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Fundamental limits to attractive and repulsive Casimir-Polder forces
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We derive upper and lower bounds on the Casimir-Polder force between an anisotropic dipolar body and
a macroscopic body, separated by vacuum, via algebraic properties of Maxwell’s equations. These bounds
require only a coarse characterization of the system—the material composition of the macroscopic object, the
polarizability of the dipole, and any convenient partition between the two objects—to encompass all structuring
possibilities. We find that the attractive Casimir-Polder force between a polarizable dipole and a uniform planar
semi-infinite bulk medium always comes within 10% of the lower bound, implying that nanostructuring is of
limited use for increasing attraction. In contrast, the possibility of repulsion is observed even for isotropic
dipoles, and is routinely found to be several orders of magnitude larger than any known design, including recently
predicted geometries involving conductors with sharp edges. These results may have ramifications for the design
of surfaces to trap, suspend, or adsorb ultracold gases.
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I. INTRODUCTION

Casimir forces between polarizable bodies arise from zero-
point fluctuations of the electromagnetic (EM) field [1–11].
Commonly, the interaction is named “Casimir” for forces
between larger bodies (modeled with continuum susceptibil-
ities) at length scales where EM retardation is relevant, “van
der Waals” (vdW) when EM retardation can be ignored but
atom-scale features cannot, and “Casimir-Polder” (CP) when
EM retardation is relevant but at least one of the bodies can
be approximated as dipolar. Over the past decade, improved
experimental techniques have allowed the characteristics of
all three regimes to be examined with consistently increasing
accuracy. vdW forces at small separations (�10 nm) between
bodies with atomically small dimensions have been mea-
sured with molecules, macromolecular arrays, single-layer
sheets, and planar metallic or dielectric substrates without
EM retardation [12–14], as well as those between nanopar-
ticles and nanotubes [15,16]. CP forces have been experi-
mentally measured in systems including planar substrates,
gratings, Rydberg atoms, molecules, and Bose-Einstein con-
densates [1–4,12,17,18]. Casimir forces have been measured
in both vacuum [19–22] and fluid media [23,24].

In tandem, there is mounting interest in exploring how
complex nanostructured geometries [8,25–27], such as in-
terleaved gratings, can be used to alter the magnitude as
well as the sign of these forces compared to typical attrac-
tive Casimir forces, which monotonically decay as a power
law with respect to separation for planar media [1–3,5,28].
Potential applications exist over a broad range of length
scales. Following the finding that vdW interactions at the
molecular scale can significantly affect predicted mate-
rial stability and mechanical properties [8,29–32], atomic-
scale vdW forces in materials like graphene, phospho-
rene, proteins, nanotubes, and fullerenes may lead to novel
biological sensors and techniques for tailoring nanoscale self-
assembly [10,11,33,34]. Casimir interactions among larger
bodies may be exploited to engineer future microelectrome-

chanical systems [26,27,35,36], mechanisms for stabilizing
nanoscale objects in fluids [23,24], and methods for over-
coming “stiction” in microchips [35,37]. Structuring large
substrates to tailor CP interactions could provide refined
spatial control over ultracold ground-state or Rydberg atoms,
molecules, or quantum emitters [1–3,17,18,38–40].

Moreover, there is fundamental interest in understanding
the asymmetry of Casimir interactions. Repulsive Casimir
forces have been experimentally observed in systems satis-
fying the Dzyaloshinskii-Lifshitz-Pitaevskii permittivity cri-
terion for repulsion [23,24,41–43], requiring an intervening
medium such as a fluid, for more than a decade. However, for
systems in vacuum, to the best of our knowledge, repulsive
Casimir and CP forces have only been theoretically predicted
in a few special systems, such as strongly anisotropic dipoles
at small separations [44,45], planar magnetic media [43,46–
48], metallic rectangular gratings [40], metallic or dielectric
plates with circular holes [44,49,50], and other metallic sur-
faces with sharp edges [51,52]. Due to the extremely weak
forces involved, the magnetic response or dipolar anisotropies
involved would have to be unphysically large for these pro-
posals to produce repulsive Casimir or CP forces in vacuum
measurable with current techniques.

There is, presently, no formally established proof that CP
repulsion must be so weak (i.e., that substantially stronger
CP attraction is not possible). General bounds on Casimir
forces in arbitrary geometries have been broadly restricted to
qualitative “yes or no” statements, such as the no-go theorem
for repulsion in mirror-symmetric systems in vacuum [53]
and generalizations of Earnshaw’s theorem for setting con-
straints on stable equilibria [54]. Quantitative limits on force
magnitude have been deduced almost exclusively for uniform
planar dielectric and magnetic media [55,56] and have not
been generalized to arbitrary geometries.

In this paper, we present upper and lower bounds on
CP forces for a dipolar body separated by vacuum from a
macroscopic body of uniform susceptibility. These limits,
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FIG. 1. Schematic of investigation. We derive shape-independent
upper and lower bounds on the Casimir-Polder force between a
polarizable dipolar body of parallel (perpendicular) polarizability α‖
(α⊥) above any nanostructured medium of susceptibility χ within a
given domain �.

derived via Lagrange duality, depend only on the dipole po-
larizability, the susceptibility of the macroscopic body, and the
choice of a partition separating the two objects (with positive
bounds corresponding to repulsion and negative bounds to at-
traction), depicted schematically in Fig. 1. Surprisingly, these
simple properties capture sufficient physics for seemingly
plausible bounds. Regardless of anisotropy, the archetypal
vertical CP force between a dipole and a semi-infinite planar
bulk is consistently within 10% of the lower bound; thus, for
attraction, the bound is relatively tight and nanostructuring
can offer only modest improvements. Conversely, sharp con-
trasts between the bounds and known designs are observed
for repulsive vertical forces. Irrespective of the polarizability
of the dipolar body, repulsion is never completely ruled out,
and in most cases the bound is found to be several orders of
magnitude larger than what has been observed in any known
design, including recently proposed (experimentally challeng-
ing) special geometries involving highly anisotropic dipolar
bodies and metals with sharp edges [44,49,50]. This suggests
that nontrivial nanostructuring may yet lead to feasible de-
signs with strong (measurable) repulsive CP forces, of interest
for controlling ultracold atomic gases and nanoparticles.

The text is laid out as follows. Our reasoning for the ex-
istence of the bounds described above, valid for any partition
(domain) separating the dipole and the macroscopic body, is
given in Sec. III. We provide this derivation in the main text
so that interested readers may potentially use similar methods
to extend this work to bounds on other EM phenomena.
However, as the involved arguments are somewhat technical,
prior to this discussion we simply state what will be shown
in Sec. II, for readers primarily interested in application,
physical intuition, and ramifications. In Sec. IV, we consider
application of these general CP force limits to the vertical
forces exerted by structures contained within a planar semi-
infinite half-space. This example encompasses a very wide
variety of possible compact and extended structure designs,

but by no means represents the full extent of the theory.
Bounds on lateral CP forces, CP torques, and CP forces along
other constrained paths are equally possible to evaluate using
our results.

As notation, a vector field v(x) will be denoted as |v〉.
At ω = iξ , all relevant polarization and field quantities can
be defined to be real valued in position space without loss
of generality, so we define the unconjugated inner prod-
uct 〈u, v〉 = ∫

d3xu(x) · v(x). An operator A(x, x′) will be
denoted as A, with

∫
d3x′A(x, x′) · v(x′) denoted as A|v〉.

Unless stated otherwise, all quantities are taken to implicitly
depend on iξ . All results found in the main text are for zero
temperature; results at nonzero temperature, particularly room
temperature (T = 300 K), obtained through the Matsubara
summation procedure [2,3], are discussed in Appendix C.

II. MAIN RESULT

Consider the CP force on a dipole of susceptibility
Vdip. Correcting for local field effects (particularly im-
portant for dipolar metallic nanoparticles) requires use
of the dressed response Tdip = (V−1

dip − Gvac)−1 = (I −
VdipGvac)−1Vdip [57,58]. The dressed dipolar response may
be expanded as Tdip = ∑

β αβ |u(β )〉〈u(β )|, where the polariz-
abilities αβ (iξ ) are positive and the basis functions u(β )(x) =
nβδ3(x − R) are given in terms of the dipole location R and
the principal axes nβ .

The upper and lower bounds (repulsion and attraction) on
the CP force along Cartesian axis k, respectively F+

k and F−
k ,

are shown to depend on Tdip, the macroscopic susceptibility
χ (iξ ) (assumed to be homogeneous, local, and isotropic), and
the choice of domain � enclosing the macroscopic body, all of
which are completely general and independent of any partic-
ular material dispersion model or body shapes. As argued in
the following derivation, the lower bounds can never increase,
and the upper bounds never decrease, when the chosen domain
� is enlarged, so that as a whole the bounds are domain
monotonic. Based on this fact, the bounds on the CP force
can be written at zero temperature as

F±
k = h̄

2π

∫ ∞

0

∑
β

αβ

[〈
∂u(β )

∂Rk
,Gsca (�)u(β )

〉

±
(

〈u(β ),Gsca (�)u(β )〉
〈
∂u(β )

∂Rk
,Gsca (�)

∂u(β )

∂Rk

〉)
1/2

]
dξ,

(1)

where again all quantities are evaluated at ω = iξ ; the deriva-
tion of these bounds is in the following section but is not
needed to evaluate or understand the implications of these
bounds. Here, Gsca (�) is the scattering Green’s function of
the equivalent object created by filling the chosen domain
� uniformly with a material of susceptibility χ (iξ ), and not
the scattering Green’s function of any specific object possi-
bly contained within the domain. [Crucially, (1) is not the
expression of the CP force for any particular geometry.] These
bounds need not have a definite sign either: For combinations
of dipole polarizability {αβ (iξ )}, position R, and domain
choice � where the upper bound is positive and the lower
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bound is negative, there are potentially structures producing
either attractive or repulsive CP forces.

III. TECHNICAL DERIVATION

The actual CP force by a macroscopic body of susceptibil-
ity V on a dipole of susceptibility Vdip as above is written as

Fk = h̄

2π

∫ ∞

0

∑
β

αβ

∂

∂Rk
〈u(β ),GvacT (V )Gvacu(β )〉 dξ, (2)

where T (V ) = [P (V ) − VGvac]−1V for the macroscopic
body, which has the same support as V [denoted by the
orthogonal projection operator P (V )] and satisfies T (V ) =
T (V )[V−1 − P (�)GvacP (�)]T (V ), Gvac is implicitly pro-
jected onto a domain � [denoted by the orthogonal projection
operator P (�)] which contains the support of V , and all
quantities are evaluated at ω = iξ . We note that the formula
for T arises from standard EM scattering theory [57,58] for-
mulated as a Lippmann-Schwinger equation [59], and while
we leave a derivation of the CP force formula to Appendix B,
we point out that the actual CP force may be written more
simply in terms of the scattering Green’s function Gsca (V ) =
GvacT (V )Gvac of a particular macroscopic object with sus-
ceptibility V (as writing it in this form is more typical of
prior work on CP forces [1–3,5,28]). Henceforth, we assume
that V represents a scalar (homogeneous, local, isotropic)
susceptibility χ . Our goal then is to find bounds such that Fk ∈
[F−

k , F+
k ]. We note that at ω = iξ , V , Gvac, and T in general

are real-symmetric operators in position space, with V and T
being positive definite while Gvac is negative definite (and this
applies to its diagonal projected blocks too). Our derivations
are based on analytical optimization using the principles of
Lagrange duality, incorporating physical constraints imposed
by T ; similar techniques have recently been used to derive
bounds on deterministic EM scattering phenomena [60].

We first consider the problem of optimizing
∂

∂Rk
〈Einc,T (V )Einc〉 = 2〈 ∂Einc

∂Rk
,TEinc〉 for an arbitrary

incident field |Einc〉. In particular, we define the action
of T (V ) to be a new vector |P〉 = T (V )|Einc〉 and
optimize the quantity 2〈 ∂Einc

∂Rk
, P〉 with respect to |P〉,

assuming that the response |P〉 can be chosen arbitrarily
given its support. However, we also take care to impose
the equality constraint, which for a homogeneous
local isotropic susceptibility χ may be rewritten as
T (V ) = T (V )[χ−1P (�) − P (�)GvacP (�)]T (V ) because
the replacement of V−1 = χ−1P (V ) in the middle term
in the product by χ−1P (�) is allowed as the support of
T (V ) coincides with that of V and is in turn always a

weak subset of �. The equality constraint ensures physical
consistency, and evaluating this with respect to |Einc〉 gives
〈Einc, P〉 = χ−1〈P, P〉 − 〈P,GvacP〉, which is positive as T
is positive definite. For convenience, we define the eigenvalue
decomposition of the projection of Gvac into the given domain
� as P (�)GvacP (�) = −∑

μ ρμ|N(μ)〉〈N(μ)|, where ρμ > 0,
and the eigenvectors are orthonormal: 〈N(μ), N(ν)〉 = δμν .
We then define the basis expansions vμ = 〈N(μ), Einc〉 =
〈Einc, N(μ)〉 and tμ = 〈N(μ), P〉 = 〈P, N(μ)〉. As the domain
choice is independent of R, then 2〈 ∂Einc

∂Rk
, P〉 = 2

∑
μ

∂vμ

∂Rk
tμ.

This leads to the constrained optimization of the objective

L =
∑

μ

{
2
∂vμ

∂Rk
tμ − λ

[
tμvμ − (χ−1 + ρμ)t2

μ

]}
, (3)

where λ is a Lagrange multiplier.
We prove domain monotonicity of our bounds as follows.

The support of |P〉, encoded in the expansion coefficients {tμ},
is a subset of the domain � into which we choose to project
Gvac. Enlarging the domain � cannot affect the equality con-
straint, because the equality constraint involves the operator
T (V ) that is supported in this subset of �, so any enlargement
of the domain � will ultimately be collapsed to the smaller
support of the operator T (V ). Similarly, the magnitude of the
bound cannot decrease with increasing domain �, because
the expansion coefficients {tμ} representing |P〉 can always
be chosen to remain unchanged with an increasing domain
�, given that the objective collapses onto the smaller domain
(the support of |P〉) anyway. Thus, our bound is domain
monotonic, and so any domain with projection operator P (�)
that fully encloses all possible object designs of interest can
be used to generate bounds: Put simply, any optimal design
for attraction or repulsion in a given domain cannot outdo the
corresponding optimal design from a superset of that domain.

Carrying out the optimization yields the equations
2 ∂vμ

∂Rk
− λ[vμ − 2(χ−1 + ρμ)tμ] = 0 and

∑
μ[tμvμ − (χ−1 +

ρμ)t2
μ] = 0. The first equation gives tμ = 1

χ−1+ρμ
( vμ

2 − 1
λ

∂vμ

∂Rk
),

and plugging this into the second equation gives

λ ∈ ±2

√〈
∂Einc

∂Rk
, [χ−1P (�) − P (�)GvacP (�)]−1 ∂Einc

∂Rk

〉
〈Einc, [χ−1P (�) − P (�)GvacP (�)]−1Einc〉 .

The constrained objective has δ2L
δtμδtν

= 2λ(χ−1 + ρμ)δμν , so
the negative value of λ gives the maximum while the positive
value gives the minimum. (Another special stationary point
corresponding to λ = 0, which is a saddle point, can be found
if | ∂Einc

∂Rk
〉 = 0; this cannot arise for the incident field radiated

by a dipole into a domain, so we do not consider it further.)
Hence, L ∈ [L−, L+], with

L± =
〈
∂Einc

∂Rk
, [χ−1P (�) − P (�)GvacP (�)]−1Einc

〉

±
√〈

∂Einc

∂Rk
, [χ−1P (�) − P (�)GvacP (�)]−1

∂Einc

∂Rk

〉〈
Einc, [χ−1P (�) − P (�)GvacP (�)]−1Einc

〉
. (4)
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For our problem of interest, we set |Einc〉 =
Gvac|u(β )〉 and identify Gsca(�) = Gvac[χ−1P (�) −
P (�)GvacP (�)]−1Gvac as the scattering Green’s function of
the equivalent object formed by filling the entire domain �

with the susceptibility χ [57,58]. As each αβ (iξ ) > 0, the net
upper bound cannot fall below the upper bound applied to
each channel β, just as the net lower bound cannot fall below
the per-channel lower bound. This argument also applies to
integration over ξ and so (1) follows.

The above derivation has focused on forces along a given
Cartesian direction k, by virtue of taking derivatives with
respect to the dipole coordinate Rk . While this in itself is
sufficient for yielding bounds on vertical as well as lateral
forces, the result can be further generalized, such that if the
dipolar basis functions {|u(β )〉} (but not the polarizabilities,
nor any properties of the macroscopic body) depend on some
parameter p, upper and lower bounds on the derivative of the
CP energy with respect to p follow simply by replacing the
derivatives ∂/∂Rk with ∂/∂ p. For example, bounds on Casimir
torques can be obtained by casting the dipolar basis functions
in terms of a rotation angle about some axis and using that as
the aforementioned parameter p.

We finally note that magnetic CP forces [61] due to non-
trivial magnetic dipolar polarizabilities (which can arise even
for vanishing magnetic susceptibilities [58]) can be bounded
in exactly the same way, due to the same form of the CP
force itself: The magnetic contribution to the force arises from
replacing, in (1), the electric polarizabilities αβ (and corre-
sponding dipolar basis functions |u(β )〉 encoding the dipolar
position and principal axes) and the electric scattering Green’s
function Gsca (�) (from filling the domain �) with their
magnetic counterparts, namely the magnetic polarizabilities
and principal axes along with the magnetic scattering Green’s
function from a magnetic source. The two contributions can
be added to yield the total upper and lower bounds on the CP
force. For the remainder of this paper, we focus only on the
electric polarizabilities of dipolar particles, because magnetic
contributions tend to be smaller by a factor of the square of the
fine structure constant [61], but emphasize that our general
method is amenable to including magnetic contributions in
limits to Casimir-Polder forces.

IV. DISCUSSION

Domain monotonicity allows us to choose the largest do-
main enclosing any desired design, as any optimal design for
attraction or repulsion in a given domain � cannot outdo the
corresponding optimal design from a superset of that domain.
This also means that while F±

k in (1) may be indefinite when
directly evaluated, the actual bounds can be said to have a
definite sign in the following way. If F+

k (F−
k ) is negative

(positive) when filling the domain � with the susceptibility
χ , naïvely suggesting that the maximum (minimum) possible
force is attractive (repulsive), this can be circumvented by
simply choosing the optimal |P〉 to vanish in the domain �,
so the actual maximum (minimum) possible force vanishes
simply by virtue of the macroscopic body being absent.
Therefore, we may say that F+

k (F−
k ) is non-negative (nonpos-

itive), being the maximum (minimum) of zero and the given

expression in (1), and is therefore in the context of vertical CP
forces a repulsive (attractive) bound.

Gratings, plates with apertures, wedges, and knife-edge
geometries have all been studied in the context of CP repul-
sion, and experiments of interest typically consider extended
nanostructured media, so we take the domain � to be a planar
semi-infinite half-space; this choice ensures the existence of
a separating plane between the dipole and the macroscopic
object, in contrast to interleaved geometries [62], allowing
effective repulsion through lateral forces. For this choice,
Gsca of the equivalent object admits semianalytical expres-
sions [63] (see Appendix A for more details). Additionally,
the CP force and its bounds are linear functionals of the
polarizabilities αβ (iξ ), and become simple linear functions if
the polarizabilities are assumed to be dispersionless. Thus, for
simplicity, we consistently choose the principal axes to align
with the Cartesian axes, and consider αx(0) = αy(0) = α‖
and αz(0) = α⊥. The dipole location is taken to be R = dez,
where d is the minimum separation of the dipole from the
design domain, and the force direction of interest to lie along
ez. This choice of polarizabilities allows us to decompose
the force into parallel and perpendicular components, F±

z =
g±

‖ + g±
⊥α⊥/α‖ for appropriate functions g±

‖ and g±
⊥ which

are linearly proportional to α‖, so F±
z /α‖ is an affine linear

function of the polarizability ratio (similar to an aspect ratio)
α⊥/α‖. These assumptions make evaluation and analysis of
the CP force bounds particularly convenient.

We begin by considering a macroscopic body of disper-
sionless susceptibility χ (iξ ) = χ0. This leads to the simple
result that the bounds F±

z for this domain, as well as the CP
force for a nondispersive dipole above a planar semi-infinite
bulk of susceptibility χ0, both scale as d−5. Therefore, we
need only consider the dependence of these bounds on χ0

as well as the polarizability ratio α⊥/α‖. Figure 2 shows the
bounds, as well as the actual attractive CP force above a
planar semi-infinite bulk of susceptibility χ0, as a function
of α⊥/α‖ for multiple χ0 (a), and as a function of χ0 for
the isotropic case α⊥ = α‖ (b). As expected, for any nonzero
χ0 and α‖, the bounds and planar force (normalized by the
dependence on d and α‖) attain a nonzero value for α⊥ =
0, and increase linearly with α⊥/α‖; moreover, the bounds
increase monotonically with χ0, saturating at finite values
in the perfect electrically conducting (PEC) limit χ0 → ∞.
Stunningly, the actual force is consistently within 10% of
the lower bound for all χ0 and α⊥/α‖, indicating that nanos-
tructuring can only weakly enhance attractive CP forces in
extended geometries. In (1), the first term in the summand is
half of the actual force above a planar semi-infinite bulk, so
the second term is crucial to making the bounds valid and tight
for this domain choice. Conversely, at every χ0 and α⊥/α‖,
the upper bound is positive, suggesting that at any d and
for any polarizability ratio and χ0, there are in fact potential
macroscopic geometries that can meaningfully repel dipoles.
The tightness of the lower bounds indicates that these limits
capture essential physics. Hence, it is fairly plausible that
tailored macroscopic geometries approaching the upper bound
do exist. It is also worth mentioning that in the few geometries
where repulsion is predicted for strongly anisotropic dipoles,
it is prohibited for isotropic dipoles, but our upper bounds do
not rule out the existence of other repulsive geometries even
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FIG. 2. Material and anisotropy dependence of bounds on
Casimir-Polder forces. (a) Upper and lower bounds to the CP force
(blue and red lines, respectively, in the upper or lower parts of
the plot) on a nondispersive anisotropic dipole of parallel and per-
pendicular polarizabilities α‖ and α⊥, above a planar semi-infinite
half-space domain, along with the actual force above a planar semi-
infinite bulk (gray lines, nearly overlapping with red lines in the
lower part of the plot), normalized to h̄cα‖/8π 2d5 for separation
d , as a function of α⊥/α‖. The macroscopic susceptibility χ0 is
nondispersive and increases logarithmically from 10−2 to 106 (going
from lighter to darker shades upward in the upper part of the plot or
downward in the lower part of the plot). (b) Same as panel (a) but
plotted against χ0 for the isotropic case α⊥ = α‖.

for isotropic dipoles. Finally, we point out that the magnitude
of the upper bounds are consistently more than an order of
magnitude smaller than the magnitude of the lower bounds.

Next, we relax the assumption that χ (iξ ) is nondispersive,
and consider the particular case of a gold medium, for which
χ (iξ ) = ω2

p/(ξ 2 + γ ξ ) for ωp = 1.37 × 1016 rad/s and γ =
5.32 × 1013 rad/s [64]. For simplicity, we continue to neglect
dispersion in α‖ and α⊥, so the linear scaling of the bounds
with α‖ and affine linear scaling with α⊥/α‖ are preserved.
The introduction of dispersion means that the bounds no
longer scale uniformly as d−5: As seen in Fig. 3, the bounds
transition from the nonretarded scaling of d−4 toward d−5 as
the separation increases. The linear increase in the bounds
with α⊥/α‖ is also clear. More importantly, while more than
an order of magnitude smaller than the lower bounds, for
a dispersive metal like gold the possibility of repulsion is
still not ruled out as the upper bounds remain positive for
all d and α⊥/α‖. For attraction, the actual forces produce

FIG. 3. Distance dependence of bounds on Casimir-Polder
forces for gold nanostructures. Repulsive and attractive bounds on
CP forces as in Fig. 2 but with the macroscopic susceptibility χ

corresponding to that of gold and α⊥/α‖ increasing logarithmically
from 10−2 to 102 (going from lighter to darker shades upward in the
upper part of the plot or downward in the lower part of the plot).
Also shown is the CP force on a gold needle above a gold plate with
a circular aperture from Ref. [49] (dark blue star), corresponding to a
static anisotropic polarizability ratio α⊥/α‖ ≈ 51.1 at d = 200 nm;
bounds for α⊥/α‖ = 50 are marked in dashed lines.

from the planar geometry are again within 10% of the cor-
responding lower bounds for all d and α⊥/α‖, demonstrating
that these results are not simply artifacts of a nondispersive
χ . We further compare the bounds for gold to the actual
repulsive force by a gold plate with a circular aperture upon a
gold nanorod at a center-to-center separation of d = 200 nm,
approximating the nanorod as an ellipsoid with the same
major and minor axes (320 and 20 nm, respectively) using the
anisotropic Clausius-Mossotti form of the polarizability [65].
The dipolar approximation may not be valid given that the
separation is smaller than the major axis length, but we use
this simply as a heuristic to make qualitative comparisons
to our bounds. Approximating the nanorod as a PEC, the
polarizability ratio is α⊥/α‖ ≈ 51.1: For that ratio and d , the
actual force [49] is more than two orders of magnitude smaller
than the upper bound, strongly suggesting that macroscopic
geometries optimized for CP repulsion may look quite differ-
ent from prior proposed geometries. Finally, we briefly note
comparisons to other material models. The bounds show qual-
itatively similar behaviors for polar dielectrics like undoped
silicon as for metals like gold, though those of silicon are
smaller than their counterparts for gold. Also, the differences
between gold evaluated using this Drude susceptibility versus
a plasma susceptibility are negligible for the actual forces
on a dipolar particle above a semi-infinite slab, as well as
for the corresponding bounds in such a domain, at zero or
room temperatures (consistent with prior findings to which we
compare [49]). Both of these results are further discussed in
Appendix C.

In summary, we have derived bounds for the CP force on
a general anisotropic dipolar body by a macroscopic body
of susceptibility χ enclosed within a prescribed domain,
and have evaluated these bounds specifically for a planar
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semi-infinite half-space domain. The lower bounds are nearly
achieved by the typical geometry of a dipole above a uniform
planar body, whereas existing predictions of repulsive CP
forces in geometries involving conductors with sharp edges
fall nearly two orders of magnitude below the limits on repul-
sion. We expect that, similar to other nanophotonic phenom-
ena like local density of states modifications and radiative heat
transfer, optimal structures for attraction or repulsion found
through brute-force techniques such as topology optimiza-
tion [66–68] will look very different from the high-symmetry
geometries proposed thus far. In particular, the tightness of
the lower (attractive) bounds for known structures suggests
that appropriately designed structures, aided by advances
in computational design [66–68] and fabrication [68,69] in
nanophotonics, may indeed approach the upper bounds and
yield measurable repulsive CP forces even for relatively
isotropic dipoles like Rydberg atoms, in contrast to existing
designs [1,2,44,49,50], yielding much greater control over
ultracold atoms, molecules, and dipolar nanoparticles. Addi-
tionally, we point out that a specific structure optimized for
repulsion from a dipole at a given distance will attract dipoles
when that distance is increased beyond a certain point, but for
such changes in distance, redoing optimization for repulsion
may yield different structures. Though our results focused
on the force normal to the plane separating the dipolar and
extended bodies, (1) can be employed to bound lateral forces
and torques, the subject of much recent interest [18,25,35,70–
74], as well as forces involving compact objects.
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APPENDIX A: GREEN’S FUNCTION EXPRESSIONS
IN REAL SPACE

We define Gvac as the tensor operator that is the
inverse of the Maxwell operator, satisfying {[∇ × (∇×)] −
(ω/c)2I}Gvac(ω, x, x′) = (ω/c)2Iδ3(x − x′). In position
space and evaluating at ω = iξ , this yields the expression
Gvac(iξ, x, x′) = [∇ ⊗ ∇ − (ξ/c)2](e−ξ |x−x′ |/c/4π |x − x′|).

The scattering Green’s function at ω = iξ in the vacuum
region above a uniform planar semi-infinite half-space of
susceptibility χ is [63]

Gsca (iξ, x, x′) = 1

2

∫ ∞

−∞

∫ ∞

−∞
[Ms(iξ, k) + Mp(iξ, k)]

× ei[kx (x−x′ )+ky (y−y′ )]−κz (z+z′ ) dkxdky

(2π )2
(A1)

defined in terms of the Cartesian tensors

Ms(iξ, k) = −ξ 2rs(iξ, k)

c2κzk2

⎡
⎢⎢⎣

k2
y −kxky 0

−kxky k2
x 0

0 0 0

⎤
⎥⎥⎦, (A2)

Mp(iξ, k) = rp(iξ, k)

k2

⎡
⎢⎢⎣

κzk2
x κzkxky −ik2kx

κzkxky κzk2
y −ik2ky

ik2kx ik2ky k4/κz

⎤
⎥⎥⎦, (A3)

which are in turn defined in terms of k = kxex + kyey, k = |k|,
κz =

√
(ξ/c)2 + k2, and the Fresnel reflection coefficients

rs(iξ, k) =
√

(ξ/c)2 + k2 −
√

(1 + χ )(ξ/c)2 + k2√
(ξ/c)2 + k2 +

√
(1 + χ )(ξ/c)2 + k2

, (A4)

rp(iξ, k) = (1 + χ )
√

(ξ/c)2 + k2 −
√

(1 + χ )(ξ/c)2 + k2

(1 + χ )
√

(ξ/c)2 + k2 +
√

(1 + χ )(ξ/c)2 + k2

(A5)

at ω = iξ .

APPENDIX B: CASIMIR-POLDER FORCE DERIVATION

We start our derivation of the (zero-temperature) Casimir-
Polder force between a dipole of susceptibility Vdip and a
macroscopic body of susceptibility V from the exact expres-
sion for the (zero-temperature) Casimir force between the two
bodies. This force is written as [57]

Fk = − ∂

∂Rk
h̄

∫ ∞

0
ln(det[I − TdipG

vacTGvac])
dξ

2π
, (B1)

where T = (V−1 − Gvac)−1 = (I − VGvac)−1V and like-
wise Tdip = (V−1

dip − Gvac)−1 = (I − VdipGvac)−1Vdip, and
where all quantities are evaluated at ω = iξ . Here, R is taken
to denote the dipole location, and Tdip is the only quantity that
depends on it.

The force may be rewritten as

Fk = h̄
∫ ∞

0
Tr

[
GvacTGvac(I − TdipG

vacTGvac)−1

× ∂

∂Rk
Tdip

]
dξ

2π
(B2)

after applying the derivative to the integrand. At this point,
it is assumed that the dipole is small enough compared to
the macroscopic body that multiple scattering effects may
be neglected, though multiple scattering within each object
is not. This has the effect of making the replacement (I −
TdipGvacTGvac)−1 → I. Furthermore, we expand the dipolar
response, including local field effects, along its principal axes
as Tdip = ∑

β αβ |u(β )〉〈u(β )|, where each αβ (iξ ) > 0 is a prin-
cipal polarizability, while u(β )(x) = nβδ3(x − R) corresponds
to a localized basis function at R along principal axis nβ .
Finally, using the cyclic properties of the trace and the inde-
pendence of Gvac, T , and αβ from R yields the Casimir-Polder
force

Fk = h̄

2π

∫ ∞

0

∑
β

αβ

∂

∂Rk
〈u(β ),GvacTGvacu(β )〉 dξ (B3)

exactly as in the main text.
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FIG. 4. Distance dependence of bounds on Casimir-Polder
forces for silicon nanostructures. Repulsive and attractive bounds on
CP forces (blue and red lines, respectively, in the upper or lower part
of the plot) and actual force (gray lines, nearly overlapping with red
lines in the lower part of the plot) for the macroscopic susceptibility
χ corresponding to that of silicon and α⊥/α‖ increasing logarithmi-
cally from 10−2 to 102 (going from lighter to darker shades upward
in the upper part of the plot or downward in the lower part of the
plot).

APPENDIX C: FURTHER RESULTS FOR EVALUATIONS
OF BOUNDS

We provide more results for evaluations of our bounds,
starting with undoped silicon at zero temperature in Fig. 4.
The dispersion of intrinsic silicon is given by [75] χ (iξ ) =
ε(∞) − 1 + ε(0)+ε(∞)

1+ξ 2/ω2
0

, where ε(0) = 11.87, ε(∞) = 1.035,

and ω0 = 6.6 × 1015 rad/s. From this, it is clear that the
bounds for undoped silicon qualitatively behave like those for
gold, though those of silicon are smaller than their counter-
parts for gold.

Next, we provide further comparisons of the evaluations
of the bounds for gold in the main text to cases where
the temperature is varied or a different model is used. In
particular, at zero temperature, the expressions for the ac-
tual force and bounds in the main text hold. If the actual
CP force or its bounds at zero temperature are written as
F (0) = h̄

∫ ∞
0 f (iξ ) dξ

2π
for the corresponding integrand f (iξ ),

then the corresponding quantities for temperature T > 0 are
F (T ) = kBT

∑∞
n=0

′ f (iξn) where the Matsubara frequencies
are ξn = 2πkBT n/h̄, and the prime on the summation im-
plies a prefactor of 1/2 for the contribution at n = 0; we
particularly consider room temperature, namely T = 300 K.
We further compare results from the Drude model, for which
χ (iξ ) = ω2

p/(ξ 2 + γ ξ ) for ωp = 1.37 × 1016 rad/s and γ =
5.32 × 1013 rad/s, to those of the plasma model, setting γ →
0 in the aforementioned expression. As is clear from Fig. 5,

FIG. 5. Distance dependence of bounds on Casimir-Polder forces for gold nanostructures: dependence on model and temperature.
Repulsive and attractive bounds on CP forces (blue and red lines, respectively in the upper or lower part of the plots) and actual force (gray
lines, nearly overlapping with red lines in the lower part of the plots) with the macroscopic susceptibility χ corresponding to that of gold and
α⊥/α‖ increasing logarithmically from 10−2 to 102 (going from lighter to darker shades upward in the upper part of the plots or downward in
the lower part of the plots), for the Drude model at zero (a) or room (b) temperatures. [(c), (d)] Same as panels (a) and (b), respectively, using
the plasma model instead.
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FIG. 6. Ratios of bounds on Casimir-Polder forces for gold nanostructures. Ratios of corresponding repulsive and attractive bounds on CP
forces (blue and red lines) and actual forces (gray lines, nearly overlapping with red lines), with the macroscopic susceptibility χ corresponding
to that of gold and α⊥/α‖ increasing logarithmically from 10−2 to 102 (lighter to darker shades). For panels (a) and (b), ratios are of F (300 K)

F (0)
for the Drude (a) or plasma (b) models: For both plots, from top to bottom, the top-most dark blue curve is the repulsive bound ratio for
α⊥/α‖ = 102, the next dark red curve is the attractive bound ratio for α⊥/α‖ = 102, the following light red curve is the attractive bound ratio
for α⊥/α‖ = 10−2, and the bottom-most light blue curve is the repulsive bound ratio for α⊥/α‖ = 10−2. For panels (c) and (d), ratios are of
FAu,plasma

FAu,Drude
, for zero (c) or room (d) temperatures: For both plots, from top to bottom, the top-most light red curve is the attractive bound ratio for

α⊥/α‖ = 10−2, the next light blue curve is the repulsive bound ratio for α⊥/α‖ = 10−2, the following dark red curve is the attractive bound
ratio for α⊥/α‖ = 102, and the bottom-most dark blue curve is the repulsive bound ratio for α⊥/α‖ = 102.

the corresponding actual CP forces and bounds are all quite
close to each other in each case. This is further made clear
in Fig. 6 by the fact that for each material model, the ra-
tios F (300 K)

F (0) do not significantly stray from 1 even at d =
1 μm, and the same is true of the ratios FAu,plasma

FAu,Drude
for each

temperature.
Ultimately, this means that our bounds on CP forces when

the macroscopic body is made of gold, just like the actual
force on a dipole above a semi-infinite gold half-space, do
not depend strongly on the particular susceptibility model
(Drude versus plasma), nor on the temperature. The contrast
between this, in conjunction with prior theoretical work [49]

showing minimal differences in predictions of the CP force
on a vertical needle by a plate with a hole using the Drude or
plasma models, versus the more significant discrepancies in
predictions of the forces between parallel semi-infinite planar
slabs, which is the subject of ongoing experimental contro-
versy [18,76–78], suggests that the presence and magnitude
of such discrepancies may in fact be much more dependent
on specific geometries. In any case, this paper intends not
to specifically comment on this particular controversy but
to more generally present bounds that can be applicable at
any temperature and any appropriate local, homogeneous,
isotropic model of material dispersion.
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