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Lower bounds for the mean dissipated heat in an open quantum system
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Landauer’s principle provides a perspective on the physical meaning of information as well as on the
minimum working cost of information processing. Whereas most studies have related the decrease in entropy
during a computationally irreversible process to a lower bound of dissipated heat, recent efforts have also
provided another lower bound associated with the thermodynamic fluctuation of heat. The coexistence of the
two conceptually independent bounds has stimulated comparative studies of their close relationship or tightness;
however, these studies were concerned with finite quantum systems that allowed the revival of erased information
because of a finite recurrence time. We broaden these comparative studies further to open quantum systems
with infinite recurrence times. By examining their dependence on the initial state, we find the independence
of the thermodynamic bound from the initial coherence, whereas the entropic bound depends on both the
initial coherence and the population. A crucial role is indicated by the purity of the initial state: The entropic
bound is tighter when the initial condition is sufficiently mixed, whereas the thermodynamic bound is tighter
when the initial state is close to a pure state. These trends are consistent with previous results obtained for
finite systems.
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I. INTRODUCTION

Minimizing energy consumption in information process-
ing is an ultimate goal of nanotechnology. Its physical lim-
itation is given by Landauer’s principle, which states that
computational irreversibility stems from information erasure
accompanying the inevitable heat dissipation. According to
this principle, a lower bound for heat is provided by the
corresponding reduction in informational entropy [1] and
thereby establishes a fundamental link between information
theory and thermodynamics [2,3]. The principle plays a key
role in resolving Maxwell’s demon paradox by clarifying that
the energy dissipation accompanying the information erasure
in the demon’s operation produces an adequate amount of
entropy to ensure the validity of the second law of ther-
modynamics [4–6]. In the classical regime, the validity of
the principle has been proven for a wide range of systems
theoretically [7,8] and experimentally [9–12].

Significant down-sizing of electronic devices or the rapid
development of quantum information technology has stimu-
lated generalizations of the principle to the quantum regime.
Based on the information theoretic framework, such gen-
eralizations have been provided for several quantum sys-
tems [8,13], even in nonequilibrium scenarios [14,15]. In the
quantum regime, the dissipated heat is bounded by the reduc-
tion of the von Neumann entropy of the relevant system. The
principle has been tested in a quantum logic gate [16] or with
a molecular nanomagnet [17]. Because information erasure
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is ubiquitous in quantum operations, the quantum Landauer
principle has also provided a suitable framework to estimate
working costs in quantum information processing [18–22] and
quantum thermodynamics [23,24].

Apart from the conventional studies based on information
theory, recent studies show that other approaches relying on
nonequilibrium dynamics may also provide a thermodynamic
lower bound [25,26]. This bound was first derived by study-
ing a dynamical map represented by the Lindblad operator
and employing a nonequilibrium fluctuation relation for the
heat [25]. In Ref. [26], it was reformulated in terms of full
counting statistics (FCS) [27].

Despite their different origins, both bounds are valid and
hence stimulated successive comparative studies on their
tightness [25,26,28]. These studies have been performed for
exactly solvable systems within a finite environment. In par-
ticular, in Ref. [28], the authors systematically studied the
dependence of the bounds on the initial state of a single
spin-1/2 system contacting with another single spin-1/2 “en-
vironment” thereby clarifying the following difference: The
thermodynamic bound depends only on the initial popula-
tion, whereas the entropic bound is relevant to the initial
coherence. As a result, they found the appearance of a sharp
boundary at which the relative tightness switches. Although
the conventional studies allow the exact evaluation of the
quantities, the process is not an actual erasure because the
erased information can be revived because of the finiteness of
the recurrence time. Therefore, examining whether the trends
of the bounds summarized above hold is worthwhile even
for an open quantum system with an environment containing
infinite degrees of freedom.
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In this paper, we provide a systematic study of the relative
tightness of the bounds for the spin-boson model composed
of a single spin-1/2 system and an environment consist-
ing of an infinite number of bosons. Our analysis is based
on the FCS formalism developed in Ref. [26] with the
time-convolutionless (TCL) type of quantum master equa-
tion [29,30]. With this formalism, we show that the above
summarized trends of the bounds reported in Ref. [28] also
hold even for an open quantum system with an infinite recur-
rence time.

II. BOUNDS FOR DISSIPATED HEAT

We start with a brief review of the bounds for the dissipated
heat. In the quantum regime, a general protocol of the infor-
mation erasure is introduced in Ref. [15], which satisfies the
following prerequisites.

(i) The protocol involves a system S, the information
content of which we want to erase, and an environment E,
both described by certain Hamiltonians, denoted HS and HE ,
respectively.

(ii) The environment E is initially in the thermal equilib-
rium with a certain inverse temperature β, ρE (0) = ρ

eq
E ≡

exp(−βHE )/ TrE [exp(−βHE )], where ρE (t ) is the reduced
density operator of E.

(iii) The system S and the environment E are initially
uncorrelated, ρtot (0) = ρS (0) ⊗ ρ

eq
E , where ρtot (0) is the total

density operator of S + E and ρS (t ) is the reduced density
operator of S.

(iv) The erasure process itself proceeds by a unitary evo-
lution U generated by the total Hamiltonian H = HS + HE +
HSE , where HSE is an interaction between S and E.

In the protocol, the authors evaluate the heat dissipated
from system to environment during the erasure process by

〈�Q〉 = TrE {HE [ρE (t ) − ρE (0)]}. (1)

It is to be noted that the very definition of heat exchanged
between system and environment is still a controversial prob-
lem in quantum thermodynamics. In the standard formalism,
based on a division of change in the internal energy of the rele-
vant system (the “working substance”) into applied work and
exchanged heat, energy changes caused by time dependence
of the system Hamiltonian and of the system density matrix
are assigned to work and heat, respectively [31–33]. Follow-
ing this formalism, the work is zero in our case since HS is
time independent. This definition of heat is quite reasonable in
the weak-coupling case, since all the energy lost by the system
dissipates into the environment, while in the strong-coupling
case the situation is more subtle because of the non-negligible
role of the interaction energy [27,34–38]. In the present paper,
dealing with the weak-coupling case, we can therefore safely
employ Eq. (1) and evaluate it by using the full counting
statistics based on the two-point projective measurement of
environmental energy following the formalism provided in
Ref. [27].

Throughout the present paper, we study the quantum infor-
mation erasure process based on the protocol.

A. Entropic bound

In Refs. [14,15], an equality for the dissipated heat 〈�Q〉
was derived:

β〈�Q〉 = �S + I (S′; E ′) + D[ρE (t )||ρE (0)], (2)

where �S ≡ S[ρS (0)] − S[ρS (t )], with von Neumann en-
tropy S(ρ) ≡ −Tr[ρ ln ρ], is the entropy decrease in the
system; I (S′; E ′) ≡ S[ρS (t )] + S[ρE (t )] − S[ρtot (t )] is the
mutual information between S and E, quantifying the corre-
lation building up between S and E; and D[ρE (t )||ρE (0)] ≡
Tr[ρE (t ) ln ρE (t )] − Tr[ρE (t ) ln ρE (0)] is the relative entropy
in E representing the increase in free energy in the environ-
ment [14]. Because any deviation from the initial preparation
of the total system, the prerequisites (ii) and (iii), creates a
system–environment correlation or free energy in the envi-
ronment, both I (S′; E ′) and D[ρE (t )||ρE (0)] are positive in the
quantum information erasure process [14,15]. The fact implies
the quantum version of Landauer’s inequality,

β〈�Q〉 � �S, (3)

which states that the heat dissipation during the quantum
erasure process is bounded from below by the corresponding
reduction in von Neumann entropy. In the following, we refer
to Eq. (3) as the “entropic bound.”

B. Thermodynamic bound

Recently, growing interest in the thermodynamics of quan-
tum systems has induced a closer examination of the re-
lation between the dissipated heat and heat fluctuation in
the quantum information erasure process. Starting from the
unitary dynamics of the total (S + E ) system and employing a
heat fluctuation relation, the mean dissipated heat was found
to be bounded by a quantity associated with the dynamical
map governing the nonequilibrium dynamics of the memory
system S [25]. The explicit form of the bound is given by

β〈�Q〉 � − ln〈e−β�Q〉 = − ln

(
Tr

[∑
i

K†
i ρS (0)Ki

])
,

(4)

where {Ki}i denotes the Kraus operators of the map acting on
the system and depends on the environmental initial state and
the system-environment interaction. In the following, we refer
to Eq. (4) as the “thermodynamic bound.”

C. Full counting statistics formalism

The mean dissipated heat and the bounds may be formu-
lated using the FCS based on a two-point projective measure-
ment [26,27]. With the FCS, the mean dissipated heat may be
evaluated directly from the difference in the outcomes of suc-
cessive projective measurements of the energy of environment
HE . The measurement scheme is as follows. First, at τ = 0,
we perform a measurement of the HE to obtain an outcome
E0. During 0 � τ � t , the system undergoes a unitary time
evolution brought about by interaction between the system
and the environment. At τ = t , we perform another measure-
ment of HE to obtain another outcome Et . The net amount of
dissipated heat during the time interval t is therefore given by
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�Q = Et − E0, where its sign is chosen to be positive when
the energy is transferred from the system to the environment.

The cumulants of �Q are provided by its cumulant gener-
ating function:

�(η, t ) ≡ ln
∫ ∞

−∞
Pt (�Q)e−η�Qd�Q, (5)

where Pt (�Q) is the probability distribution function of �Q
and η is the counting field associated with HE . Hence, the
mean dissipated heat during the time interval t may be ex-
pressed by the first derivative of the cumulant generating
function:

〈�Q〉 = −∂�(η, t )

∂η

∣∣∣∣
η=0

. (6)

The FCS provides a systematic method to evaluate the cumu-
lant generating function [27]. Let us formally rewrite it as

�(η, t ) = ln TrS
[
ρ

(η)
S (t )

]
, (7)

with

ρ
(η)
S (t ) ≡ TrE [Uη/2(t, 0)ρtot (0)U †

η/2(t, 0)], (8)

where Uη/2(t, 0) ≡ e−(η/2)HE U (t, 0)e(η/2)HE , U (t, 0) is the
time evolution operator for the total system, and ρtot (0)
is the density matrix for the total system at t = 0.
Assuming a factorized initial condition ρtot (0) = ρS (0) ⊗
ρ

eq
E with the Gibbs state of the environment ρ

eq
E =

exp(−βHE )/ TrE [exp(−βHE )], the time evolution of the op-
erator ρ

(η)
S (t ) obeys the time local equation

d

dt
ρ

(η)
S (t ) = ξ (η)(t )ρ (η)

S (t ), (9)

which is the TCL-type quantum master equation modified to
include the counting field [29]. The dynamics of the relevant
system can also be described by several formalisms such as
the Gorini-Kossakowski-Sudarshan-Lindblad equation or the
Redfield equation, both of which are relying on the Born-
Markov approximation. Instead, the second-order TCL mas-
ter equation relies only on the second-order weak-coupling
(Born) approximation. Since the Markovian approximation is
legitimate in a time scale sufficiently longer than correlation
time of the system-environment coupling, here we employ
the second-order TCL master equation formalism expecting
to obtain a better description of the dynamics even in a
short-time region [39,40]. To second order in the system-
environment coupling, the modified generator ξ (η)(t ) is
given by

ξ (η)(t )ρS = − i

h̄
[HS, ρS] + K (η)

2 (t )ρS, (10)

with

K (η)
2 (t )ρS ≡ − 1

h̄2

∫ t

0
dτ TrE

[
HSE ,

[
HSE (−τ ), ρS ⊗ ρ

eq
E

]
η

]
η
,

(11)

where HSE (t ) ≡ ei(HS+HE )t/h̄HSE e−i(HS+HE )t/h̄, and [X,Y ]η ≡
X (η)Y − Y X (−η) with X (η) ≡ e−ηHE /2Xe+ηHE /2. We note that
the familiar master equation describing the time evolution of
the usual density operator is recovered by taking η = 0 in

Eq. (9). In terms of the TCL master equation formalism, the
mean dissipated heat is expressed by [29]

〈�Q〉 = −
∫ t

0
TrS

[
∂ξ (η)(t )

∂η

∣∣∣∣
η=0

ρ
(0)
S (t )

]
. (12)

Let us now provide expressions of the bounds in the FCS
formalism. With ρ

(0)
S (t ) denoting the usual reduced density

operator for system S, we obtain the entropic bound by eval-
uating the temporal reduction of the von Neumann entropy
S[ρ (0)

S (t )] ≡ −TrS[ρ (0)
S (t ) ln ρ

(0)
S (t )]:

Ben(t ) ≡ S
[
ρ

(0)
S (0)

] − S
[
ρ

(0)
S (t )

]
. (13)

The thermodynamic bound is obtained using the convexity of
�(η, t ) [41], which leads to the inequality

�(η, t ) � η
∂

∂η
�(η, t )|η=0. (14)

It immediately provides a one-parameter family of bounds for
the mean dissipated heat:

β〈�Q〉 � −β

η
�(η, t ). (15)

For η = β, it leads to the thermodynamics bound Eq. (4).
Therefore, we obtain a FCS expression for the thermodynamic
bound:

Bth(t ) ≡ − ln〈e−β�Q〉 = −�(β, t ) = − ln TrS
[
ρ

(β )
S (t )

]
,

(16)

where we have used Eq. (7) in the last equality.

III. SPIN-BOSON MODEL

A. Model

For convenience, we hereafter use units with h̄ = 1. The
spin-boson model describes a spin-1/2 system interacting
with an environment consisting of an infinite number of
bosonic modes. Its Hamiltonian consists of three terms, H =
HS + HE + HSE , with

HS = ω0

2
σz, HE =

∑
k

ωkb†kbk, and HSE = σx ⊗ BE , (17)

where σz,x denote the Pauli matrices, ω0 denotes the energy
difference between the excited (|1〉) and ground (|0〉) states of
the system, ωk is the energy of the kth bosonic mode, and BE

is the environmental operator defined by

BE ≡
∑

k

(gkb†k + g∗
kbk ), (18)

with the coupling strength between the system and the kth
environmental mode gk .

B. TCL master equation

We assume that the system-environment coupling is weak
and employ the second-order modified TCL master equa-
tion (9). In this paper, we paid attention to the dependence
of the bounds on the initial state of the spin system, especially
on its initial coherence and population. For this purpose, it
is convenient to introduce the Bloch vector representation
of the density operator because its x and z components are
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representing coherence and population directly. In the pres-
ence of the counting field, the modified density matrix of the
spin system ρ

(η)
S (t ) is represented by a modified Bloch vec-

tor v(η)(t ) = (v(η)
x (t ), v(η)

y (t ), v(η)
z (t ), v(η)

0 (t ))T with v(η)
μ (t ) ≡

TrS[σμρ
(η)
S (t )] (μ = x, y, z) and v

(η)
0 (t ) ≡ TrS[ρ (η)

S (t )], where
a fourth component v

(η)
0 (t ) is required because the unity of

the trace of ρ
(η)
S (t ) is not preserved for t > 0 when η 	=

0. Because the modified density operator ρ
(η)
S (t ) is reduced

to the usual density operator at η = 0, the modified Bloch
vector is also reduced to the usual Bloch vector as v(0)(t ) =
(v(0)

x (t ), v(0)
y (t ), v(0)

z (t ), 1)T. Using the modified Bloch vector
representation, the modified TCL master equation (9) is cast
into the form of a Bloch equation:

d

dt
v(η)(t ) = G(t )v(η)(t ), (19)

with

G(t ) =

⎛
⎜⎜⎜⎝

a(η)
− (t ) −ω0 + b(η)

− (t ) 0 0

ω0 − b(η)
+ (t ) a(η)

+ (t ) 0 0

0 0 a(η)
+ (t ) c(η)

+ (t )

0 0 c(η)
− (t ) a(η)

− (t )

⎞
⎟⎟⎟⎠.

(20)
The matrix elements involve the autocorrelation function of a
modified environmental operator:〈

B(η)
E B(η)

E (−τ )
〉 ≡ TrE

[
B(η)

E B(η)
E (−τ )ρeq

E

]
, (21)

where B(η)
E ≡ e−ηHE /2BE e+ηHE /2 and B(η)

E (−τ ) ≡
e−iHE τ B(η)

E e+iHE τ , as

a(η)
± (t ) ≡ −

∫ t

0
dτ [h(η)

± (τ ) + h(−η)∗
± (τ )] cos(ω0τ ), (22)

b(η)
± (t ) ≡ −

∫ t

0
dτ [h(η)

± (τ ) + h(−η)∗
± (τ )] sin(ω0τ ), (23)

c(η)
± (t ) ≡ −i

∫ t

0
dτ [h(η)

± (τ ) − h(−η)∗
± (τ )] sin(ω0τ ), (24)

with

h(η)
± (τ ) ≡ 〈

B(η)
E B(η)

E (−τ )
〉 ± 〈

B(−η)
E B(η)

E (−τ )
〉
. (25)

The block-diagonal form of the matrix G(t ) indicates decou-
pling of the diagonal and off-diagonal elements of ρ

(η)
S (t ).

As the autocorrelation function of the bosonic bath operator
Eq. (21) takes a large value at high temperatures to break down
the second-order approximation on the TCL master equation
Eq. (10), we confine ourselves to analyzing the relatively
low-temperature region in the numerical analysis below.

In terms of the modified Bloch vector, the bounds are
formally expressed as

Ben(t ) = − ln
√

1 − |v(0)|2 − |v(0)|artanh|v(0)|
+ ln

√
1 − |v(t )|2 + |v(t )|artanh|v(t )|, (26)

where |v(t )| ≡
√

[v(0)
x (t )]2 + [v(0)

y (t )]2 + [v(0)
z (t )]2, and

Bth(t ) = − ln
[
v

(β )
0 (t )

]
. (27)

Since the cumulant generating function is expressed as
�(η, t ) = ln v

(η)
0 (t ), the mean dissipated heat, Eq. (6), is

rewritten as

〈�Q〉 = −∂v
(η)
0 (t )

∂η

∣∣∣∣
η=0

. (28)

From the formal expressions, we find that the thermodynamic
bound Bth(t ) and the mean dissipated heat 〈�Q〉 are asso-
ciated with the trace of ρ

(η)
S (t ), whereas the entropic bound

depends on both the diagonal and the off-diagonal elements.

IV. TIGHTNESS OF THE BOUNDS

We examine the relative tightness of the bounds against the
dissipated heat. We say a bound is tighter if the bound takes a
closer value to the dissipated heat. For this purpose, we evalu-
ate numerically the entropic bound Beq(t ), Eq. (26), the ther-
modynamic bound Bth(t ), Eq. (27), and the mean dissipated
heat 〈�Q〉, Eq. (28), for several initial states. To describe
the system-environment coupling, we use the Ohmic spectral
density with the exponential cutoff J (ω) ≡ ∑

k |gk|2δ(ω −
ωk ) = λω exp[−ω/�], where λ is the coupling strength and
� is the cutoff frequency. For the numerical calculations, we
choose ω0 as the frequency unit. Importantly, in the following
numerical evaluations, we choose the parameters such as
the system-bath coupling strength λ, the cutoff frequency �,
and the inverse temperature of the bath β to preserve the
positivity of the time evolution described by the second-order
TCL quantum master equation. The specific values of the
parameters are listed in the figure captions.

A. Time evolution of the bounds

Let us first examine the time evolutions of the bounds and
their dependence on the initial state. Special attention was
paid to the dependence on the initial coherence and the initial
population represented by vx(0) and vz(0), respectively. In
Fig. 1, we provide numerical estimates of the time evolutions
of the bounds Ben(t ) and Bth(t ) and the mean dissipated
heat 〈�Q〉 for specific initial conditions. In both panels,
the quantities exhibit transient behaviors approaching their
stationary values. They correspond to relaxations of the spin
system through the system-environment coupling. At t̄ = 50,
the quantities have almost reached their stationary values.
During the time evolutions, the entropic bound (red lines)
and the thermodynamic bound (blue lines) are located below
the mean dissipated heat (orange lines), indicating that both
quantities properly bound from below the dissipated heat.

In panel (a), we examine the dependence on the initial
coherence by comparing the time evolutions for two ini-
tial states with the same population without coherence, i.e.,
vx(0) = 0 (solid lines), and with coherence, i.e., vx(0) 	= 0
(dashed line). In the panel, solid and dashed lines coincide for
the thermodynamic bound and the mean dissipated heat. The
coincidences indicate that presence or absence of the initial
coherence is irrelevant to the thermodynamic bound and the
mean dissipated heat. As discussed later on this is a generic
feature valid whenever the time evolutions of diagonal and
off-diagonal matrix elements are independent. In contrast to
the two quantities, we find that the entropic bound depends on
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β ΔQ

Bth

Ben(vx = 0)

Ben(vx = 0.48)

t̄

(a)

(b)

t̄

β ΔQ

Ben

Bth

FIG. 1. Time evolution of the bounds Ben and Bth, and the mean
dissipated heat 〈�Q〉 for several initial conditions. (a) We compare
their time evolutions for two different initial conditions with the same
population without coherence [v1(0) = (0, 0, 0.28): solid lines] and
with coherence [v2(0) = (0.48, 0, 0.28): dashed lines]. Solid lines
and dashed lines coincide for the mean dissipated heat (orange line)
and the thermodynamic bound (blue line), whereas they diverge for
the entropic bound (red lines). (b) We plot their time evolutions
for another initial state different from the solid lines in (a) in their
initial populations [v3(0) = (0, 0, −0.5)]. The gray arrow in the
panel indicates crossover of Ben and Bth. Their time evolutions differ
from the solid lines in (a), thus the three quantities explicitly depend
on the initial populations. In the numerical calculations, we set the
parameters to λ = 0.1, � = 0.4, and β = 1.

the initial coherence, and the presence of coherence reduces
the value of the bound. This is because the reduction in the
von Neumann entropy accompanying the heat dissipation has
contributions not only from the change in population but also
from decoherence. Regarding the relative tightness of the
bounds against the dissipated heat, the thermodynamic bound
is tighter than the entropic bound during the time evolutions
for the present specific initial states. In the next subsection,
we show that the above-mentioned dependences on the initial
coherence are valid for generic initial conditions.

Let us next examine the dependence on the initial pop-
ulation. In panel (b), we chose an initial condition with
different populations from panel (a) without coherence. By
comparing the time evolutions with the solid lines in panel
(a), we found using various initial population values the

vz

vx

β ΔQ

Ben

Bth

FIG. 2. Dependence of the relative tightness on the initial state.
The bounds and the mean dissipated heat are calculated for 720
systematically chosen initial states. The initial condition is chosen
by changing vx (0) and vz(0) with vy(0) = 0 to focus on the de-
pendence on initial coherence and initial population. The orange
points represent heat, the blue points represent the thermodynamic
bound, and the red points represent the entropic bound. The purple
circle indicates the surface of the Bloch sphere with vy = 0. In the
numerical calculations, we set the parameters to λ = 0.1, � = 0.4,
and β = 1 (same as in Fig. 1).

two bounds and the change in mean dissipated heat, which
indicated their explicit dependence on the initial value of the
population. In the next subsection, we reveal the monotonic
dependences of the thermodynamic bound and the mean
dissipated heat on the initial population, as well as a non-
monotonic dependence of the entropic bound on the initial
population.

Regarding the relative tightness of the bounds, we en-
counter a subtle feature in its time dependence: The bounds
exhibit a crossover where the relative tightness switches at a
certain moment, which is indicated by the gray arrow in the
panel. For the present specific initial state, the crossover time
is t̄ ≈ 4 and the relative tightness changes from Bth > Ben

to Bth < Ben at that time. The crossover time depends on
the choice of the initial state, which is examined in Fig. 3
next.

Finally, we provide remarks on parameter dependence. The
parameters λ and � are related to strength of the system-
environment interaction, thus change of these parameters
affects the relaxation dynamics of the relevant system during
the erasure process, but they do not affect the steady state of
the system. In contrast, β is related to both correlation time
and occupation number of the environment, thus change of
β affects both the relaxation dynamics and the steady state.
As we will justify analytically in the next subsection, the
above summarized dependences of the bounds on the initial
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vx

vz

t̄

FIG. 3. Initial-state dependence of the crossover time of the
entropic bound and the thermodynamic bound. The crossover time
is indicated by the color of each point; the white region marks the
region without crossover occurrences. The purple circle indicates
the surface of the Bloch sphere with vy = 0. In the numerical
calculations, we set the parameters to λ = 0.1, � = 0.4, and β = 1
(same as in Fig. 1).

state hold for any choice of these parameters, while details
of the relaxation dynamics or the steady state depend on the
parameters.

B. Initial-state dependence of the tightness

Let us next systematically examine the initial-state depen-
dence of the relative tightness. In Fig. 2, we plot values of
the mean dissipated heat (orange points), the thermodynamic
bound (blue points), and the entropic bound (red points) at t̄ =
50, where the system has almost reached its steady state. To
focus on the dependence on initial coherence and population,
we choose the initial states by changing vx(0) and vz(0) and
fixing vy(0) = 0.

In the figure, we find a difference in the dependences of
the bounds and heat on vx(0) and vz(0). The mean dissipated
heat β〈�Q〉 and the thermodynamic bound Bth monotonically
decrease as vz(0) decreases but they are independent of vx(0),
whereas the entropic bound Ben depends isotropically on both
vx(0) and vz(0) and decreases for growing |v(0)|. Because of
the difference, the relative tightness of the bounds exhibits
a clear boundary where the tightness switches. As a conse-
quence, the entropic bound serves as the tighter bound if the
initial state is located near the center of the Bloch sphere; in
contrast, the thermodynamic bound is tighter if the initial state
is located near its surface.

Even if the above features of the bounds as well as the heat
are obtained from the numerical calculation for a specific set
of parameters, they hold for generic cases. We now provide
an analytic justification of these features using the structure
of the matrix (20) and the identities Eqs. (26)–(28). From the
expression of Ben(t ) in Eq. (26), we see its isotropic depen-
dence on v(0)

x (0) and v(0)
z (0); because the second line in the

expression is a certain constant in the steady state, the entropic

bound depends only on |v(0)|. We note that the entropic bound
always takes a positive value at the center of the Bloch sphere,
i.e., v(0) = 0. Physically, this is because the initial state is
fully disordered at the center of the Bloch sphere, and thus
any deviation from the initial state through the erasure process
decreases the von Neumann entropy, which plays a crucial
role to understand relative tightness of the bounds, as we will
discuss later.

Looking at the formal expressions of Bth(t ) and 〈�Q〉, we
find that these quantities depend only on the initial popula-
tion v

(0)
0 (t ), but not on the initial coherences v(0)

x,y (t ). As the

time evolution of v
(η)
0 (t ) is coupled only with v(η)

z (t ) in the
matrix (20), they depend only on the initial population and
are independent of the initial coherence. Indeed, solving the
Bloch equation for (v(η)

z (t ), v(η)
0 (t )) components with initial

conditions (v(η)
z (0), v(η)

0 (0)) = (v(0)
z (0), 1) enables the time

dependence of v
(η)
0 (t ) to be expressed formally as

v
(η)
0 (t ) = A(η)

0 (t )v(0)
z (0) + C(η)

0 (t ), (29)

where A(η)
0 (t ) and C(η)

0 (t ) denote the time-dependent coeffi-
cients consisting of exponentials of a(η)

± (t ) and c(η)
± (t ) [42].

Applying the solution to Eqs. (27) and (28), we obtain formal
expressions of the thermodynamic bound,

Bth(t ) = − ln
[
A(β )

0 (t )v(0)
z (0) + C(β )

0 (t )
]
, (30)

and of the mean dissipated heat:

〈�Q〉 = −
[

∂A(η)
0 (t )

∂η

]
η=0

v(0)
z (0) −

[
∂C(η)

0 (t )

∂η

]
η=0

. (31)

These expressions show that the thermodynamic bound loga-
rithmically decreases as v(0)

z (0) decreases, whereas the mean
dissipated heat decreases linearly. The numerical result in
Fig. 2 shows that Bth = 0 for initial conditions with v(0)

z (0) =
0, as can also be checked analytically for η = β [43]. By
applying the Jensen inequality to Eq. (16), the former equality
provides the inequality 〈�Q〉 � 0 for the initial condition,
which states that the dissipated heat is always positive if the
initial populations of the ground state and of the excited state
are equal: Since the effective temperature of such an initial
state is infinity, it is natural that heat dissipation from the
system to the environment is always positive.

Regarding the relative tightness of the bounds, the above
summarized properties explain the tightness of the entropic
bound for a sufficiently mixed initial state. Since Bth(t ) ≈ 0
for v(0)

z (0) ≈ 0 and Ben(t ) > 0 for a sufficiently small |v(0)|,
the entropic bound is tighter if the initial state is located in a
certain region near the center of the Bloch sphere.

Let us finally examine the initial-state dependence of the
crossover time. In Fig. 3, we provide a plot of the crossover
time evaluated for initial states chosen systematically. In the
figure, the color of each point indicates the crossover time;
the white region represents the region without occurrences of
a crossover. From the figure, we find that the crossover time is
short near the center of the Bloch sphere and grows longer as
|v(0)| increases.
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V. DISCUSSION

The independence of the thermodynamic bound as well as
the mean dissipated heat from the presence of an initial coher-
ence is a consequence of the separation of the time evolution
of the diagonal and off-diagonal elements of ρ

(η)
S (t ) [see the

block-diagonal form of the matrix G(t ) in Eq. (20)]. The sep-
aration holds for an arbitrary transversal system-environment
coupling, i.e., HSE = MS ⊗ BE with TrS[σzMS] = 0. In con-
trast, the initial-state dependence of the entropic bound is a
consequence of the structure of the von Neumann entropy;
therefore, the features of the entropic bound studied in the
present paper are valid for a wide class of open quantum
systems.

A comparative study of the relative tightness of the two
bounds against the mean dissipated heat was performed in a
finite system consisting of a single spin-1/2 system interact-
ing with another single spin-1/2 environment in Ref. [28];
in that study, the following features of the bounds were
clarified: The thermodynamic bound shares several features
with the mean dissipated heat, particularly, its independence
of a nonzero initial coherence that is not shared with the
entropic bound. The initial-state dependence features a sharp
boundary where the relative tightness of the bounds switches.
Although the previous study examined a finite system with a
finite recurrence time, these features of the bounds held even
for a system containing an infinitely large environment with
infinite recurrence time.

VI. CONCLUSIONS

In the present paper, we have systematically examined
properties of two quantum Landauer-type lower bounds in an
open quantum system consisting of a single spin-1/2 system

contacting with an infinitely large bosonic environment. By
paying special attention to their dependence on the initial
coherence and population, we found the thermodynamic
bound to be independent of the initial coherence, whereas the
entropic bound depends on both coherence and population.
The thermodynamic bound shares this feature with the mean
dissipated heat. In regard to the relative tightness of the
bounds against the dissipated heat, we found the emergence
of a sharp boundary at which the tightness switches, and the
entropic bound serves as the tighter bound in the region inside
the boundary. In physical terms, the result indicates that the
entropic bound is tighter when the initial state is mixed as
it is located near the center of the Bloch sphere, whereas
the thermodynamic bound is tighter when the initial state is
close to a pure state. Moreover, the thermodynamic bound
explicitly depends on the form of the system-environment
coupling, whereas the entropic bound is independent of such
details of the system. The above-summarized trends in the
bounds are independent of system size; specifically, they hold
for systems having finite or infinite degrees of freedom.
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