable in the Heisen-

berg picture. While the local interaction of H1 can be very
large for a large gap, we have proved in the previous sub-
section that the Lieb-Robinson velocity v is essentially deter-
mined by the local interaction in V and thus stays finite even
in the infinite gap limit [see Eq. (65) and Fig. 5]. Accordingly,
denoting the radius of X as rX , that of time-evolved OH1

X (t )
should effectively be rX + vt . By effectively, we mean that
there are exponentially decaying corrections outside the light
cone. If we ignore these corrections, we immediately obtain
a bound of the order of ‖T ‖�(rX + vt )d . If we carefully take
into account these corrections, the result turns out to be quali-
tatively unchanged, as captured by the following theorem:

Theorem 3. Suppose that the quantum dynamics generated
by a many-body Hamiltonian defined on a d-dimensional
lattice � satisfies the Lieb-Robinson bound for any two local
operators OX and OY :

‖[OX (t ), OY ]‖ � 2C min{|X |, |Y |}‖OX ‖‖OY ‖
× e−κ[dist(X,Y )−vt],

(77)

where C, κ , and v do not rely on the choices of OX and OY .
Then given a quasilocal interaction T = ∑

A⊆� TA, we have

‖[OX (t ), T ]‖ � ‖OX ‖‖T ‖� pκ (vt + rX + κ−1 ln(C|X |)),
(78)

where rX is the radius of X defined as

rX ≡ min{r : ∃ x ∈ � s.t. dist(x, x′) � r ∀x′ ∈ X }, (79)

and pκ (r) is a κ-parametrized polynomial of r with degree d
given by

pκ (r) = 2(eκ − 1)b

(
r − d

dκ

)
(eκ − 1)−1. (80)

Here b(r) is the volume of a radius-r ball, which is a mono-
tonically increasing polynomial with degree d .

The main idea to prove this theorem is to first bound
‖[OX (t ), T ]‖ by

∑
A⊆� ‖[OX (t ), TA]‖ and then treat the com-

mutators in two separate ways depending on whether A
overlaps with the light cone. If there is nonzero overlap,
we bound ‖[OX (t ), TA]‖ by 2‖OX (t )‖‖TA‖ = 2‖OX ‖‖TA‖.
This part corresponds to the rough estimation in the above
argument. Otherwise, for those A’s outside the light cone,
we bound the commutator by the Lieb-Robinson bound in
Eq. (77). It turns out that this part only effectively extends
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the light cone by an order-κ−1 quantity, leaving the rough
estimation qualitatively correct. A detailed proof of Theorem
3 is available in Appendix C.

Having the above analysis in mind, we are ready to bound
the middle term in Eq. (73). We first note that L(t ) satisfies

d

dt
L(t ) = ie−iH1tV ′eiH1t L(t )

⇔ i
d

dt
L(t )† = L(t )†e−iH1tV ′eiH1t , (81)

leading to

‖L(t )OX L(t )† − OX ‖ = ‖OX − L(t )†OX L(t )‖

�
∫ t

0
dt ′‖[e−iH1t ′

V ′eiH1t ′
, OX ]‖

=
∫ t

0
dt ′∥∥[V ′, OH1

X (t ′)
]∥∥. (82)

Since V ′ is a quasilocal operator with bounded ‖V ′‖� (see
Appendix A), we can apply Theorem 3 to obtain∥∥[V ′, OH1

X (t )
]∥∥ � ‖V ′‖� p̃(vt ), (83)

where p̃(r) ≡ pκ (r + rX + l0 + κ−1 ln |X |) is a simplified no-
tation of a degree-d polynomial. Here we have used ‖OX ‖ =
1 by assumption and explicitly set C = eκl0 according to
Eq. (65), with l0 being the largest diameter of a local term in
H0. Defining P̃(r) ≡ ∫ r

0 dr′ p̃(r′) as a polynomial with degree
d + 1, we have

‖L(t )OX L(t )† − OX ‖ � v−1‖V ′‖�P̃(vt ). (84)

Therefore, the overall error (73) can be bounded by a quantity
that is polynomially large in time:

ε(t ) � [2|X | + p̃(vt )]‖T ‖� + v−1P̃(vt )‖V ′‖�. (85)

Provided that the gap is sufficiently large, it has been shown

that ‖V ′‖� can asymptotically be bounded by 4wu‖V ‖2
�

�0
, where

u is the degree of locality of T (see Appendix A). Recalling
that ‖T ‖� � w

‖V ‖�

�0
[see Eq. (57)], we have

ε(t ) � ‖V ‖�

�0
w[2|X | + p̃(vt ) + 4uv−1‖V ‖�P̃(vt )], (86)

which gives the desired main result on the error bound for
quantum many-body systems. That is, the error is of the
order of ‖V ‖�

�0
and grows no faster than a power law t d+1. We

summarize the above analysis in Fig. 6, where we regard the
(inverse) SWT as a time evolution governed by a Hamiltonian

with O( ‖V ‖2
�

�0
) local-interaction strength for a duration ‖V ‖−1

� .
Finally, we remark that a sufficiently large �0 in Eq. (86)

implies a relatively long time before the saturation of the error
to some constant no more than 2. On an intermediately long
timescale, the dominant term in the error bound is of the order
of ‖V ‖2

�v
d

�0
t d+1. This means that the constrained dynamics is a

good approximation up to t∗ ∼ ( �0
vd ‖V ‖2

�
)

1
d+1 .

IV. GENERALIZATION TO OPEN QUANTUM SYSTEMS

Remarkably, our idea to derive the error bound can
also be generalized to few-level Markovian open quantum

space

time

SWT Loschmidt echo SWT†lX lX + 2vt

V −1

V −1

t

FIG. 6. Schematic illustration of error production in quantum
many-body systems. The error is upper bounded by the space-

time volume of the operator spreading multiplied by O( ‖V ‖2
�

�0
) [see

the analysis in the main text, especially Eqs. (75) and (82)]. The
dominant time and length scales (when t � ‖V ‖−1

� ) are indicated by
the thick arrows. The blue, purple, and red regions correspond to the
three terms on the right-hand side of Eq. (73) in order, which arise
from the initial SWT, the Loschmidt echo, and the inverse SWT in
the interacting picture, respectively. Here only the projection onto
a specific spatial direction is shown, so the entire volume should
be obtained by taking power d (spatial dimension) for the length
followed by a time integral. According to the light-cone picture
of operator spreading [numerically demonstrated in Fig. 5(a)], the
volume and thus the error grow no faster than polynomially in time.

systems described by Lindblad master equations [46,47]. This
is motivated by the quantum Zeno effect [23–25] and is
achieved by a nonunitary generalization of the SWT which
differs from that in Ref. [26]. Compared with a previous
work concerning the error in quantum Zeno dynamics [48],
our error bound has a more explicit form and is thus more
physically comprehensible.

A. Setup and the main result

Let us consider the operator dynamics governed by the
adjoint Lindblad equation

d

dt
Ot = i[V, Ot ] +

∑
j

(
J†

j Ot Jj − 1

2
{J†

j J j, Ot }
)

= i(HeffOt − Ot H
†
eff ) +

∑
j

J†
j Ot Jj (87)

≡ L †[Ot ], (88)

where Ot is an arbitrary operator at time t in the Heisenberg
picture, V is a Hermitian potential, and Jj’s are jump operators
which are generally non-Hermitian. Moreover, as was done
in Eq. (87), we can decompose the dynamics into two parts.
That is, the first term is the Schrödinger evolution under the
effective non-Hermitian Hamiltonian

Heff = V + i

2

∑
j

J†
j J j = −i(−H0 + iV ), (89)

where

H0 ≡ 1

2

∑
j

J†
j J j, (90)
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and the second term describes a stochastic quantum jump
process. Such an equation of motion can be derived for
a quantum system weakly coupled to a large environment
[49] or a continuously measured system upon averaging out
the measurement outcomes [50]. We assume that, in the
absence of the unitary-dynamics part i[V, · ], the system has
a decoherence-free subspace (DFS) [51]. By definition, the
projector P onto the DFS satisfies JjP = 0 for all j [52]
and can be thought of as the projector onto the zero-energy
manifold of H0. In other words, there is no dynamics when

we start from an arbitrary pure or mixed state in the DFS. We
further assume that the zero-energy manifold of H0 is gapped
by �0 from the remaining subspace with nonzero energy.

Denoting VP ≡ PV P as the projected potential onto the
DFS, we define the error of the constrained dynamics here as

ε(t ) ≡ ||PetL †
[O]P − PeiVPt Oe−iVPt P||, (91)

which is a natural generalization of Eq. (4). The main result in
this section is the following upper bound:

ε(t ) �
(
e2 ||V ||

�0 − 1
)⎧⎨⎩1 + e2 ||V ||

�0 + e4 ||V ||
�0

⎡
⎣2||V || + (

e2 ||V ||
�0 − 1

)∑
j

||Jj ||2
⎤
⎦t

⎫⎬
⎭. (92)

We expect that ||Jj || ∼ √
�0, and thus there exists an order-1

constant c such that
∑

j ||Jj ||2 = c�0. Then, up to O( ||V ||
�0

),
we obtain from Eq. (92) the following asymptotic bound in
the strong-dissipation limit �0 � ||V ||:

ε(t ) � 4||V ||
�0

[1 + (1 + c)||V ||t]. (93)

A few comments on Eq. (93) are in order. First, this bound
can be understood as a quantitative manifestation of the quan-
tum Zeno effect [23–25]. That is, rather counterintuitively, a
coherent dynamics emerges in the limit of infinitely strong
dissipation or measurement. Second, similarly to Eq. (9), this
bound implies the sudden jump and the linear growth of ε(t ).
We will later demonstrate these behaviors in some simple
models in Sec. IV C. In addition, our bound is consistent with
the semiquantitative analysis in Ref. [48], which essentially
claims that the error is (at most) of the order of ‖V ‖

�0
on

the timescale t ∼ ‖V ‖−1. Third, we note that this cannot be
applied to an open system with infinite number of Lindblad
operators, such as a dissipative lattice system [53]. Analyzing
the constrained dynamics or the quantum Zeno effect in open
many-body systems [54] would be a very interesting, yet very
challenging project for future studies.

B. Proof of the error bound for open quantum systems

The key to obtain the error bound for the open system is to
consider the following nonunitary SWT

S(−H0 + iV )S−1 = −H0 + iVdiag + V ′. (94)

Here, we take the Hermitian operator T in the nonunitary
SWT S = eT , which is actually Hermitian, to satisfy

[T, H0] = i(V − Vdiag) = iVoff . (95)

Accordingly, the expression of V ′ reads [cf. Eq. (16)]

V ′ =
∞∑

n=1

1

n!
adn

T

(
iV − 1

n + 1
iVoff

)
. (96)

One can see that the generator T here is related to that for a
closed system just by multiplying i, and therefore Ineqs. (29)
and (30) are still valid in this case. It is worth mentioning
that a different nonunitary SWT was developed in Ref. [26]

to block diagonalize the entire Lindbladian superoperator in-
stead of the non-Hermitian effective Hamiltonian (94). While
the approach in Ref. [26] is certainly useful for deriving the
effective theory, it does not seem to be a convenient tool for
bounding the error. This is because the validity of Eq. (29)
requires the operators H0P and H0Q on the left-hand side of
the Sylvester equation (24) to be Hermitian [31], which is not
satisfied in the superoperator formalism [26].

Let us define OS
t ≡ SOt S and its equation of motion

d

dt
OS

t = L S†
[
OS

t

]
, (97)

where L S†[ · ] = SL †[S−1 · S−1]S. Then, ε(t ) can be de-
composed into three terms similarly to Eq. (18):

ε(t ) � ||etL †
[O] − SetL †

[O]S||
+ ||Pe−iVdiagt etL S†

[O]eiVdiagt P − POP||
+ ||SetL †

[S−1OS−1]S − SetL †
[O]S||. (98)

This decomposition comes from the following:

ε(t ) = ‖PetL S†
[O]P − PeiVPt Oe−iVPt P

+ PetL †
[O]P − PetL S†

[O]P‖
� ||PetL S†

[O]P − PeiVPt Oe−iVPt P||
+ ||PetL †

[O]P − PSetL †
[S−1OS−1]SP||

� ||Pe−iVdiagt etL S†
[O]eiVdiagt P − POP||

+ ‖etL †
[O] − SetL †

[O]S

+ SetL †
[O]S − SetL †

[S−1OS−1]S‖
� ||Pe−iVdiagt etL S†

[O]eiVdiagt P − POP||
+ ||etL †

[O] − SetL †
[O]S||

+ ||SetL †
[O]S − SetL †

[S−1OS−1]S||. (99)

Here we have also used the identity eiVdiagt P = PeiVdiagt =
PeiVPt , which arises from PVdiag = VdiagP = VP. It is important
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to note that ||etL †
[O]|| � ||O|| = 1 [55] and

||eAOeA − O|| �
∫ 1

0
dλ ||eλA{A, O}eλA||

� 2||A||
∫ 1

0
dλ e2λ||A||

= e2||A|| − 1 (100)

for an arbitrary operator A to obtain the bound for the first and
third terms in Eq. (98):

||etL †
[O] − SetL †

[O]S||
+ ||SetL †

[S−1OS−1]S − SetL †
[O]S||

� ||etL †
[O]||(e2||T || − 1) + e2||T ||||etL †

[S−1OS−1−O]||
� e4||T || − 1. (101)

Let us then obtain the bound for the second term. We de-
fine Õt ≡ e−iVdiagt etL S†

[O]eiVdiagt which satisfies the following
equation of motion:

d

dt
Õt = e−iVdiagt (−H0 + V ′)eiVdiagt Õt

+ Õt e
−iVdiagt (−H0 + V ′†)eiVdiagt

+
∑

j

e−iVdiagt SJ†
j S−1eiVdiagt Õt e

−iVdiagt S−1JjSeiVdiagt .

(102)

Note that ||Õt || itself is bounded by

||Õt || = ||SetL †
[S−1OS−1]S||

� e2||T ||||S−1OS−1|| � e4||T ||. (103)

Using Eqs. (102) and (103) and the assumption JjP = PJ†
j =

0, we obtain

||Pe−iVdiagt etL S†
[O]eiVdiagt P − POP|| = ||PÕt P − POP||

�
∫ t

0
dt ′
∣∣∣∣
∣∣∣∣P d

dt ′ Õt ′P

∣∣∣∣
∣∣∣∣

=
∫ t

0
dt ′

∥∥∥∥∥∥PV ′eiVdiagt ′
Õt ′e−iVdiagt ′

P+PeiVdiagt ′
Õt ′e−iVdiagt ′

V ′†P

+ P
∑

j

(SJ†
j S−1 − J†

j )eiVdiagt Õt e
−iVdiagt (S−1JjS − Jj )P

∥∥∥∥∥∥
�
∫ t

0
dt ′||Õt ′ ||

⎡
⎣2||V ′|| +

∑
j

||J†
j ||||Jj ||(e2||T || − 1)2

⎤
⎦

� e4||T ||(e2||T || − 1)

⎡
⎣2||V || + (e2||T || − 1)

∑
j

||Jj ||2
⎤
⎦t .

(104)

Therefore, combining Eqs. (101) and (104), we obtain the
bound for ε(t ), Eq. (92).

Let us make a comment on the difference between the
proof above and that for isolated systems in Sec. II B. In
the latter case, we perform the standard SWT for the full
Hamiltonian, finding that the middle-step error production is
due to a Loschmidt echo generated by an O( ‖V ‖2

�0
) quantity

and can thus be bounded by a time-linear term rather straight-
forwardly. In contrast, here we perform the SWT only for
the anticommutator part − 1

2

∑
j{ · , J†

j J j} = −{ · , H0} in the
Lindblad equation (88) in order to apply the rigorous norm
inequalities, as mentioned in the beginning of the subsection.
To handle the additional jump part J†

j ( · )Jj , our strategy is to

make full use of the property of DFS, i.e., JjP = PJ†
j = 0,

to modify the Schrieffer-Wolff transformed jump operator
S−1JjS in Eq. (102) into [see the fourth line in Eq. (104)]

J̃ j ≡ S−1JjS − Jj . (105)

In this manner, the order of the modified jump operator is
dramatically reduced from

√
�0 to ‖V ‖/√�0 [56]. It is clear

from Eqs. (93) and (6) that the only difference c is contributed
by these modified jump operators.

In particular, provided that Jj = PJjQ for ∀ j, which means
each jump operator always sends a state outside the DFS into
the DFS, the leading order of a modified jump operator in
Eq. (105) constrained in the DFS, i.e., PJ̃jP, can be shown
to be JjH

−1
0Q VQP up to an unimportant phase factor. Regard-

ing H−1
0Q as the Green’s function outside the DFS at zero

frequency, we can interpret J̃ j as a coherent excitation from
the DFS by V followed by a transient propagation outside
the DFS and finally a jump back to the DFS. This result is
consistent with the standard second-order perturbation theory
for adiabatic eliminations in open quantum systems [57].

C. Examples

To demonstrate the bound obtained above, here we give
two simple examples. In fact, unlike the case of isolated
quantum systems [28], we have not obtained the worst model
for the error bound (92). These two examples, however, qual-
itatively illustrate the possible error growth behaviors implied
by our error bound, i.e., the initial sudden jump and the linear
growth, respectively.

Example 1. We consider a two-level system with

J1 =
√

2�0σ
− =

√
2�0 |g〉 〈e| ,

V = �

2
σ x, O = σ y, (106)

where σ x and σ y are the Pauli matrices. This model describes
a resonantly driven two-level atom with an unstable excited
state |e〉, the arguably simplest driven-dissipative system.
It simply follows from Eq. (106) that H0 = �0 |e〉 〈e| and
P = |g〉 〈g|. For this example, one can obtain the analytical
expression for the error ε(t ), which is a bit involved and
thus not shown here. As shown in Fig. 7, the error saturates
within time t ∼ O(�−1

0 ) to 2��0/(2�2
0 + �2) � �/�0 +

O(�2/�2
0), which is almost a half of the constant term of

Eq. (93) but already demonstrates a sudden jump.
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FIG. 7. [(a), (b)] Schematic pictures for Examples 1 and 2 [see
Eqs. (106) and (107)] and [(c), (d)] their errors. Each error shows
either the sudden jump or the linear growth of ε(t ). (c) The error
saturates to almost a half of the constant term (denoted as the red
dashed line) of Eq. (93) within t ∼ O(�−1

0 ). (d) The error grows
linearly with a slope ∼ O(�2/�0 ).

Example 2. We consider two dissipatively coupled two-
level systems with

J1 =
√

2�0σ
−
1 σ−

2 , V = �

2
σ x

1 ,

O = 1

2

(
σ x

1 σ x
2 + σ

y
1 σ

y
2

)
. (107)

This model describes two two-level atoms with only the first
driven resonantly and only the double excited state being
unstable. An equivalent model can be realized in a single
four-level atom with states |1〉, |2〉, |3〉, and |4〉, where |1〉
(|3〉) is resonantly coupled to |2〉 (|4〉) with a Rabi frequency
� and |4〉 undergoes spontaneous decay to |1〉 at a rate 2�0.
As for the original two-atom setting, one can easily check that
H0 = �0 |ee〉 〈ee| and P = |gg〉 〈gg| + |ge〉 〈ge| + |eg〉 〈eg|, so
the DFS excludes simultaneous excitations of two (adjacent)
atoms, just like the constrained Hilbert space of the PXP
model [20,43]. The numerical result in Fig. 7(b) shows an al-
most linear growth of ε(t ), although a coefficient ∼ �2/(4�0)
is about 12 times as small as that of our obtained bound
4(1 + c)||V ||2/�0 (now c = 2). Note that the modified jump
operator [see Eq. (105)] constrained in the DFS is given by
PJ̃1P � �√

2�0
|gg〉〈ge|. The operator dynamics generated by

a single jump operator PJ̃1P starting from O in Eq. (107)

simply gives e− �2

4�0
t O, which explains the slope observed in

the numerical result since ‖e− �2

4�0
t O − O‖ � �2

4�0
t for t � �0

�2 .

V. CONCLUSION AND OUTLOOK

Constrained quantum dynamics within a Hilbert subspace
is a widely used approximation for gapped quantum systems,
yet a quantitative and general justification has been lacking.
Here, we have filled this gap by establishing a universal and
rigorous error bound (see Theorem 1). Our main idea is to
decompose the error production into three steps on the basis
of the SWT, and then bound the error generated in each step
by an order ‖V ‖

�0
quantity. This result has been generalized

to quantum many-body systems with local interactions by

combining the local SWT with the Lieb-Robinson bound and
to open quantum systems using a nonunitary SWT.

Our work rises a number of open questions. As already
mentioned in Ref. [28], it stays unclear whether the slope
and the intercept in the universal bound can simultaneously
be saturated. In addition, the error bound for the single-
state case and that for open quantum systems seems rather
loose and it is worthwhile to think about how to tighten
them. For further generalizations, one possibility is to con-
sider the effect of higher order SWTs [14]. We believe that
this can straightforwardly be done by following a similar
three-step decomposition, and the error production from the
Loschmidt echo is expected to be significantly suppressed
by the higher order corrections. In particular, if H0 has an
isolated degenerate subspace HP with eigenvalue ω0, the
error arising from the Loschmidt echo is expected to be
O( ‖V ‖3

�2
0

t ) for the constrained dynamics within HP generated

by HP + �(ω0), where �(ω) = PV Q(ω − HQ)−1QV P is the
self-energy [58–60]. Another possible generalization is to
many-body open quantum systems [54], as briefly mentioned
in Sec. IV A. This might be very challenging since there is
some essential difference from isolated systems. For exam-
ple, unlike the fact that commuting Hamiltonians include all
the classical (spin) Hamiltonians, a classical Lindbladian is
generally not a sum of mutually commutative superoperators.
Once this generalization could be achieved, we would obtain a
rigorous proof of the quantum many-body Zeno effect [61,62].
Extensions to long-range (power-law) interacting systems
[63–67] would also be an intriguing and rather urgent project,
since long-range interactions appear naturally in many quan-
tum simulators such as trapped ions [68] and Rydberg atoms
[19]. Last but not the least, we may consider possible im-
provement of the error bound for specific observables such
as conserved quantities of H0. This situation is relevant to
quantum simulations of lattice gauge theories [69].
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APPENDIX A: QUASILOCALITY OF V ′ IN THE LOCAL
SCHRIEFFER-WOLFF TRANSFORMATION

In this Appendix, we prove that V ′ in Eq. (51) is a
quasilocal interaction and that the strength is of the order of
�−1

0 ‖V ‖2
�, provided that �0 is large enough. We first introduce

Oloc(V ) ≡
∑
A⊆�

OA(VA), (A1)
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where OA(VA) ≡ PAVAQA + QAVAPA = VA − DA(VA). Follow-
ing a procedure which is similar to the calculation for the
global SWT, we obtain

V ′ =
∞∑

n=1

1

n!
adn

T

[
V − 1

n + 1
Oloc(V )

]
. (A2)

Assuming that V is v local, which means VA = 0 for ∀A ⊆
� whenever |A| > v, and H0 is v0 local, then both T [see
Eq. (52)] and Oloc(V ) are at most u local, with u � max{v, v0}
given by

u ≡ max
|X |�v,|Y |�v0

∣∣∣∣∣∣
⋃

Y ∩X �=∅
Y

∣∣∣∣∣∣. (A3)

For example, for the parent Hamiltonian of the PXP model,
we have v = 1, v0 = 2, and u = 3.

In the following, we will bound each term in the series in
Eq. (A2) and demonstrate the convergence for a sufficiently
large �0. To this end, we need the following Lemma, which
has essentially been pointed out in Ref. [14].

Lemma 1. Given V1 and V2 as v1-local and v2-local inter-
actions, [V1,V2] is at most (v1 + v2 − 1) local and

‖[V1,V2]‖� � 2(v1 + v2)‖V1‖�‖V2‖�. (A4)

Proof. Since [V1,V2] consists of the commutators of lo-
cal terms in V1 and V2, which contain at most v1 and v2

sites, respectively, these commutators should contain at most
v1 + v2 − 1 sites. Here “−1” comes from the fact that a
nonvanishing commutator requires at least one-site overlap
between the supports. To derive Eq. (A4), we only have to
note that

‖[V1,V2]‖� �
∑

A∪B�0,A∩B �=∅
‖[V1,A,V2,B]‖

� 2

⎛
⎝ ∑

A�0,B∩A�=∅
+

∑
B�0,A∩B �=∅

⎞
⎠‖V1,A‖‖V2,B‖

� 2
∑
A�0

|A|‖V1,A‖‖V2‖� + 2
∑
B�0

|B|‖V1‖‖V2,B‖�

� 2(v1 + v2)‖V1‖�‖V2‖�. (A5)

�
We now turn to the bounding of the interaction norm ‖ · ‖� of
the nth term in Eq. (A2). First, similar to the operator norm,
we have∥∥∥∥V − 1

n + 1
Oloc(V )

∥∥∥∥
�

� n

n + 1
‖V ‖� + 1

n + 1
‖Dloc(V )‖� � w‖V ‖�. (A6)

where we have used ‖Dloc(V )‖� � w‖V ‖� [since the support
of a local term DA(VA) in Dloc(V ) ≡ ∑

A⊆� DA(VA) is RA

defined in Eq. (55)] and w is defined in Eq. (58). Recalling that
T and Oloc(V ) [and thus V − 1

n+1Oloc(V )] are both at most u

local, using Lemma 1 and Eq. (A6), we obtain∥∥∥∥adn
T

[
V − 1

n + 1
Oloc(V )

]∥∥∥∥
�

� 2[u + nu − (n − 1)]‖T ‖�

∥∥∥∥adn−1
T

[
V − 1

n+1
Oloc(V )

]∥∥∥∥
�

� · · · � w‖V ‖�(2‖T ‖�)n
n∏

m=1

[(m + 1)u − (m − 1)],

(A7)

which implies∥∥∥∥adn
T

[
V − 1

n + 1
Oloc(V )

]∥∥∥∥
μ

�
∥∥∥∥adn

T

[
V − 1

n + 1
Oloc(V )

]∥∥∥∥
�

eμ(n+1)(u−1)

� weμ(u−1)‖V ‖�[2(u − 1)eμ(u−1)‖T ‖�]n

×
n−1∏
m=0

[
m + 2u

u − 1

]
, (A8)

where we have used the fact that the diameter of a connected
region with (n + 1)u − n sites is at most (n + 1)(u − 1).
Substituting Eq. (A8) into Eq. (A2) gives

‖V ′‖μ � weμ(u−1)‖V ‖�

∞∑
n=1

[2(u − 1)eμ(u−1)‖T ‖�]n

n!

×
n−1∏
m=0

(
m + 2u

u − 1

)

= w‖V ‖�eμ(u−1)
{
[1 − 2(u − 1)eμ(u−1)‖T ‖�]−

2u
u−1 −1

}
,

(A9)

provided that 2(u − 1)eμ(u−1)‖T ‖� < 1, a sufficient condition
for which is

�0 > 2w(u − 1)eμ(u−1)‖V ‖�. (A10)

Here we have used the Taylor expansion

(1 − x)−α =
∞∑

n=0

α(α + 1)...(α + n − 1)
xn

n!
. (A11)

When ‖T ‖� (�0) is small (large) enough, Eq. (A9) will
be dominated by 4wu‖V ‖�‖T ‖� ∼ �−1

0 ‖V ‖2
�. This can be

considered as a many-body version of the Stark shift for a
single atom, which is of the order of �−1�2 with � and �

being the Rabi frequency and the detuning, respectively.

APPENDIX B: PROOF OF THEOREM 2

Given a finite region X ⊂ �, we introduce

IX (t ) ≡
∑

A∩X �=∅
HA(t ). (B1)

Following the derivation in Ref. [41], given two local oper-
ators OX and OY supported on finite regions X and Y , we
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have

‖[U (t + ε, t ′)†OXU (t + ε, t ′), OY ]‖
= ‖[OX + iε[H (t ), OX ],U (t, t ′)OY U (t, t ′)†]‖ + O(ε2)

= ‖[OX + iε[IX (t ), OX ],U (t, t ′)OY U (t, t ′)†]‖ + O(ε2)

= ‖[eiεIX (t )OX e−iεIX (t ),U (t, t ′)OY U (t, t ′)†]‖ + O(ε2)

= ‖[OX , e−iεIX (t )U (t, t ′)OY U (t, t ′)†eiεIX (t )]‖ + O(ε2)

= ‖[OX ,U (t, t ′)OY U (t, t ′)† − iε[IX (t ),U (t, t ′)OY U (t, t ′)†]]‖ + O(ε2)

� ‖[OX ,U (t, t ′)OY U (t, t ′)†]‖ + 2ε‖OX ‖‖[IX (t ),U (t, t ′)OY U (t, t ′)†]‖ + O(ε2)

= ‖[U (t, t ′)†OXU (t, t ′), OY ]‖ + 2ε‖OX ‖‖[U (t, t ′)†IX (t )U (t, t ′), OY ]‖ + O(ε2). (B2)

Replacing t by s followed by integrating it from t ′ to t and applying Eq. (B1), we obtain

‖[U (t, t ′)†OXU (t, t ′), OY ]‖ � ‖[OX , OY ]‖ + 2‖OX ‖
∑

A∩X �=∅

∫ t

t ′
ds‖[U (s, t ′)†HA(s)U (s, t ′), OY ]‖. (B3)

By further defining

CXY (t, t ′) ≡ max
‖OX ‖=1

‖[U (t, t ′)†OXU (t, t ′), OY ]‖ (B4)

for a given OY and noting that there is no special requirement for Eq. (B3) being valid, we must have

CXY (t, t ′) � CXY (t ′, t ′) + 2
∑

A∩X �=∅

∫ t

t ′
ds‖HA(s)‖CAY (s, t ′), (B5)

where CXY (t ′, t ′) = 0 if X ∩ Y = ∅ and otherwise is upper bounded by 2‖OY ‖.
Applying Eq. (B5) to itself iteratively, we obtain a series on the right-hand side:

CXY (t, t ′) � 2‖OY ‖
∞∑

n=0

2n
∑

X∩An �=∅

∑
An∩An−1 �=∅

...
∑

A1∩Y �=∅

∫ t

t ′
dsn

∫ sn

t ′
dsn−1...

∫ s2

t ′
ds1

n∏
m=1

‖HAm (sm)‖. (B6)

The non-negative integrand in each term can be bounded by

∑
X∩An �=∅

∑
An∩An−1 �=∅

...
∑

A1∩Y �=∅

n∏
m=1

‖HAm (sm)‖

�
∑
x∈X

∑
An�x

∑
jn∈An

∑
An−1� jn

...
∑

A1� j2

eκ[lAn −dist(x, jn )+lAn−1 −dist( jn, jn−1 )+···+lA1 −dist( j2,Y )]
n∏

m=1

‖HAm (sm)‖

�
∑
x∈X

∑
An�x

∑
jn∈An

∑
An−1� jn

...
∑

A1� j2

e−κdist(X,Y )
n∏

m=1

‖HAm (sm)‖eκlAm

� |X |e−κdist(X,Y )
n∏

m=1

⎛
⎝max

j∈�

∑
Am� j

|Am|‖HAm (sm)‖eκlAm

⎞
⎠ � |X |e−κdist(X,Y )Cn

d enη

(
d

eη

)nd n∏
m=1

‖H (sm)‖κ+η, (B7)

where we have used the triangular inequality for dist and

|A| � Cd (lA + 1)d � Cd

(
d

eη

)d

eη(lA+1), ∀η > 0. (B8)

Note that the prefactor |X | in Eq. (B7) can be replaced by |Y |
if we bound the first line differently by taking the weighted
sum (see Fig. 8)

∑
y∈Y

∑
A1�y

∑
j2∈A1

∑
A2� j2

...
∑

An� jn

eκ
∑n

m=1[lAm −dist( jm+1, jm )], (B9)

where j1 ≡ y and jn+1 ≡ X . After summing up the series
and using ‖[U (t, t ′)†OXU (t, t ′), OY ]‖ � ‖OX ‖CXY (t, t ′), we
obtain the expected Lieb-Robinson bound (60) for unitary
dynamics generated by a time-dependent Hamiltonian.

APPENDIX C: PROOF OF THEOREM 3

According to the definition of rX in Eq. (79), we can always
find a fixed site x ∈ � such that

dist(A, x) � dist(A, X ) + rX , ∀A ⊆ �. (C1)
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...

X Y

An

An−1 A2

A1

x y
j2

jn

FIG. 8. Schematic illustration of the sums in Eqs. (B7) and
(B9). For a set of regions {Aj}n

j=1 satisfying X ∩ An �= ∅, Am ∩
Am−1 �= ∅ (m = 2, 3, ..., n) and A1 ∩ Y �= ∅, we can always find
x ∈ X ∩ An, jm ∈ Am ∩ Am−1, and y ∈ A1 ∩ Y such that dist(X, jn) �
dist(x, jn) � lAn , dist( jm, jm−1) � lAm , and dist(Y, j2) � dist(y, j2)
� lA1 . This explains the first “�” in Eq. (B7) as well as the alternative
bound in Eq. (B9).

This is because dist(A, BrX
x ) � dist(A, X ) due to X ⊆ BrX

x ≡
{x′ ∈ � : dist(x′, x) � rX } and

dist
(
A, BrX

x

)+ rX � dist(a∗, x∗) + rX

� dist(a∗, x∗) + dist(x∗, x)

� dist(a∗, x) � dist(A, x), (C2)

where a∗ ∈ A and x∗ ∈ X minimize {dist(a, x) : a ∈ A, x ∈
X } to dist(A, X ). Since ‖[OX (t ), OY ]‖ always has a trivial
bound 2‖OX ‖‖OY ‖, we have

‖[OX (t ), OY ]‖
� 2‖OX ‖‖OY ‖
× min{1,C min{|X |, |Y |}e−κ[dist(X,Y )−vt]}, (C3)

where C is the constant in the assumption Eq. (77) such that
the theorem applies to the case of Eq. (65) (with C = eκl0 ).
Therefore, we can bound ‖[OX (t ), T ]‖ by

‖[OX (t ), T ]‖
�
∑
A⊆�

‖[OX (t ), TA]‖

� 2‖OX ‖
∑
A⊆�

‖TA‖ min{1,C|X |e−κ[dist(A,X )−vt]}

� 2‖OX ‖
∑
A⊆�

‖TA‖ min{1,C|X |e−κ[dist(A,x)−rX −vt]}

= 2‖OX ‖
∑

A∩Br(t )
x �=∅

‖TA‖

+ 2C‖OX ‖
∑

A∩Br(t )
x =∅

‖TA‖|X |e−κ[dist(A,x)−rX −vt], (C4)

where we have used Eq. (C1) and r(t ) is given by

r(t ) = rX + �vt + κ−1 ln(C|X |)�. (C5)

Applying the same technique used in the last step in Eq. (75),
the first term in Eq. (C4) can be bounded by∑

A∩Br(t )
x �=∅

2‖TA‖ � 2|Br(t )
x |‖T ‖�, (C6)

∼ vt + O(κ−1)

x

BrX
x

B
r(t)
xB

r(t)+1
xB

r(t)+2
x

FIG. 9. Schematic illustration of the decomposition technique
for the case of square lattice. Here BrX

x is the minimal ball that fully
covers X , the support of OX . At time t , we bound the commutator
between OX (t ) and the operators TA’s whose supports have overlap
with Br(t )

x using 2‖OX ‖‖TA‖. Here r(t ) ∼ vt + O(κ−1), where v

is the Lieb-Robinson velocity and κ−1 is the correlation length.
Otherwise, if A ∩ Br(t ) = ∅, we use the Lieb-Robinson bound with
the distance chosen to be r(t ) + n, where n is the largest integer such
that A ∩ Br(t )+n = ∅,.

where the volume of a ball with radius r, which should be a
strictly increasing function of r, can generally be expressed as
a degree-d polynomial:

∣∣Br
x

∣∣ =
d∑

m=0

cmrm ≡ b(r). (C7)

The coefficients in Eq. (C7) depend on the geometry of the
lattice (nevertheless, c0 = 1 in any case) and d is the spatial
dimension. For example, for a 2D triangular lattice we have
b(r) = 1 + 3r + 3r2; for a 3D cubic lattice we have b(r) =
1 + 8

3 r + 2r2 + 4
3 r3.

We move on to bound the sum in the last line of Eq. (C4).
All the sets with zero overlap with Br(t )

x can further be divided
into two classes—one with and the other without overlap with
Br(t )+1

x . For the latter class, we can again divide it into two
classes with and without overlap with Br(t )+2

x . This procedure
can be repeated until the full lattice is covered (see Fig. 9).
Since for ∀A ∩ Br(t )+n

x = ∅ we have

dist(A, x) � r(t ) + n + 1

� rX + vt + κ−1 ln(C|X |) + n, (C8)

we can bound the sum by∑
A∩Br(t )

x =∅
2C‖TA‖|X |e−κ[dist(A,x)−rX −vt]

�
∞∑

n=0

∑
A∩Br(t )+n

x =∅,A∩Br(t )+n+1
x �=∅

2‖TA‖e−κn
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�
∞∑

n=0

∑
A∩(Br(t )+n+1

x \Br(t )+n
x )�=∅

2‖TA‖e−κn

� 2‖T ‖�

∞∑
n=0

(|Br(t )+n+1
x | − |Br(t )+n

x |)e−κn. (C9)

Combining Eqs. (C4), (C6), and (C9), we obtain

‖[OX (t ), T ]‖

� 2(eκ − 1)‖OX ‖‖T ‖�

∞∑
n=1

|Br(t )+n
x |e−nκ . (C10)

In terms of the explicit polynomial expression b(r) =∑d
m=0 cmrm for |Br

x|, the sum in Eq. (C10) can be

calculated to be
∑∞

n=1 |Br(t )+n
x |e−nκ = ∑∞

n=1

∑d
m=0 cm[r(t ) +

n]me−nκ=∑∞
n=1

∑d
m=0 cm[r(t )− d

dκ
]me−nκ=∑d

m=0 cm[r(t ) −
d

dκ
]m(eκ − 1)−1 = b(r(t ) − d

dκ
)(eκ − 1)−1. Since b(r) is a

strictly increasing function of r, we can get rid of � · � in
Eq. (C5) while leaving Eq. (C10) valid, which now becomes
the desired result in Eq. (78). In particular, for 1D systems,
we have b(r) = 2r + 1 and thus

‖[OX (t ), T ]‖

� 2‖OX ‖‖T ‖�

[
2r(t ) + 1 + 2eκ

eκ − 1

]

� 2‖OX ‖‖T ‖�

[
2vt + 2rX + 2κ−1 ln(C|X |) + 3eκ − 1

eκ − 1

]
.

(C11)
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