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Quantum particles interacting with potential barriers are ubiquitous in physics, and the question of how much
time they spend inside classically forbidden regions has attracted interest for many decades. Recent developments
of new experimental techniques revived the issue and ignited a debate with often contradictory results. This
motivates the present study of an exactly solvable model for quantum tunneling induced by a strong field. We
show that the tunneling dynamics can depart significantly from the scenario in which the barrier-traversal time
is zero or very small. However, our findings do not support the idea of a well-defined tunneling time either. Our
numerically exact results should help in finding a consensus about this fundamental problem.
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I. INTRODUCTION

The tunnel effect [1–3] has captured the imagination of
physicists from the early days of quantum mechanics. Perhaps
because of the lack of a classical analog, one question in
particular attracted a great deal of attention, namely, how
long a quantum particle spends inside a potential barrier (see,
e.g., [4–6]), i.e., in the spatial region that is inaccessible to
it in classical physics. This problem was studied numerous
times [7] in various physical contexts from the scattering on a
one-dimensional potential barrier [8] to the mapping of elec-
tron trajectories in attosecond angular streaking experiments
[9,10].

It is fair to say that the physics community has not yet
completely agreed on the answer. On the contrary, recent
development of ultraprecise techniques in strong-field physics
[9,11] reignited the debate as experiments produced often
contradictory results.

The literature dealing with the tunneling dynamics is ex-
tensive. To give a few representative examples, there are,
very roughly speaking, three schools of thought concerning
the subject. Some experiments produced evidence that the
time needed to traverse a potential barrier is zero, negligible
[11–14], or at least very small [15]. Others maintain that
it takes a certain finite amount of time before a particle
emerges from its quantum tunnel through a potential barrier
[10,16–20]. Yet other authors hold the idea that characteriza-
tion in terms of a sharply defined tunneling time is not suitable
or useful for what is an inherently nonclassical effect [21,22].

One possible reason that this controversy is difficult to
settle is that sophisticated strong-field experiments [9,11]
require an interpretation model [23] to give a meaning to
the measured data, e.g., one has to map the location of a
detected free electron to its classical trajectory [13,14] in
order to deduce the time at which the electron was released
from an atom. Theoretical approaches, such as numerical
solutions to the time-dependent Schrödinger equation [24,25],
have their own challenges too. Subtle differences between
definitions, including traversal, dwell, and reflection times [8],
as well as the point of exit [14,26] and multielectron effects

[27] add further dimensions to the discussion. Some of the
frequently discussed approaches for the tunneling time are the
Larmor time, Büttiker-Landauer time [6], Eisenbud-Wigner
time [28], Pollak-Miller time [29], Wigner time [30], and
Bohmian time [31,32]. While the first four of these do not
have a straightforward application in the situation discussed
in this work (due to differences in the physical setting and/or
simplicity of our model), Wigner and Bohmian times could
apply to our scenario, with the Wigner time being perhaps the
most relevant.

Inspired by the ongoing debate, we present a theoretical
study of a simple but exactly solvable model that allows one
to accurately characterize the time-dependent wave function
of a tunneling particle. Of course, simple systems have been
employed in this problem before (see, e.g., [33]; also, the
scenario investigated in [34] is similar in spirit to ours). Here
we want to concentrate on tunneling invoked by an external
field. Our approach makes it possible to study the dynamics
in the regime of a nearly opaque, spatially very long barrier
that is difficult to address by other methods and which greatly
emphasizes the quantum nature of the effect. In particular,
we are able to investigate the dynamics for very weak field
strengths, where the distinction between instantaneous and
delayed tunneling is clearer and where it is easier to identify
the effective exit point from the quantum tunnel.

II. MODEL

The rationale for choosing the model for our investigation
is the need to eliminate the uncertainties that one inevitably
encounters in the numerical solution and in the interpretations
of results for a more realistic system. We consider a toy
model that can be solved exactly and the solution of which
can be accurately evaluated numerically. Let us assume a
Stark problem given by a Hamiltonian for a one-dimensional
particle,

H = −1

2

d2

dx2
− V0 for − L � x � 0,

H = −1

2

d2

dx2
− Fx for x > 0, (1)
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FIG. 1. Potential function for a one-dimensional model of a
metal nanotip. For the initial condition given by a zero-field station-
ary state with energy −|Q|, we aim to calculate the time-dependent
wave function of the tunneling particle for locations beyond the
classical tunnel exit at xexit.

where the field strength F > 0 and the depth of the potential
well in the left half space is constant (with positive V0).
To select the domain of the Hamiltonian (1), we assume
∂xψ (x = −L) = 0. At x = 0 we require the functions belong-
ing to the domain of the operator to be continuous, together
with their first derivative.

This model is inspired by a metal nanotip exposed to a
strong external field as realized in experiments by irradiation
by strong optical pulses [35,36]. Here we consider a constant
field strength and concentrate on timescales much shorter than
the optical cycle. The potential well represents a partially
filled conduction band, so the energy of W = −V0 represents
the bottom of the band and the states in the vicinity of the
Fermi level will contribute the most to the tunneling current.
While the limit L → ∞ can be taken, we will evaluate our
illustrations for a finite L and note that a concrete choice of its
value plays no significant role in our observations.

We will examine this model also in a complementary
limit representing a different physical situation. Namely, we
take a small-L and large-V0 limit such that there exists ex-
actly one bound state with energy equal to −1/2. This is
to mimic quantum tunneling from atoms exposed to strong
fields.

The scenario we are to examine is as follows. We assume
that the system is prepared in the absence of the external
field, i.e., we have F = 0, and the initial wave function is
selected as one of the bound eigenstates. We denote its energy
by Q.

Then, at time t = 0 we suddenly switch the field on to
F > 0 and then follow the evolution of the wave function. Any
positive value of the the field strength F creates a finite but
possibly broad potential barrier through which the initial state
can tunnel toward x → ∞. We are particularly interested in
how long it takes for the particle to appear at the classical exit
from the tunnel, i.e., at the location xexit = −Q/F . More gen-
erally, it is desirable to understand the dynamics of the wave
function in the classically allowed region ψ (x > xexit, t > 0).
For example, from the application standpoint it is important to
understand the emitted electron bunches, including any limits
for the duration of such pulses. The situation is schematically
depicted in Fig. 1.

A. Initial wave function

The initial condition is a zero-field eigenfunction cor-
responding to a negative energy Q ∈ (−V0, 0). Convenient
parametrization, utilizing a real-valued wave number kQ =√

2(V0 + Q), can be written as

ψQ(x) = cos(kQ(L + x))

cos(kQL)
for x < 0,

ψQ(x) = exp(−
√

−2Qx) for x > 0 (2)

and the eigenvalue equation for energy Q is

kQ tan(kQL) =
√

−2Q. (3)

The evolution of the system starts from such a bound state
after a sudden switch of the field F from zero to a finite
positive value. The instantaneous switching on of the field
gives a clear meaning to the time when the evolution starts. If
there were a finite ramping time of F (t ), it would not be clear
at what exact time the tunneling process commences. Despite
the fact that the tunneling probability grows exponentially
with the field, the ramp inevitably introduces an uncertainty
into the interpretation of t = 0. On the other hand, for an
instantaneous turn-on of the field, the dynamics we are going
to encounter is nonadiabatic, as we will appreciate shortly.

B. Spectrum and eigenfunctions in a nonzero field

Needless to say, ours is a textbook, exactly solvable system
for which all Hamiltonian eigenstates can be easily obtained.
For any positive F , however small, the spectrum of our system
becomes continuous and it encompasses the whole real axis.
The following is a suitable parametrization of the energy
eigenfunctions we will utilize in what follows:

HψW (x) = W ψW (x),

ψW (x) = cos[kW (L + x)]

cos(kW L)

1

N
√

D+D− for x < 0,

ψW (x) = − i

N

√
D−

D+ Ci+[α(x + W/F )]

+ i

N

√
D+

D− Ci−[α(x + W/F )] for x > 0. (4)

Here kW = √
2(V0 + W ), α = −(2F )1/3, and N = 27/6F 1/6 is

a normalization factor. The functions Ci± are linear combina-
tions of the Airy functions

Ci±(z) = Bi(z) ± i Ai(z) (5)

and are chosen as such in order to express ψW as a super-
position of the incoming and outgoing waves. Specifically,
Ci+[α(x + W/F )] behaves as an outgoing wave in the region
of large positive x.

Functions D±(W ) are determined from the requirement of
smoothness at x = 0. Asking for the continuity of the wave

052121-2



QUANTUM TUNNELING TIME: INSIGHTS FROM AN … PHYSICAL REVIEW A 101, 052121 (2020)

function and of its first derivative at x = 0, one obtains

D+(W ) = π

2

(
Ci+

′
(αW/F ) + kW

α
tan(kW L)Ci+(αW/F )

)
,

D−(W ) = π

2

(
Ci−

′
(αW/F ) + kW

α
tan(kW L)Ci−(αW/F )

)
.

(6)

Note that the zeros of these expressions, when analytically
continued to the complex plane, determine the location of the
Stark resonances for the model under consideration. When
W = z is chosen such that D+(z) = 0, the incoming part of
the wave function vanishes, while the outgoing one has poles
at complex-valued energies. We will utilize the outgoing res-
onances to construct part of the wave function of the particle
as it tunnels through the potential barrier.

Note that the atom-model limit of L → 0 and V0 → ∞ can
be taken in the above formulas by taking

kW tan(kW L) → 1. (7)

This limit introduces a contact or Dirac-delta interaction at the
origin and fixes the energy of the single bound state to −1/2.

C. Expansion in energy eigenstates

We start with the formulation of the time-dependent so-
lution in the standard way, using the completeness of the
Hamiltonian eigenfunctions. The eigenstates ψW (x) can be
normalized to the Dirac-delta function in energy W so that
we have a unity decomposition guaranteed to exist for the
self-adjoint operator∫

ψW (x)ψW (y)dW = δ(x − y), (8)

which is the completeness relation that allows one to express
an arbitrary initial wave function φ(x) as

φ(x) =
∫

δ(x − y)φ(y)dy =
∫

ψW (x)
∫

ψW (y)φ(y)dy dW,

(9)
where we use the fact that ψW is real. The evolution of
this initial condition at later times can be described with the
expansion written as

ψ (x, t ) =
∫

e−itW ψW (x)√
D−(W )D+(W )

A(W )dW, (10)

with the overlap integral

A(W ) =
∫ √

D−(W )D+(W )ψW (y)φ(y)dy. (11)

The D± factors are distributed in the above such that we have
analytic functions when continued into the complex plane.

Interested in the tunneling part of the solution for x > 0,
we can write the outside component as

ψ =
∫

ie−itW

N

[
Ci−

(
αx + αW

F

)
D−(W )

− Ci+
(
αx + αW

F

)
D+(W )

]
A(W )dW.

(12)

The spectral amplitude A(W ) can be split into A(W ) =
AI(W ) + AO(W ), where the overlap integral between ψW and

φ consists of the inside and outside (of the well) contributions.
Specializing this for the chosen initial wave function ψQ(x),
we have an exact

AI =
√−2Q − kW tan(kW L)

2N (Q − W )
(13)

and

AO =− i

N

∫ ∞

0
dy exp(−

√
−2Qy)

{
D−(W )Ci+

[
α

(
y + W

F

)]

− D+(W )Ci−
[
α

(
y + W

F

)]}
, (14)

which must be calculated numerically.

D. Expansion in resonant states

The expansion of the time-dependent wave function in
terms of energy eigenstates (12) can in principle be evaluated.
Unfortunately, numerical calculation of the integral in (12)
is next to impossible due to extremely fast variation of the
integrand. This is a challenge especially for a very weak field
F that pulls the arguments of the embedded Airy functions to
infinity. The fast integrand variation is caused by poles located
extremely close to the real axis. These poles correspond to the
Stark resonances, which may be viewed as eigenstates of a
non-Hermitian Hamiltonian which has the same differential
expression as (1) but has its domain specified by the asymp-
totic boundary condition which requires that the functions that
belong to the domain behave as outgoing waves (also known
as the Siegert boundary condition).

We proceed to evaluate the formally exact expression for
ψ (x, t ) by deforming the integration contour from that fol-
lowing the real axis to one for which the difficult to calculate
part of the integral can be obtained from the Stark poles.
We choose an integration contour C = {z ∈ C; Im{z} = −s}
that parallels the real axis in the lower complex half plane.
Utilizing the residue theorem, the expression for the outside
wave function can be written as

ψ (x, t ) = − 2π
∑

p

e−itWp
Ci+[α(x + Wp/F )]

ND+′ (Wp)
A(Wp)

+
∫

C

ie−itz

N

[
Ci−

(
αx+ αz

F

)
D−(z)

− Ci+
(
αx+ αz

F

)
ND+(z)

]
A(z)dz.

(15)

Here the set of poles Wp that were crossed by deformation
of the contour is finite and it depends on the choice of
the parameter s. The discrete sum above is a resonant-state
expansion and its purpose here is to replace the part of the
integral that is most difficult to evaluate.

Resonant series expansions similar to the discrete part of
(15) were successfully used in systems exhibiting spontaneous
decay without the external field (see, e.g., [37]). The situation
is somewhat different for the Stark resonant states that arise
due to the homogeneous external field. We therefore think it
may be illustrative to discuss the general structure of the poles
that are relevant for our resonant-state series.

There are three families of poles distributed in the lower
half of the complex plane (with their counterparts related to

052121-3



S. YUSOFSANI AND M. KOLESIK PHYSICAL REVIEW A 101, 052121 (2020)

FIG. 2. Solutions to the resonant-state eigenvalue equations. The
contours are zero lines for the real and imaginary parts of D+(W )
and their intersections indicate the location of the resonant poles Wp.
Three different families of solutions are indicated here and discussed
in the text.

the incoming resonant states existing in the upper half plane).
They are illustrated in Fig. 2. The figure shows the contours
defined by Re{D+(W )} = 0 in blue and Im{D+(W )} = 0 in
red. Thus, the intersections of these contours mark the loca-
tions of the resonant-state poles. The first set is the B poles;
they correspond to the metastable states that arise from the
zero-field bound states. The imaginary parts of these complex
energies are tiny and therefore invisible on the scale of this
figure. The second set of poles, marked with A in the figure,
corresponds to the resonant states similar to the positive-
energy states at F = 0. There are infinitely many of these
poles, located below the real axis, with the imaginary part
growing for the resonances with larger real parts. The third
set of poles, indicated by C in the picture, is located along the
Stokes line of Airy functions. Again, there are infinitely many
of them, each in the vicinity of zeros of Ci+(αz/F ).

It should be noted that the parameters for this illustration
were chosen such that only a few poles appear in each family.
Specifically, this requires an extremely strong field and a small
potential well that only accommodates a few bound states.

We choose our contour C to run close to the real axis, but
below B poles. As C continues into the half plane Re{z} > 0,
it eventually crosses the line of A poles, so the resonant-
state expansion part of (15) is limited to those poles that are
located between the real axis and contour C. The specific
choice of C is informed by the numerics involved. As the
contour drops deeper into the lower plane, the influence of
the B poles becomes less severe and their contribution is
replaced by the resonant-state sum. However, Airy functions
grow exponentially fast away from the real axis, which means
that there exist huge cancellations in the numerical evaluation
of various terms contributing to the contour integral. It is
therefore most practical to keep C not too distant from the real
axis. The results shown here were obtained with s = 3/100,
which required about 60 poles contributing to the resonant-
state series. We have performed all our calculations for several
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FIG. 3. Initial wave function of the particle as reproduced by
the mixed representation utilizing a contour integral and a subset of
outgoing resonant states (15).

different values of s in order to verify that the results are
indeed independent of the choice for the contour.

III. RESULTS

A. Tunneling from a discrete state

We start our illustrations with the atom-model case since
it is much less computationally demanding. For this we take
the large-V0 plus small-L limit specified in (7) so that there
remains a single bound state with an energy of Q = −1/2
and the wave function φ(x) = e−x, which serves as our initial
condition.

In order to check that our expansion and numerical inte-
gration in (15) are properly normalized and can be evaluated
with sufficient accuracy, we verify that for t = 0 we indeed
recover the initial wave function. This is illustrated in Fig. 3.
The imaginary part of the recovered wave function should
vanish, and our calculations give values of the order of 10−8.
The error in the real part is on the level of a percent at the
origin where it is largest.

Concentrating on the question of the tunneling time, we
observe the probability density as it evolves at a fixed point of
observation. If one assumes that the so-called simple-man’s
picture of quantum tunneling applies, then we expect that the
particle appears at xexit = −Q/F instantaneously and it has
zero velocity at the exit from the tunnel. Then, subject to
acceleration by the external field, it moves away and arrives
at a chosen observation location xobs. The expected time of
arrival based on this scenario is teta = √

2(xobs − xexit )/F .
First we evaluate the full wave function at the position

x = 25, which corresponds to the classical exit from the
tunnel for the given applied field F = 1/50. Figure 4 shows
that the tunneling particle appears at the classical exit not
instantaneously, but delayed. The real and imaginary parts
of the wave function evaluated versus the observation time
indicate that at earlier times the particle arrives most likely
with a higher velocity than at later times. This is in line with
previous works, e.g., [38], that have also shown that for a
one-dimensional model the tunneling ionization produces a
nonzero outgoing momentum at the tunnel exit. Clearly, the
simple-man’s scenario does not apply to this specific situation
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FIG. 4. Tunneling from a single bound state. The particle wave
function is shown versus time at the location corresponding to the
classical tunnel-exit point.

as there is a pronounced delay and the arrival time exhibits a
broad distribution.

In order to appreciate the arrival timing of the particle at
different observation locations, Fig. 5 depicts the observed
probability density versus time as detected at two locations.
Arrows mark the expected time of arrival at the given location
under the assumption that the simple man’s scenario holds.
When the peak of the probability density pulse is adopted as
the location of the classical trajectory, it becomes evident that
the particle arrives early at more distant locations, indicating
that the initial velocity at the classical exit does not vanish,
which is also in contrast to the simple-man’s scenario.

B. Tunneling from a quasicontinuum of states

To illustrate our observations concerning the dynamics of
the tunneling particle for the model of a metal nanotip, we
choose L = 100, V0 = 25/68, Q = −0.1848 . . ., and a very
weak field F = 1/100. The depth of the potential well V0

and the energy Q of the initial stationary state are motivated
by metal nanotips, with Q taken roughly corresponding to
the typical work function of common metals. In contrast, the
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FIG. 5. Tunneling particle probability density versus time for
two different observation locations x for a model with a single bound
state taken as the initial wave function. The dashed line corresponds
to the location at the classical tunnel exit. Arrows mark the expected
time of arrival for a particle that obeys the simple-man’s scenario.
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FIG. 6. Tunneling particle probability density versus time for
different observation locations x. Arrows mark the expected time of
arrival for a particle that obeys the simple-man’s scenario.

above field value (in atomic units) is significantly smaller than
the typical fields achieved by irradiation by femtosecond op-
tical pulses. As alluded to in the Introduction, we concentrate
on weak fields in order to make the potential barrier nearly
opaque and thus amplify the potential deviations from the
scenario of the instantaneous tunneling.

The first step in numerical evaluation of the expansion
in (15) is to obtain the locations of poles, or solutions to
the equation D+(W ) = 0. This can be done by initiating the
search around the energies close to the bottom of the potential
well. Having found two and more poles, one can estimate the
location of the next by extrapolation and subsequently find
the root with working precision of up to 200 digits. The high
numerical accuracy during this and subsequent calculations is
a must in order to obtain converged results. Depending on the
contour chosen, several tens of resonant poles Wp are needed
for the chosen size of the potential well.

The next step consists in calculating the different terms
that originate in the integrand of (14), in particular the wave-
function overlaps A(Wp) and the pole-residue values D+′

(Wp).
Obviously, high-precision arithmetic must be employed. Hav-
ing found the complex resonant energies and the correspond-
ing wave-function overlaps together with the pole residues, we
can evaluate the resonant-expansion part of the wave function.

Evaluation of the contour integral is straightforward but it
requires a great deal of numerical effort. We found that ac-
curate tabulation of the integrand along the contour with very
fine discretization along z helps to speed up the calculation for
the wave function as a function of time.

Figure 6 shows selected results for one of our simulations.
For the chosen parameters, the exit from the tunnel is at
xexit = 18; the dashed black curve corresponds to this obser-
vation location. It reveals that the maximum of the probability
density arrives significantly delayed with respect to teta = 0.
Obviously, in this case the tunneling time seems to be finite
and in fact rather far from instantaneous.

Several other curves in Fig. 6 show similar results for the
observation locations at increasing distances from the tunnel
exit. The arrows in the plot indicate the expected time of
arrival in each case. One can see that while the particle seems
to be delayed when observed close to the tunnel exit, it arrives
earlier than expected when detected far from the tunnel. In
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FIG. 7. Probability density for the tunneling particle versus time
and observation location. The red horizontal line indicates the loca-
tion of the tunnel exit for the given external field strength.

other words, it moves faster than expected; this is due to the
fact that, contrary to the simple-man’s model, it exhibits a
nonzero velocity at the exit. One could argue that the classical
exit point xexit must not be taken as given by the nominal value
−Q/F , but should be adjusted. Indeed, a classical trajectory
fitted to our numerical results would indicate the effective
tunnel-exit point at x ∼ 5 and an escape velocity of 0.12 a.u.

A note concerning the interpretation of the curves shown in
Fig. 6 might be in order. The figure shows that the amplitude
of the pulse decreases with the distance from the origin, while
the duration only increases slowly. It might therefore seem
that the total probability of finding the particle inside the
pulse may not be conserved. However, one has to consider
the fact that the particle accelerates in the external field and
the pulse in fact delivers the same accumulated probability
independently of the distance. This can be verified accurately
when the wave function (or, more accurately, the probability
density) is integrated over space for a fixed time. In our
illustration the probability is conserved with an accuracy of
a few parts in 1000.

However, one should also note that our calculation eval-
uates the wave function as a whole and that is why it also
contains a portion that remains bound on the timescales shown
in our illustrations. We think that the tiny variations in the total
probability transported by the pulse actually reflect the finite
accuracy achieved in our calculation and that the temporal
variations of the bound part of the wave function are small
in comparison. So keeping in mind the finite accuracy of the
calculation, it is reasonable to say that these pulses represent
mostly particles that are escaping toward infinity.

In order to visualize the particle trajectory, Fig. 7 shows
the probability density plotted versus time and observation
location. One can see that the particle’s probability density
concentrates along the parabola reflecting its classical accel-
eration. However, the slope at the intersection with the red
horizontal line which marks xexit indicates that the particle ap-
pears here delayed and with a nonzero velocity. Interestingly,
the figure also brings to light that a well-defined wave packet

forms before it reaches the classical exit point from the tunnel.
In effect, there seems to be a distribution of the tunnel exits
[39] and corresponding velocities.

This is similar to the Wigner tunneling picture [40], but in
our case a range of energies contributes to the wave function
giving rise to a fuzzy particle trajectory, with parameters
potentially different from those calculated for a fixed-energy
propagator [40] suitable for an adiabatic regime. Also note
that ours is a nonadiabatic regime when mapping to a single
classical trajectory may not be fully adequate [19].

Our results also illustrate that the wave packet exhibits a
quite-well-defined duration, which can be perhaps surprising
given that there is no inherent timescale imposed by the
external field as there would be in the excitation by an optical
pulse. However, one can appreciate that there is a natural
timescale imposed by the energy spectrum of the states that
contribute to the tunneling current. The broader the initial
energy spectrum, the shorter the resulting particle pulse.

The duration of the emitted pulse is relevant for the ap-
plications of metal nanotips as superfast sources of electron
bunches [36,41]. While ours is at best an idealized model for
a fast electron source, it is reasonable to look at this result
as an estimate for the “fastest achievable electron packet.”
Moreover, our illustration clearly shows that the resulting par-
ticle pulse consists of a spectrum of energies and accordingly
suffers from dispersion which will spread out the pulse upon
further propagation.

IV. DISCUSSION

This section is devoted to a brief discussion of a few
technical issues relevant for the calculations underlying our
results.

First of all, it should be emphasized that the above example
represents a generic behavior that we have obtained for a num-
ber of various model settings. We have found that whenever
the field strength is weak we see very pronounced deviations
from the scenario of instantaneous tunneling.

Yet another aspect the reader might be wondering about
is that the expected exponential decay of the metastable state
born out of the initial stationary state is not evident in our
results. The explanation has to do with the fact that we look
at relatively weak field strengths; the evanescent tail of the
initial bound state is exceedingly small at x = xexit unless
its energy Q is close to the very top of the potential well.
The outgoing probability current induced to this state by the
external field also occurs on a much slower timescale and
it therefore appears negligible on the background of the fast
wave packet generated by the suddenly imposed field. For
the given conditions, the decay rate of the metastable states
energetically close to the initial wave function is of the order
of 10−9. The tunneling pulses seen in our examples exhibit
velocities on the order of unity and result in a roughly 10−5

ionization rate, so their contribution dominates by about four
orders of magnitude. However, it is possible to create situa-
tions in stronger fields where these slow and fast components
of the tunneled wave function are comparable.

Finally, we touch upon the the nonadiabatic aspect of the
tunneling dynamics seen in our calculations. Clearly, it is the
instantaneous switching on of the field that is responsible for
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the broad energy spectrum of the resulting wave function at
time t → 0+. One could ask if a more adiabatic turning on
of the field can result in a more sharply defined tunneling
time. Intuition suggests that when the field is turned on slowly
the higher-energy components of the resulting state will be
reduced and consequently the wave packet will broaden more
in time due to its smaller bandwidth. Moreover, the slow
ramping of F (t ) introduces significant arbitrariness into the
meaning of t = 0 because only a sudden switching on gives
a clearly defined initial time for the evolution. So, while in
terms of nonadiabaticity ours is a most extreme scenario that
can only be approximated in an experiment, it shows that the
way the system is excited introduces yet another aspect that
complicates the notion of the classical barrier-traversal time.

V. CONCLUSION

We have presented an exactly solvable model for an elec-
tron tunneling from a metal nanotip exposed to an external
field. Taking advantage of the non-Hermitian reformulation
of the time-dependent problem, we were able to calculate the
wave function for the field strengths that present a difficult
challenge for more standard methods, including numerical
solutions of the time-dependent Schrödinger equation. The
time-dependent wave function revealed that the energy spec-
trum of the system imposes an inherent lower limit on the
duration of the electron pulse emitted by the tip even when
the field turns on suddenly. We have also seen that the energy
spectrum of the emitted particle is wide and the tunneling
wave packets therefore experience strong temporal dispersion.

However, our main motivation for this study was the cur-
rently debated question of the tunneling time, which some
claim to be instantaneous, while others present evidence that
it must be finite, and still others maintain that the quantum
nature of the tunneling problem precludes a meaningful de-
scription in classical terms. As for the notion of the tunneling
time, our results show that for our particular examples in
one dimension and for a weak external field the tunneling
dynamics exhibits a pronounced delay between the sudden
switching on of the field and the time when the particle can
be detected at the point of the classical exit from the potential
barrier. Moreover, the so-called simple man’s scenario of

quantum tunneling also does not apply because the particle
has a significant velocity when it appears at the classical exit
point. So in this exactly solvable system one can safely say
that the tunneling time is not instantaneous. However, our
results do not support the idea of a well-defined tunneling
time either. There are at least two reasons for this. First, it
is obvious that at the point of classical exit, the temporal
distribution of the probability density pulse is actually broader
than the apparent tunnel time as defined by the time of
arrival of the peak. In other words, the tunneling time is
a stochastic quantity that perhaps could be better described
by a probability distribution. Second, we have seen that a
well-defined moving wave packet forms actually before the
particle reaches the classically allowed region. In hindsight
this is not very surprising given the energy uncertainty caused
by the fast switching on of the field. Because of the energy
spread, some components of the wave function experience
the potential barrier as a classically accessible region. This
makes the very notion of the tunnel exit rather ill-defined. By
extension the utility of the tunneling time itself is limited at
best. However, the time-dependent wave function exhibits a
well-defined although fuzzy trajectory, and in this sense the
behavior in our illustrations resembles the Wigner scenario
[40]. The question of how the results of this paper compare
quantitatively to Wigner’s time is interesting, but is beyond
the scope of the present work.

To conclude, we do not think that observations based on
a simple one-dimensional model can be an arbiter in any
way between the different schools of thought and experiments
concerning the problem of the tunneling time. We hope,
however, that the lessons learned from an exactly solvable
system will help to shed additional light on the debate and
that they will aid in building much needed intuition about the
appropriate mix of quantum and classical in our understanding
of the dynamics that play a role in a plethora of physical
contexts.
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