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Magnetic-field-induced oscillation of multipartite nonlocality in spin ladders
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Spin- 1
2 two-leg ladder models under a magnetic field have a well-known phase diagram. In this paper, we use

multipartite nonlocality (a measure of multipartite quantum correlations) to characterize the quantum correlations
in the ladder models at zero temperature. Both finite-size and infinite-size ladders are considered. We investigate
the global nonlocality Sg = S(|�g〉), which describes quantum correlations of the ground states |�g〉 of the entire
lattices, and the partial nonlocality Sp = S(ρ̂n), which describes quantum correlations of the reduced states ρ̂n

of some sublattices in the ladders. We find that as the magnetic field λ increases, the global nonlocality Sg

presents a single-peak curve. Moreover, the logarithmic measure lnSg changes dramatically at the two critical
fields λc1 and λc2 of the models and thus signals the quantum phase transitions in the models. For the partial
nonlocality Sp, in the regions λc1 < λ < λc2 , we observe that the Sp(λ) curve shows an oscillation. Numerical
results reveal that the underling mechanism is the “major component transitions” in the reduced states ρ̂n of the
sublattices. More importantly, the oscillation of the partial nonlocality Sp is modulated by the single-peak curve
of the global nonlocality Sg. The result provides valuable clues about the relation between partial nonlocality
and global nonlocality in low-dimensional quantum models.

DOI: 10.1103/PhysRevA.101.052116

I. INTRODUCTION

For decades, concepts established in the field of quantum
information have been adopted to investigate other fields of
science, such as block holes, quantum chemistry, and partic-
ularly, condensed matter physics [1–3]. For instance, based
upon a bipartite setting of the concerned systems, entangle-
ment entropy [4–7] has been used to investigate quantum
phase transitions (QPTs) [8] in various quantum lattices. As
a feedback, the obtained knowledge helps us to improve the
numerical algorithms for simulating these quantum lattices
[9,10].

Recently, much attention has been paid to multipartite set-
tings [11–15]. In the field of quantum information, multipar-
tite quantum correlations are regarded as potential resources
for quantum communication [2,16]. Moreover, in condensed
matter physics, measures of multipartite correlations can re-
veal the correlation structure in many-body quantum systems
and help us to gain a deeper insight into condensed matters
[17–24].

There are various methods to characterize multipartite
quantum correlations. A widely used quantity is multipartite
entanglement [14,25–28]. Let us just take a four-party pure
state |�〉, for instance. If |�〉 can be expressed into a fully
separable form |ψ1〉 ⊗ |ψ2〉 ⊗ |ψ3〉 ⊗ |ψ4〉, we say that |�〉 is
not entangled. If |�〉 can be expressed in the form of |�〉 =
|ψ12〉 ⊗ |ψ3〉 ⊗ |ψ4〉 but cannot be expressed into the fully
separable form, we will say that |�〉 is two-partite entangled.
If it can be expressed in the form of |�〉 = |ψ123〉 ⊗ |ψ4〉 but
cannot be further expressed into any two-partite entangled
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form, we will say that |�〉 is three-partite entangled. m-
partite entanglement can be defined in a similar way [14].
One can see that multipartite entanglement is always defined
based upon some kind of incompatibility with an underlying
separable state.

In this paper, we will consider another quantity to char-
acterize multipartite quantum correlations, multipartite non-
locality, which is captured by the violation of multipartite
Bell-type inequalities [29–34]. The basic idea for multipartite
Bell-type inequalities is as follows. We consider a family of
classical communication models {m1, m2, m3, . . . }. We will
calculate the correlations {S1,S2,S3, . . . } in these models,
and figure out the maximum correlation permitted by this
family of models. For a quantum state ρ̂, if the Bell-type
inequality S (ρ̂) � maxi Si is violated, one can conclude that
the correlations in ρ̂ cannot be reproduced (or simulated)
by any of these models. Quantum correlation captured by
Bell-type inequalities is usually called multipartite nonlocality
[33]. With the help of Bell-type inequalities, we can classify
general quantum states into a complete set of families, from
classical states (which have the lowest hierarchy in the fami-
lies) to genuine multipartite correlated states (which have the
highest hierarchy) [2,17,34]. Moreover, Bell-type inequalities
are scalable, that is, they can be applied to arbitrary number
of qubits [33] and arbitrary dimensions [34].

Both entanglement and nonlocality are regarded as distinct
resources in the field of quantum information. Their difference
is that the former is defined on the entanglement-separability
paradigm and occurs in Hilbert spaces, while the latter char-
acterizes correlations by analyzing whether they can be re-
produced (or simulated) by some predefined classical models
(or classical devices) and manifests itself in the ordinary
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(3 + 1)-dimensional space. Some valuable comparisons of
these two concepts can be found in Refs. [35,36].

Due to the scalability of Bell-type inequalities and
the fast development of the related tensor-network al-
gorithms [21,22,36], Bell-type inequalities and multipar-
tite nonlocality have been used to characterize multisite
quantum correlations in various low-dimensional quantum
lattices, including the one-dimensional (1D) transverse-
field Ising models [18,22,24], 1D XY chains [19,20], 1D
XXZ chains [21], 1D ferromagnetic Heisenberg chains
[37], two-dimensional transverse-field Ising lattices [23],
N-dimensional Lipkin-Meshkov-Glick models [38,39], and
many others [19,36,40,41].

Some broad conclusions have been achieved. First, the
nonlocality measure S shows clear scaling behavior (i.e.,
lnS ∼ N) for various 1D quantum chains [20–22]. Second,
when a QPT occurs, the nonlocality measure usually presents
some kind of singularity, which means that the internal cor-
relation structure of the ground state changes dramatically in
the QPT [19–24,39].

Nevertheless, it is still too early to say that we have
established a complete picture about multipartite nonlocality
in these low-dimensional quantum systems. Some important
fragments of the picture are still missing, for instance, the
relation between the global nonlocality in the entire lattices
and the partial nonlocality in n-site sublattices. On one hand,
the ground states of quantum models generally contain global
nonlocality [18,24,37]. On the other hand, it is rather sur-
prising that for various quantum models [19,41–43], partial
nonlocality is absent in two-site sublattices (i.e., n = 2). It
was realized by Oliveira et al. that this general conclusion
is directly connected to the translational invariance of the
models [44,45]. The existence of partial nonlocality was first
identified in the XY chains with n � 4 [20]. Since then, partial
nonlocality with a large n has become a valuable tool to
capture multisite quantum correlations in low-dimensional
quantum systems and has been used to characterize QPTs in
various models [19–24,39]. However, quite recently, it was
found that under some situations, when a quantum system
exhibits genuine multipartite nonlocality, its subsystems are
forbidden to show arbitrarily high nonlocality [46]. This result
seems to indicate that, even in the large-n limit, the study of
partial nonlocality in the sublattices may not always offer us
reliable knowledge about the global nonlocality in the entire
systems. Thereby, it becomes important to clarify the relation
between global nonlocality and partial nonlocality in these
quantum lattices.

In this paper, we will investigate multipartite nonlocality
in spin- 1

2 two-leg ladder models under a magnetic field. The
models have a well-known ground-state phase diagram [47].
We will study both the global nonlocality Sg of the ground
states of the entire lattices and the partial nonlocality Sp of
the reduced states of n-rung sublattices in the ladders. We find
that as the magnetic field λ increases, the global nonlocality
curve Sg(λ) exhibits a single peak between the two QPT points
λc1 and λc2 of the model. In the same regions, nevertheless,
the partial nonlocality curve Sp(λ) presents a magnetic-field-
induced oscillation. Furthermore, we find numerical evidence
that the oscillation of the partial nonlocality is modulated
by the single-peak curve of the global nonlocality of the

model. This result provides an intuitive understanding about
the relation between partial nonlocality and global nonlocality
in the ladder models.

This paper is organized as follows. In Sec. II the concept
of multipartite nonlocality will be reviewed briefly. In Sec. III
we will introduce the ladder models. Numerical details in
calculating the ground states will also be given. In Sec. IV
we will report our results about the global nonlocality of the
ground states of the ladders. In Sec. V we move on to discuss
the partial nonlocality in consecutive-n-rung sublattices in the
middle of the ladders. Finally, a summary and discussion will
be given in Sec. VI.

II. BASIC CONCEPTS

Grouping number: An intuitive quantity to character-
ize the correlation structure in many-body systems is the
grouping number. Suppose an n-site classical communi-
cation model can be divided into g groups, denoted as
{[1], [2, 3, 4], [5, 6], . . . , [n]}, such that only sites in the same
group can communicate with each other. Then the model will
be called a g-grouping model [30,32–34]. All these grouping
models (with g = 1, 2, . . . , n) together can reproduce general
multipartite correlations. For an n-site quantum state ρ̂n, if
its correlations can be reproduced only by grouping models
with g � g0, we say that the grouping number of ρ̂n is g0. A
state contains genuine multipartite correlations if its grouping
number is g0(ρ̂n) = 1 and does not contain any correlation if
g0(ρ̂n) = n. One can see that the grouping number g0 captures
the internal structure of multipartite correlations in the state.
In practice, g0 can be detected by Bell-type inequalities.

Mermin-Svetlichny operators: In Bell-type inequalities, the
n-site Mermin-Svetlichny (MS) operator plays a central role.
The MS operator has a recursive definition [33],

M̂[1...n] = 1
2 M̂[1...n−1] ⊗ (m̂n + m̂′

n)

+ 1
2 M̂ ′

[1...n−1] ⊗ (m̂n − m̂′
n), (1)

where m̂n and m̂′
n are single-site operators defined as m̂n = xn ·

σ and m̂′
n = x′

n · σ. xn and x′
n are unit vectors. σ = [σ̂x, σ̂y, σ̂z]

is the spin vector. The primed operator M̂ ′ is defined in a
similar way by exchanging all the x j and x′

j in M̂. Finally,
one can see that M̂[1...n] depends on a set of 2n unit vectors,
X = {x1, x′

1, . . . , xn, x′
n}.

Bell-type inequalities: For a quantum state ρ̂n, if the
correlations can be reproduced by a g-grouping model, the
following Bell-type inequalities should hold [33]:

S (ρ̂n) =
{

max{X}〈M̂[1...n](X)〉 � 2
n−g

2 , for n-g even,

max{X}〈M̂+
[1...n](X)〉 � 2

n−g
2 , for n-g odd,

(2)
where M̂+

[1...n] = 1√
2
(M̂[1...n] + M̂ ′

[1...n] ), and 〈·〉 denotes the
standard expectation value for the state ρ̂n. The inequality is
defined for general quantum states. For a pure state |�〉, the
LHS of Eq. (2) can be rephrased as S (|�〉〈�|).

If Eq. (2) is violated, one can conclude that (at most)
[g − 1]-grouping models are needed to reproduce the multi-
partite correlations in ρ̂n. Thereby Bell-type inequalities can
be used to calculate the upper bound of the grouping number
of the state. In the literature, multipartite correlation identified
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FIG. 1. Lattice structure of the two-leg ladders with open bound-
ary conditions. N denotes the length of the ladders. J|| and J⊥ describe
the exchange interactions along the legs and the rungs, respectively.

by the violation of Bell-type inequalities is usually called
“multipartite nonlocality.” It is clear that a higher (lower)
value of the measure S indicates a smaller (larger) value
of the grouping number and, consequently, a higher (lower)
hierarchy of multipartite nonlocality. Furthermore, in low-
dimensional quantum systems, we are usually just interested
in the qualitative behavior of multipartite nonlocality, rather
than the specific value of the grouping number. Thereby, for
Eq. (2), we will ignore the parity of n − g and just consider
the first inequality.

Two-site update algorithm: The optimization of the non-
locality measure S (ρ̂n) is highly nontrivial. In this paper
we will use the two-site update algorithm to carry out the
optimization, which was first proposed in Ref. [22]. In the
algorithm, based upon a tripartite form of the MS operator, the
n-site optimization problem involved in Eq. (2) is transformed
into a series of two-site optimizations, and thus the numerical
efficiency is dramatically improved. For the details of the
algorithm, readers are referred to Ref. [22].

III. MODELS AND METHODS

The two-leg spin ladders under a magnetic field can be
described by the following Hamiltonian [47]:

Ĥ0 = J||
N−1∑
i=1

(Si · Si+1 + Si′ · S(i+1)′ )

+ J⊥
N∑

i=1

Si · Si′ − λ

N∑
i=1

(
Ŝz

i + Ŝz
i′
)
. (3)

The lattice structure of the models is shown in Fig. 1. J|| >

0 and J⊥ > 0 are the antiferromagnetic nearest-neighboring
coupling constants on the legs and the rungs, respectively. λ

denotes the strength of the magnetic field along the z direction.
i and i′ denote sites on the upper leg and the lower leg,
respectively. Si(′ ) and Ŝz

i(′ ) are the standard spin vector and
spin operator, respectively. We just consider open boundary
conditions in this paper.

Moreover, without loss of generality, in this paper we will
use J|| to rescale the parameters in Eq. (3) as J||

J||
→ 1, J⊥

J||
→

J⊥, and λ
J||

→ λ. Thereby, the rescaled Hamiltonian will be
governed by just two quantities:

Ĥ =
N−1∑
i=1

(Si · Si+1 + Si′ · S(i+1)′ )

+ J⊥
N∑

i=1

Si · Si′ − λ

N∑
i=1

(
Ŝz

i + Ŝz
i′
)
. (4)
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FIG. 2. (a) Magnetization and (b) nearest-neighboring correla-
tions in the ladder models (with J⊥/J|| = 5.28) as a function of
λ. λ is a dimensionless quantity describing the rescaled strength
of the magnetic field [see Eq. (4)]. Two critical points locate at
λc1 = 4.38 and λc2 = 7.28. The red solid lines correspond to ladders
with N = 100 (calculated by ALPS package [48]), and the blue
dashed lines correspond to infinite-size ladders (calculated with the
Matrix-Product Toolkit [49]).

Both J⊥ and λ become dimensionless. Alternatively, we can
also say that they are in the unit of J||.

When the magnetic field is absent (i.e., λ = 0), the ground
state is a gapped, disordered quantum spin liquid [47,50,51].
It is quite intuitive to consider the J⊥ → ∞ limit, where the
ladder reduces into N uncoupled rungs. One can see that the
ground state is just a spin singlet, which has a finite energy
gap with the triplet excited states. For ladders with any finite
positive J⊥, the energy gap survives [52] and will be denoted
as �.

When the strength λ of the magnetic field increases, ac-
cording to Eq. (4), the energy of the singlet state would
keep unchanged, and the energy for a triplet state would be
reduced linearly [53]. Thereby, at some magnetic field λc1 , the
energy gap would be closed, and there is a transition from the
nonmagnetic ground state to a gapless Luttinger liquid phase
[47,50]. The magnetization increases gradually when λ >

λc1. At a strong enough magnetic field λc2 , the ground state
becomes a fully polarized state and a finite energy gap would
be open again [54]. Both λc1 and λc2 are the quantum critical
points of the models [50,51,54,55], and the transitions at the
two points are second-order QPTs. Previous studies show that
in the thermodynamic limit, the magnetization would show
square-root singularities at λc1 and λc2 [47]. Moreover, in the
vicinity of these two critical points, the magnetization obeys a
universal scaling function [50].

The two critical points locate at λc1 = � and λc2 = J⊥ +
2 [47]. In addition, the full magnetic phase diagram of the
ladder models on the λ ∼ J⊥ plane can be found in Ref. [56].
According to the phase diagram, the value of J⊥ just affects
the phase boundaries and does not change the fundamental
physics of the ground states. Thereby, in this paper we will just
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FIG. 3. (a) Global nonlocality Sg = S(|�g〉) for the ground states |�g〉 of finite-size ladders as a function of the magnetic field λ. From
bottom to top, the curves correspond to N = 8, 12, 16, 20, respectively. (b) Logarithmic measure lnSg. The insets (i) and (ii) illustrate
intuitively how nonlocality spreads in the lattices for λ < λc1 and λc1 < λ < λc2 , respectively. They explain why Sg changes dramatically
at λc1 (and similarly, at λc2 ). (c) Linear scaling of the logarithmic measure lnSg for several fixed magnetic fields. Panels (b) and (c) together
offer us a clear picture for the global nonlocality in the large-N limit.

consider the coupling parameter J⊥ = 5.28, which has been
used to model the real material Cu2(C5H12N2)2Cl4 [47,57]. It
is expected that the phenomenon reported in this paper shall
be observed in ladders with any finite positive J⊥.

First, we shall use numerical methods to figure out the
ground-state wave functions of the ladders. We will con-
sider both finite-size ladders and infinite-size ladders. For the
first situations, we will use the “mps-optim” package in the
Algorithms and Libraries for Physics Simulations (ALPS)
project [48] to figure out the ground states, with N up to
100. We set the max number of states as m = 200 and
sweep the lattices 30–50 times. For the second situations, we
will use the Matrix-Product (MP) Toolkit [49] to calculate
the ground states, with the max number of states m = 200.
The average magnetization and nearest-neighboring two-spin
correlations are shown in Fig. 2. The critical points are λc1 =
4.38 and λc2 = 7.28, which are quite consistent with previous
results [47]. Thereby, our numerical wave functions are quite
reliable.

After figuring out the wave functions, the nonlocality
measure S defined in Eq. (2) will be optimized with the
above mentioned two-site update algorithm [22]. To improve
the reliability of the optimization, for each set of physical
parameters, we will randomly generate r = 30 initial points,
and carry out r rounds of optimization independently. The best
result in these r rounds would be used as the final optimization
result. In subsequent sections, we will report our results about
the global nonlocality of the ground states of the entire ladders
and the partial nonlocality of the reduced density matrices of
consecutive-n-rungs sublattices in the middle of the ladders.

IV. GLOBAL NONLOCALITY IN ENTIRE LATTICE

The global nonlocality Sg = S (|�g〉) for the ground states
|�g〉 of infinite-size ladders cannot be calculated directly.
Thereby, we will consider finite-size ladders and try to capture
the large-N behavior by finite-size scaling analysis.

In Fig. 3(a) we have shown the nonlocality measure Sg as
a function of the magnetic field λ with N = 8, 12, 16, and 20.
In the gapped phase λ < λc1 , Sg keeps constant for any N .
Moreover, in the fully polarized phase λ > λc2 , we always
have Sg = 1. In the phase λc1 < λ < λc2 , as λ increases,

the nonlocality measure first shows a sharp increase, then
achieves a peak, and finally decreases to 1.

We have also illustrate the logarithmic measure ln Sg in
Fig. 3(b). We find that with the increase of N , the ln Sg(λ)
curve rises evenly, which offers a strong hint about what will
happen in the limit N → ∞. Furthermore, for several typical
λ, we have carried out scaling analysis with N up to 40, and
the results are shown in Fig. 3(c). One can see clearly that for
any fixed λ, the logarithmic measure ln Sg would be a linear
function of N when N is large enough.

Finally, we shall draw a physical picture about the global
nonlocality in the entire magnetic-field regions. First, in the
gapped phase λ < λc1 , since J⊥ = 5.28 is quite large, the
ground state may be described approximately by a rung-
product state,

|�gap〉 ≈
N∏

i=1

∣∣ϕrung
i

〉
, (5)

where |ϕrung
i 〉 denotes the ground state of the ith isolated rung.

It is expected that nonlocality spreads mainly in each rung,
rather than along the legs [the behavior is illustrated in inset
(i) of Fig. 3(b)]. Consequently, the multipartite nonlocality
measure Sg takes a relatively low value when λ < λc1 . When
the magnetic field crosses the critical point λc1 , the rung-
product state |�gap〉 is destroyed, and nonlocality can spread
along the two legs [see inset (ii) in Fig. 3(b)]. Thereby, ln Sg

increases rapidly and its first-order derivative is divergent at
λ = λc1 . One can see that the dramatic change of lnSg at
λ = λc2 can be explained in a similar way. Let us begin with
a strong magnetic field λ > λc2 , for which the ground state is
the fully polarized state

|�↑〉 =
N∏

i=1

|↑↑〉. (6)

This state is a classical state, and no nonlocality could spread
in the rungs or along the legs. When the magnetic field
decreases gradually and finally crosses the critical point λc2 ,
the state |�↑〉 is destroyed, and nonlocality can spread both
in the rungs and along the legs. That is why lnSg increases
rapidly at λ = λc2 .
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FIG. 4. Partial nonlocality Sp = S(ρ̂n) of the reduced states
ρ̂n for consecutive-n-rung sublattices in infinite-size ladders. Sp

presents a magnetic-field-induced multipeak oscillation in the re-
gions λc1 < λ < λc2 . When n is large enough, the Sp(λ) curve ex-
hibits a clear single-peak envelope (the red dashed lines). The single-
peak envelope suggests that the behavior of partial nonlocality in the
sublattices is modulated by the behavior of the global nonlocality in
the entire lattice [see the curve of Sg(λ) in Fig. 3].

V. PARTIAL NONLOCALITY IN SUBLATTICES

In this section we will investigate the partial nonlocality in
some sublattices in the models. The entire ladders are still in
their ground states |�g〉. The concerned sublattices consist of
n continuous rungs in the middle of the ladders. The reduced
density matrices ρ̂n of these sublattices are obtained by taking
a partial trace with respect to all the degrees of freedom of its
environment, ρ̂n = Tr[1...n]|�g〉〈�g|. Both infinite-size ladders
and finite-size ladders are considered.

For infinite-size ladders, our main results of the partial non-
locality S (ρ̂n) are present in Fig. 4, with n = 2, 3, 4, . . . , 13.
First, for λ < λc1 and λ > λc2 , the nonlocality measure keeps
constant, which is similar to the global nonlocality S (|�g〉)
in Fig. 3. Nevertheless, for λc1 < λ < λc2 , partial nonlocality
presents a peculiar oscillation. When n = 2, one can find a
round peak in the Sp(λ) curve [see Fig. 4(1)]. For n = 3, two
peaks are observed [see Fig. 4(2)]. As n increases, the number
of peaks increases steadily, and Sp presents a multipeak

oscillation behavior. We take n = 13 as an example and use
the Bell-type inequalities in Eq. (2) to analyze the grouping
number of the reduced state ρ̂n. When the magnetic field
increases gradually from λc1 to λc2 , the grouping number of
ρ̂n also oscillates and takes in succession the value of 19, 21,
19, 17, 19, 21, 19, 21, 23, 21, 23, 25, 23, and 25. Furthermore,
when n is large enough, we find that the Sp(λ) curve exhibits
a clear envelope curve [the red dashed line in Fig. 4(9)–
(12)]. One can see that the envelope curve is a single-peak
curve.

Before investigating the multipeak oscillation behavior in
detail, we will offer a phenomenological explanation about the
single-peak envelope curve of Sp(λ). First, in infinite-size lad-
ders, the entire lattices consist of three blocks: the left semi-
infinite environment block, the concerned n-rung sublattices,
and the right semi-infinite environment block. It is clear that
even in the large-n limit, the reduced states ρ̂n would not be
equivalent to the ground states |�g〉. Nevertheless, when n is
large enough, we still expect that the partial nonlocality Sp of
the sublattices should inherit some of the features of the global
nonlocality Sg of the entire lattices. As is shown in Fig. 3,
the global nonlocality curve is a single-peak curve. Thereby,
a physical explanation of the single-peak envelope curve of
Sp(λ) is that, in the large-n limit, the partial nonlocality of the
sublattices is modulated by the global nonlocality of the entire
lattice.

We turn to investigate the multipeak feature in the partial
nonlocality. First, we have carefully rechecked our numerical
results by considering finite-size ladders with N = 100. With
the help of the conserved-quantum-number technique, we are
able to diagonalize the Hamiltonian in each Sz

total sector, which
greatly improves the convergence of the wave functions [48].
The final result is illustrated with red dots in Fig. 5(a1)–(a4).1

The result for N = ∞ is also shown with blue circles for
comparison. In the vicinity of λc2 , the curves for N = ∞ show
slight fluctuations, which result from imperfect convergence
of the wave functions. For the finite-size ladders, where the
convergence of the wave functions is much better, the curves
are quite smooth. Finally, the qualitative consistence of the
two results ensures that the multipeak oscillation of the partial
nonlocality is indeed an intrinsic feature in the ladder models.

To figure out the origin of the oscillation, with the help of
the eigenvalue decomposition we have carried out a compo-
nent analysis of the reduced density matrices ρ̂n as

ρ̂n =
∑

i

ωi|ψi〉〈ψi|, (7)

where |ψi〉 are the components of ρ̂n and ωi are the corre-
sponding weights. In Fig. 5(b1)–(b4) we have illustrated the
weights ωi of these components as a function of the magnetic
field.

First, two components need to be explained separately.
One is connected to the rung-product state |�gap〉 in Eq. (5)
and is marked as |ψrung〉 in Fig. 5(b1)–(b4). The other one is
connected to the fully polarized state |�↑〉 in Eq. (6) and is

1Only results for Sz
total = 0, 2, 4, . . . , N have been shown in Fig. 5.

For finite-size ladders, there is a small even-odd effect in the Sp(λ)
curves.
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FIG. 5. Partial nonlocality Sp = S(ρ̂n) of the reduced states ρ̂n for consecutive-n-rung sublattices in the middle of an N-rung ladder with
total length N = 100 (red dots) and various n: (a1) n = 2, (a2) n = 3, (a3) n = 4, and (a4) n = 5. Results for N → ∞ (blue circles) are also
shown for a comparison purpose. (b1)–(b4) The results of the component analysis of the reduced density matrices ρ̂n, ρ̂n → ∑

i ωi|ψi〉〈ψi|,
where ωi denotes the weight of the component |ψi〉. As the magnetic field increases, these components take turns serving as the major
component (i.e., the component which has the largest weight) of ρ̂n. The peaks of ωi of the major components and the peaks of Sp have an
one-to-one correspondence and exhibit quite similar morphology. It suggests that the multipeak oscillation of the partial nonlocality originates
from the “major component transitions” in ρ̂n.

marked as |ψ↑〉. For λ < λc1 and λ > λc2 , the reduced state ρ̂n

is equivalent to |ψrung〉 and |ψ↑〉, respectively. Thereby, when
λ increases from λc1 to λc2 , the weight of |ψrung〉 decreases
monotonically from 1 to 0, and the weight of |ψ↑〉 increases
monotonically from 0 to 1.

Next, we pay our attention to other components. In the
regions λ � λc1 and λ � λc2 , the weights ωi of these compo-
nents are simply zero. Thereby, when λ increases from λc1 to
λc2 , ωi would experience a process of first increasing and then
decreasing. As can be seen in the figures, the weight of each
of these components indeed shows a round peak.

Finally, let us focus on some special components of ρ̂n, the
major components. For a fixed λ, suppose a component |ψi0〉
has the largest weight,

ωi0 = max
i

{ωi}.
We will say that |ψi0〉 is the major component of ρ̂n. Let us
take n = 3 in Fig. 5(b2) as an example. When the magnetic
field increases from λc1 to λc2 , the components |ψrung〉, |ψ1〉,
|ψ2〉, and |ψ↑〉 take turns serving as the major component
of ρ̂n. In the magnetic field region where some |ψi0〉 is the
major component, the quantum correlations in ρ̂n would be
determined mainly by |ψi0〉 and its weight ωi0 .

In Fig. 5, by comparing the peaks of Sp (marked as pk in
the figure) and the peaks of the weights of the major compo-
nents, one can see that both the location and the morphology
of the two are quite similar. This feature helps us to figure out
the origin of the oscillation of the partial nonlocality. We take
the major component |ψ1〉 in Fig. 5(b2) as an example. At the
magnetic field where the weight of |ψ1〉 (ω1) achieves its peak
value, one can see that the weights for other components are
quite small. Thereby, it is expected that in the vicinity of the
peak, |ψ1〉 and its weight ω1 would largely determine the value
of Sp(ρ̂n). When ω1 shows a peak, the partial nonlocality Sp

will also present a peak. In this way, each major component

|ψi0〉 (except |ψrung〉 and |ψ↑〉) would contribute a peak in
the Sp(λ) curve. Finally, we can conclude that the underling
mechanism of the oscillation in the partial nonlocality Sp is
the “major component transitions” in the density matrices ρ̂n

of the sublattices.

VI. SUMMARY AND DISCUSSION

In this paper, we have investigated spin- 1
2 two-leg ladder

models under a magnetic field, which have a rich ground-
state phase diagram. We have used multipartite nonlocality
to characterize the influence of the magnetic field λ on the
quantum correlations in the models. For such a purpose, we
have consider two measures. The first one is the global non-
locality Sg = S (|�g〉), which captures quantum correlations
in the ground states of the entire lattices. The second one is
the partial nonlocality Sp = S (ρ̂n), which captures quantum
correlations in the reduced density matrices ρ̂n of n-rung
sublattices in the ladders. Both finite-size and infinite-size
ladders have been considered.

For the global nonlocality Sg, we have mainly considered
finite-size ladders (with length N), and tried to capture the
large-N behavior with finite-size scaling analysis. For any
fixed magnetic field, when N is large enough, lnSg is a linear
function of N . Combined with the scaling behavior and some
qualitative analysis of the ground states, we have drawn a
reliable picture for the global nonlocality in the large-N limit,
that is, ln Sg(λ) would exhibit a single-peak curve between the
critical points λc1 and λc2 . Moreover, its first-order derivative
would be divergent in the vicinity of the two critical points.
It means that the correlation structure of the ground states
changes sharply in the vicinity of the QPT points of the
ladders.

Our second observation is about the partial nonlocality Sp

in the sublattices (with length n) in both finite-size ladders
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and infinite-size ladders. When n is large enough, we find that
the partial nonlocality Sp exhibits a magnetic-field-induced
multipeak oscillation, and the envelope curve of the oscillation
is a single-peak curve.

The single-peak structure in the envelope curve of Sp(λ)
shows that the partial nonlocality of the sublattices is mod-
ulated by the global nonlocality of the entire lattice, where
the latter has a single-peak feature. The underlying mechanics
is that when n is large enough, partial nonlocality in the
sublattices should inherit some of the features of the global
nonlocality in the entire lattices.

Numerical results reveal that the physical origin of the
multipeak oscillation in Sp(λ) is the “major component transi-
tions” in the reduced states ρ̂n of the sublattices. We have car-
ried out a component analysis of ρ̂n as ρ̂n = ∑

i ωi|ψi〉〈ψi|. As
the magnetic field increases, different components |ψi〉 take
turns serving as the major component of ρ̂n. Consequently, the
leading weight, ωi0 (λ) = maxi{ωi(λ)}, shows several peaks in
Fig. 5. In the vicinity of each peak of ωi0 , the weights for other
components are quite small, and thus the behavior of Sp(ρ̂n)
would be largely determined by ωi0 . When ωi0 shows a peak,
the partial nonlocality Sp would also present a peak. In this
way, each major component |ψi0〉 would contribute a peak in
the Sp(λ) curve, and the “major component transitions” in the
density matrices ρ̂n would result in an oscillation in the partial
nonlocality Sp.

It may be interesting to compare the major-component
transitions (MCTs) in the density matrices and the quantum
phase transitions (QPTs) in the ground states of the ladder

models. QPTs occur at the crossing point between the lowest-
lying energy levels of the systems, and MCTs occur at the
crossing point between the highest weighted components of
the density matrices ρ̂n. For the ladder models considered in
this paper, the QPTs result in dramatic changes of the global
nonlocality Sg in the vicinity of the critical points λc1 and λc2

(see Fig. 3), and the MCTs result in a multipeak oscillation
of the partial nonlocality Sp in the regions λc1 < λ < λc2 (see
Figs. 4 and 5).

The numerical results in this paper provide valuable clues
about the relation between partial nonlocality and global
nonlocality in low-dimensional quantum models. We would
like to mention that some other models, such as the one-
dimensional diamond chains, also have a quite nontrivial
phase diagram and have been realized in real materials
[56,58]. It may be interesting to analyze partial nonlocality
and global nonlocality in these models and verify the modu-
lation relation between the global nonlocality and the partial
nonlocality reported in this paper.
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