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Geometric phase accumulated in a driven quantum system coupled to a structured environment
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We study the role of driving in a two-level system evolving under the presence of a structured environment
in different regimes. We find that adding a periodic modulation to the two-level system can greatly enhance
the survival of the geometric phase for many time periods in an intermediate coupling to the environment. In
this regime, where there are some non-Markovian features characterizing the dynamics, we note that adding
driving to the system leads to a suppression of non-Markovianity altogether, allowing for a smooth dynamical
evolution and an enhancement of the robustness condition of the geometric phase. As the model studied herein
is the one used to model experimental situations such as hybrid quantum classical systems feasible with current
technologies, this knowledge can aid the search for physical setups that best retain quantum properties under
dissipative dynamics.
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I. INTRODUCTION

The state of a pointlike discrete energy level quantum
system interacting with a quantum field acquires a geometric
phase (GP) that is independent of the state of the field [1]. The
phase depends only on the system’s path in parameter space,
particularly the flux of some gauge field enclosed by that
path. Due to its topological properties and close connection
with gauge theories of quantum fields, the GP has recently
become a fruitful venue of investigation to infer features of the
quantum system. For pure field states, the GP is said to encode
information about the number of particles in the field [2]. If
the field is in a thermal state, the GP encodes information
about its temperature, and so it has been used in a proposal
to measure the Unruh effect at low accelerations [3]. Further-
more, in [4] it was proposed as a high-precision thermometer
in order to infer the temperature of two atoms interacting with
a known hot source and an unknown-temperature cold cavity.
In this context, the study of the GP in open quantum systems
has been a subject of investigation lately. The definition of the
geometric phase for nonunitary evolution was first stated in
[5]. This definition has been used to measure the corrections
of the GP in a nonunitary evolution [6] and to explain the
noise effects in the observation of the GP in a superconducting
qubit [7,8]. The geometric phase of a two-level system under
the influence of an external environment has been studied in a
wide variety of scenarios [9]. It has further been used to track
traces of quantum friction in an experimentally viable scheme
of a neutral particle traveling at constant velocity in front of a
dielectric plate [10] and in a very simplistic analytical model
of an atom coupled to a scalar quantum field [11].

The coupling of the quantum system to the environment
is described by the spectral density function. If the system
couples to all modes of the environment in an equal way the
spectrum of the reservoir is flat. If, otherwise, the spectral den-

sity function strongly varies with the frequency of the environ-
mental oscillators, the environment is said to be structured. In
this type of environment the memory effects induce feedback
of information from the environment into the system. They are
therefore called non-Markovian [12]. Numerous works have
investigated the presence of non-Markovianity in a variety
of scenarios in quantum open systems so as to determine
whether non-Markovianity is a useful resource for quantum
technologies. It has been studied how the presence of a driving
field affects the non-Markovian features of a quantum open
system. For instance, studies which assessed the effectiveness
of optimal control methods [13,14] in open quantum system
evolutions showed that non-Markovianity allowed for an im-
proved controllability [15,16]. Likewise, the non-Markovian
effects were associated with the reduction of efficiency in
dynamical decoupling schemes [17] and accounted for cor-
rections to the GP acquired [18–20].

In this work we investigate to what extent external driving
acting solely on the system can increase non-Markovianity
(and therefore modify the geometric phase) with respect to
the undriven case. To this end, we consider a two-level system
described by a time-periodic Hamiltonian interacting with a
structured environment. It has been shown recently that the
driving has a peculiar effect on the non-Markovian character
of the system dynamics: It can generate a large enhancement
of the degree of non-Markovianity with respect to the static
case for weak coupling between the system and environment
[21]. The importance of the driven two-state model is es-
pecially pronounced in quantum computation and quantum
technologies, where one or more driven qubits constitute the
basic building block of quantum logic gates [22]. Geometric
quantum computation exploits GPs to implement universal
sets of one-qubit and two-qubit gates, whose realization finds
versatile platforms in systems of trapped atoms [23], quantum
dots [24], and superconducting circuit QED [25]. Different
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implementations of qubits for quantum logic gates are sub-
jected to different types of environmental noise, i.e., different
environmental spectra. Since the model studied herein can
be implemented in these experimental contexts, using real or
artificial atoms, it is important to unveil the time behavior of
the qubit geometric phase for driven systems. We focus on
only weak or intermediate coupling since we try to track traces
of the geometric phase, which is literally destroyed under the
strong influence of the environment. This means that while
there are non-Markovian effects that induce a correction to
the unitary GP, the system maintains its purity for several
cycles, which allows the GP to be observed. It is important
to note that if the noise effects induced on the system are of
considerable magnitude, the coherence terms of the quantum
system are rapidly destroyed and the GP literally disappears
[9]. This knowledge can aid the search for physical setups that
best retain quantum properties under dissipative dynamics.

This paper is structured as follows. In Sec. II we present
the model consisting of a two-level system described by a
time-periodic Hamiltonian interacting with a structured envi-
ronment. In Sec. III we numerically solve the dynamics of the
system for different regimes through the hierarchy method be-
yond the rotating-wave approximation. In Sec. IV we compute
the geometric phase for a two-level driven system and analyze
its deviation from the unitary geometric phase under different
regimes. Since we want to track traces of the geometric phase,
which is literally destroyed under the strong influence of the
environment, we restrict our study to two situations: weak
coupling (Sec. IV A) and intermediate coupling (Sec. IV B).
Therein, we analyze the robustness condition of the geometric
phase acquired by the driven two-level system and the best
scenarios for its experimental detection. Finally, in Sec. V we
summarize the results and present conclusions.

II. MODEL

We consider a two-level system described by a time-
periodic Hamiltonian interacting with an environment. The
total Hamiltonian which describes this model reads (we set
h̄ = 1 from here on)

H = ω̄0(t )σ+σ− + σx

∑
k

(gkbk + g∗
kb†

k ) +
∑

k

ω̄kb†
kbk, (1)

where σ± = σx ± iσy [with σα (α = x, y, z) the Pauli matrices]
and bk and b†

k are the annihilation and creation operators,
respectively, corresponding to the kth mode of the bath. The
coupling constant is gk and ω̄0(t ) is the time-dependent energy
difference between the states |0〉 and |1〉 of the two-level
system. We assume that it has the following form:

ω̄0(t ) = �̄ + �̄ cos(ω̄Dt ). (2)

The exact dynamics of the system in the interaction picture
was derived in [26]. If the qubit and the bath are initially in a
separable state, i.e., ρ(0) = ρs(0) ⊗ ρB, the formal solution is

ρ̃S (t ) = T exp

(
−

∫ t

0
dt2

∫ t2

0
dt1σ̃

×
x (t2)

×[CR(t2 − t1)σ̃×
x (t1) + iCI (t2 − t1)σ̃ ◦

x (t1)]

)
, (3)

where T implies the chronological time-ordering operator
and õ denotes the expression of the operator o in the in-
teraction picture. We have further introduced the notation
A×B = [A, B] = AB − BA and A◦B = {A, B} = AB + BA. In
addition, CR(t2 − t1) and CI (t2 − t1) are the real and imagi-
nary parts of the bath time-correlation function, defined as

C(t2 − t1) ≡ 〈B(t2)B(t1)〉 = Tr[B(t2)B(t1)ρB]

=
∫ ∞

0
dω J (ω)e−iω(t2−t1 ), (4)

with

B(t ) =
∑

k

[gkbk exp(−iωkt ) + g∗
kb†

k exp(iωkt )].

Equation (3) is difficult to solve directly. An effective method
for obtaining a solution has been developed by defining a set
of hierarchy equations [26–28]. The key condition in deriving
the hierarchy equations is that the correlation function can be
decomposed into a sum of exponential functions of time. At
finite temperatures, the system-bath coupling can be described
by the Drude spectrum; however, if we consider qubit devices,
they are generally prepared in nearly zero temperatures. Then
we consider a Lorentz-type spectral density J (ω),

J (ω) = γ̄0

2π

λ2

(ω − �̄)2 + λ2
, (5)

and the hierarchy method can also be applied [29]. As has
been stated in [21], this method can be used if (i) the initial
state of the system plus bath is separable, (ii) the interaction
Hamiltonian is bilinear, and (iii) the environmental correlation
function can be cast in a multiexponential form. In this case,
γ̄0 is the coupling strength between the system and the bath
and λ characterizes the broadening of the spectral peak, which
is connected to the bath correlation time τc = λ−1. The relax-
ation timescale on which the state of the system changes is
determined by τr = γ̄ −1

0 . At zero temperature, if we consider
the bath in a vacuum state, the correlation function can be
expressed as

C(t2 − t1) = λγ̄0

2
exp{[−(λ + i�̄)|t2 − t1|]}, (6)

which is the exponential form required for the hierarchy
method. The advantage of solving the dynamics of the system
by this method is that we can gain insight into the different
regimes of the dynamics. For example, in the limiting case
γ̄0 	 λ, i.e., τc 	 τr , we have a flat spectrum and the corre-
lation tends to C(t2 − t1) → γ̄0δ(t2 − t1). This is the so-called
Markovian limit. Therefore, we can study the full spectrum
of behavior by solving the hierarchy method, which can be
expressed as

d

dτ
ρ�n(τ ) = −(iHs[τ ]× + �n · �ν)ρ�n(τ ) − i

2∑
k=1

σ×
x ρ�n+�ek (τ )

− i
γ0

2

2∑
k=1

nk[σ×
x + (−1)kσ ◦

x ]ρ�n−�ek (τ ), (7)

where we have defined dimensionless parameter variables
τ = λt and x = x̄/λ, where x is any parameter with units of
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energy in the model described. The subscript �n = (n1, n2),
with integers n1 (2) � 0, and ρS (t ) ≡ ρ(0,0)(t ). This means that
the physical solution is encoded in ρ(0,0)(t ) and all other
ρ�n(τ ) with �n �= (0, 0) are auxiliary operators implemented
for the sake of computation. We have defined the vector
�ν = (ν1, ν2) = (1 − i�, 1 + i�). The hierarchy equations are
a set of linear differential equations that can be solved by
using a Runge-Kutta routine. For numerical computations,
the hierarchy equations must be truncated for large �n. The
hierarchy terminator equation is similar to Eq. (7) for the term
�N , with the corresponding term related to ρ �N+�ek

dropped [26].
The numerical results in this paper have been all tested and
converged, using a maximum value of �N = (25, 25). We take
advantage of this model, whose non-Markovian properties
have been studied in [21], and set the scenario to study the
corrections to the GP for a driven two-level system.

III. ENVIRONMENTALLY INDUCED DYNAMICS

We begin by studying the environmentally induced dy-
namics by considering a qubit with no driving at all (� =
0). In this case, we must consider a qubit and a dipolar
coupling to the cavity mode, for example. This means that the
dynamics of the system would take into account decoherence
and dissipation as well as variation of the population numbers
(in contrast to the spin boson model). The density matrix for
this case has a formal expression

ρs(τ ) =
(

ρ11|G(τ )|2 ρ12G(τ )

ρ21G∗(τ ) 1 − ρ11|G(τ )|2
)

, (8)

where G(τ ) is a single-complex-valued function that charac-
terizes the dynamics of the system. We herein do not write its
explicit form since we solve the problem numerically through
the hierarchy approach.

The decoherence time τD is mostly known as the timescale
on which quantum interference is suppressed. This is for-
mally true for a purely dephasing process where noise affects
only the off-diagonal terms of the reduced density matrix.
However, Eq. (8) describes a process where both populations
and off-diagonal terms are affected by the presence of noise.
Qualitatively, decoherence can be thought of as the deviation
of probability measurements from the ideal intended outcome.
Therefore, decoherence can be understood as fluctuations in
the Bloch vector �R induced by noise. In a wider sense, we will
represent decoherence as the change of | �R(τ )| in time, starting
from |R(0)| = 1 for the initial pure state and decreasing as
long as the quantum state loses purity. The contributions of the
bath to the dynamics of the system, including both dissipation
and the Lamb shift, are fully contained in the hierarchy
equation. In Fig. 1 we present the absolute value of the Bloch
vector of the state system R(τ ) =

√
x(τ )2 + y(τ )2 + z(τ )2 as

a function of time measured in natural cycles ω0τ = N2π

for different values of γ0. In this case, we can note that the
trajectory differs substantially from the unitary one, meaning
the system’s dynamics is affected by the noise effects. In the
case in which the unitary dynamics is considered, γ0 = 0 and
R = 1 for all times.

We can notice that the dynamical behavior is modified as
the coupling constant γ0 is increased. It is interesting to see the
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FIG. 1. Plot of the loss of quantum state purity R(τ ) as a function
of time N (ω0τ = N2π is the number of cycles). We can see that
as the coupling constant with the bath increases for a fixed value
of λ = 0.01 (γ0 = γ̄0/λ), the dynamical behavior is modified. The
orange dashed line shows γ0 = 0.3 and the purple dot-dashed line
γ0 = 0.1, for τr > τc. The brown dot-dashed line shows γ0 = 1 and
the blue solid line γ0 = 0.7, for τr ∼ τc. The inset shows different
solutions for γ0 = 0.1 by varying the order of truncation. We can
state that from �N = (10, 10) we can obtain a converged positive
reduced matrix ρ(τ ). The parameters are � = 0, �N = (25, 25), and
� = 20.

interplay between time and γ0: A stronger bath can initially
produce less damage to the dynamics but has a stronger effect
on the renormalization of the frequency. Weak coupling has
a more adiabatic modification of the dynamics in an equal
period of time. In Fig. 1 we have set λ fixed. As γ0 increases,
the relaxation time τr of the system decreases and τr ∼ τc.
The presence of oscillations in the Bloch vector R(τ ) for short
times, as γ0 becomes similar to λ, indicates non-Markovian
dynamics induced by the reservoir memory and describing
the feedback of information and/or energy from the reservoir
into the system [17]. We can see that as long as γ̄0/λ < 1,
the systems exhibits a Markovian dynamics (orange dashed
line, purple dot-dashed line, and red solid line). In contrast,
if γ̄0/λ � 1, there are non-Markovian features in the system’s
dynamics. We can notice that as long as γ̄0 � λ and λ 	 1,
the behavior remains similar to that of λ → 0 (Markovian
since τc → ∞). However, as λ increases, the environmentally
induced dynamics is considerably modified, introducing os-
cillations again. Thus, with this kind of environment we can
simulate different regimes solely by the selection of the γ̄0 and
λ parameters. In the inset of Fig. 1 we show a simulation for
different truncations of the system of equations for γ0 = 1. We
show that by setting the order of truncation at 25, we obtain a
converged positive reduced matrix ρ(τ ).

In Fig. 2 we compare the dynamics of two different en-
vironmental situations: The left column is for γ̄0/λ < 1 and
the right one for γ̄0/λ � 1; both evolutions are simulated for
fixed �̄ and zero driving (� = 0). In this example, we can see
that when τc < τr , the system presents a Markovian evolution.
In contrast, if τc > τr , non-Markovian effects can be seen,

052112-3



PAULA I. VILLAR AND ALEJANDRO SOBA PHYSICAL REVIEW A 101, 052112 (2020)

FIG. 2. Plot of different dynamics for a fixed value of λ but
different values of the γ̄0 parameter. The left column is for γ̄0/λ < 1
and the right for γ̄0/λ � 1. On top we show the behavior of ρ11(t )
and the absolute value of ρ12(t ) in each case. We can see some
time revivals on the right reduced matrix elements. The lower plots
show the trajectory [ �R = (x, y, z)] of the two-level system in the
Bloch sphere. The parameters are � = 0, �n = (25, 25), � = 20, and
τc = 100.

for example, by accelerating the transition between quantum
states and revivals for longer times. For initial short times, the
spontaneous decay of the atom not only can be suppressed
or enhanced, but also can be partly reversed, when non-
Markovian oscillations induced by reservoir memory effects
are present. As has been shown, by choosing the right set of
parameters, we can simulate a different type of environment
and obtain the corresponding dynamics beyond the rotating-
wave approximation.

IV. CORRECTION TO THE GEOMETRIC PHASE

In this section we compute the geometric phase for the cen-
tral spin and analyze its deviation from the unitary geometric
phase for a two-level driven system. A proper generalization
of the geometric phase for unitary evolution to nonunitary
evolution is crucial for practical implementations of geometric
quantum computation. In [5] a quantum kinematic approach
was proposed and the geometric phase for a mixed state under
nonunitary evolution was defined as

� = arg

{∑
k

√
εk (0)εk (T )〈�k (0)|�k (T )〉

× exp

(
−

∫ T

0
dt

〈
�k

∣∣∣∣ ∂

∂t

∣∣∣∣�k

〉)}
, (9)

where εk (t ) are the eigenvalues and |�k〉 the eigenstates of
the reduced density matrix ρs (obtained after tracing over
the reservoir degrees of freedom). In the last definition, T
denotes the time after the total system completes a cyclic
evolution when it is isolated from the environment. Taking the
effect of the environment into account, the system no longer
undergoes a cyclic evolution. However, we will consider a
quasicyclic path P : T ∈ [0, τS], with τS = 2π/ω0 (ω0 is the

system’s dimensionless frequency). When the system is open,
the original GP φu, i.e., the one that would have been obtained
if the system had been closed, is modified. This means, in a
general case, the phase is φg = φu + δφ, where δφ depends
on the kind of environment coupled to the main system [9,30–
32]. For a spin-1/2 particle in SU(2), the unitary GP is known
to be φu = π [1 + cos(θ0)]. It is worth noting that the proposed
GP is gauge invariant and leads to well-known results when
the evolution is unitary.

As this method can be used when the initial state of the
whole system is separable, we start by assuming ρ(0) =
ρs(0) ⊗ ρE (0). The initial state of the quantum system is
supposed to be a pure state of the form

|�(0)〉 = cos(θ0/2)|0〉 + sin(θ0/2)|1〉.
We solve the master equation and then compute the geometric
phase acquired by the quantum system. If the environment is
strong, then the unitary evolution is destroyed in a decoher-
ence time τD. Otherwise, we can imagine a scenario where
the effect of the environment is not so drastic. In the following
we focus on how driving can affect (or even benefit) the mea-
surement of the geometric phase under different regimes, for
both weak coupling and intermediate coupling. In particular,
we investigate to what extent external driving acting solely on
the system can correct the geometric phase with respect to the
undriven or unitary case.

A. Geometric phase under weak coupling

The dynamics of the driven two-level system comprises
three different dynamical effects, each occurring on a different
timescale. Dissipation and decoherence occur on the relax-
ation timescale τr and non-Markovian memory effects occur
for times shorter than or similar to the reservoir correlation
timescale τc [17]. Finally, nonsecular terms cause oscillations
on a timescale of the system τS = (�2 + �2)−1/2. Generally,
these nonsecular terms can be neglected when τc 	 τS . We
consider the secular regime, by assuming τS 	 τc, and in the
Markovian regime τS 	 τc 	 τr . As we are dealing with a
structured environment, we start by studying a weakly cou-
pled system, which leads to a Markovian regime, i.e., γ0 < λ.
First, we compare a two-level undriven (� = 0) evolution to
a unitary one in order to see how different the open evolution
is and decide whether the geometric phase can be measured in
such a scenario. Hence, in Fig. 3 we show the total geometric
phase accumulated for the nonunitary (red line with circles)
and the unitary (blue line with asterisks) evolution as time
evolves, with the number of cycles N = τ/τS . Therein, it is
possible to see that initially the geometric phases are similar,
with an estimated error of 2.5% for five cycles and 10% for
15 cycles when γ0 = 0.01. As time evolves, the difference
between the two lines increases as expected, since for long
times the loss of purity of the system would be considerable.

In Fig. 4 we show the geometric phase acquired when
adding detuning frequencies to the two-level system com-
pared to the case when � �= 0, for different environments,
say, γ0 = 0.1 and γ0 = 0.01. When the coupling to the envi-
ronment is very weak, the corrections to the geometric phase
acquired are very small and one can expect to obtain results
very similar to the those for the unitary geometric phase for
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FIG. 3. Comparison between the accumulated geometric phase
φg for the unitary case (blue asterisks with the dot-dashed line) and
a weak coupled environment in a Markovian regime γ̄0 	 λ (red
circles with the dot-dashed line) (corresponding to a situation similar
to that of the left column of Fig. 2). The parameters are γ0 = 0.01,
� = 20, θ0 = π/4, � = 0, and ωD = 0.

a few cycles of evolution. Evolutions with � �= 0 are very
similar to those with � = 0 if we compare the γ0 = 0.01
results in Figs. 4 and 3. In this case, the dominant correction
to the geometric phase is given by the interaction with the
environment, parametrized by the value of γ0. However, for
larger values of γ0 (γ0 = 0.1 but still weakly coupled), evolu-

FIG. 4. Study of the effect of adding � by computing the
geometric phase accumulated in time for γ0 = 0.1: � = 0, black
dotted line; � = 0.3, turquoise solid line with crosses; � = 0.5, blue
dot-dashed line with triangles; and � = 1, orange dashed line with
circles. For γ0 = 0.01 the gray dark circles (� = 1) and magenta
solid line (� = 0) are very similar, while the blue dot-dashed line
with asterisks is the unitary geometric phase for reference. In the
inset, we show φg/φu for γ0 = 0.01 with different values of �. The
parameters are � = 20, θ0 = π/4, and ωD = 0.

FIG. 5. We include driving in the model and compute the geo-
metric phase acquired φg. The blue dot-dashed line with asterisks
corresponds to ωD = 0.1 and � = 3. The magenta solid line is for
� = 0, the red dotted line is for � = 5 and ωD = 0.3, the green
solid line with circles is for � = 2 and ωD = 0.3, and the orange dot-
dashed line with circles is for � = 1 and ωD = 0.5. The black dotted
line showing the unitary geometric phase is included for reference.
Low-frequency driving corrects the geometric phase accumulated for
short times. The parameters are γ0 = 0.01, � = 20, and θ0 = π/4.

tions with bigger values of � acquire a considerably different
geometric phase for long time evolutions. For the first few
cycles, the geometric phases acquired are all very similar. As
time evolves, different features such as the magnitude of the
coupling to the environment and the system’s frequency (with
� involved) have an impact on the dynamics and therefore on
the geometric phase acquired. In the inset of Fig. 4 we plot
the normalized geometric phase (φg/φu) for γ0 = 0.01. We
can see the � = 0 geometric phase represented by a magenta
solid line, � = 0.3 by a turquoise dotted line with hexagrams,
� = 0.5 by an orange dotted line with closed circles, � = 1
by a gray dashed line with open circles, � = 3 by a blue long-
dashed line with asterisks, and � = 5 by a red short-dashed
line with crosses. The distance from unity becomes relevant
as the number of cycles increases.

As expected, if � is added to the system, then the ge-
ometric phase acquired is different from that with � = 0,
modifying the system’s timescale involved and enhancing
non-Markovian effects as reported in [21]. This can be a
severe experimental problem to overcome. However, for the
low values of � considered here, the addition of a tunnel
frequency does not considerably affect the geometric phase;
we obtain φg/φu ∼ 1 for many evolution cycles in a weakly
coupled regime.

We therefore study the interplay of adding driving to the
two-level system. In particular, we focus on the effect of
driving when considering the possibility of measuring the
geometric phase acquired by the two-state particle. In Fig. 5
we show the geometric phase acquired when low-frequency
driving is added: The blue dot-dashed line with asterisks
corresponds to � = 3 and ωD = 0.1, the magenta solid line
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FIG. 6. Plot of φg/φu for different values of � and ωD for (a) N =
4 and (b) N = 8 under weak coupling. For short time evolution there
is a wider set of parameters that yields φg/φu ∼ 1. As time evolves,
the set of parameters becomes smaller. The parameters are γ0 = 0.01,
� = 20, and θ0 = π/4.

is for � = 0, the red dotted line is for � = 5 and ωD =
0.3, the green solid line with open circles is for � = 2 and
ωD = 0.3, and the orange dashed line with closed circles is
for � = 1 and ωD = 0.5. The black dotted line representing
unitary geometric phase is included for reference. In the inset
we show the geometric phase acquired for � = 3 and ωD = 0
(static) and compare it to the geometric phase for � = 3 and
ωD = 0.1 (low-frequency field). We can see that the driven
system acquires a geometric phase closer to the unitary one
for longer periods of time, but the difference is very small.
In the main plot of Fig. 5 we note that other driven systems
are closer to the unitary geometric phase for ten periods as
well. Therefore, there are some sets of parameters for which
driving “preserves purity.” The geometric phase acquired is
more similar to the unitary geometric phase acquired when
there is low-frequency driving added for low values of �. This
fact can easily be observed in the inset, where the lines with
asterisks and circles are closer to the unitary one (black solid
line) than the corresponding static ones.

In Fig. 6 we further explore this result by representing the
normalized geometric phase φg/φu as a function of � and
ωD, for two time evolutions: N = 4 [Fig. 6(a)] and N = 8
[Fig. 6(b)]. It is easy to see that for short times, several model’s
parameters yield φg/φu ∼ 1. This can be understood because,
as explained in Fig. 4, the main contribution of the correction
to geometric phase is given by the magnitude of the coupling
between the environment and the system (say, if we assume
φg = φu + δφ when γ0 = 0, δφ = 0, and the geometric phase
obtained is the unitary geometric phase φu). However, as time
evolves the intrinsic dynamics of each set of values (� and
ωD) will gain more importance. This type of behavior of
the correction to the geometric phase has been observed in
other studies, yielding that for short times the main correction
derives from the fact that the environment is present and the
system performs an “open” evolution (and only Markovian
effects are taken into account) [10,33]. As time elapses, the
values of ωD that preserve the unitarity of the GP are lower.
For example, it can be seen in Figs. 5 and 6 that � = 5 and
ωD = 0.1 render a value of φg closer to φu than � = 5 and
ωD = 0.3 do. Likewise, adding a very-low-frequency driving
and low detuning frequencies for short time evolutions renders
a geometric phase similar to the unitary geometric phase,
which leads to a good scenario for measuring the geometric
phase in structured environments. It was shown in [21] that
ωD/� < 1 increases the degree of non-Markovianity (for a
small coupling) and particularly non-Markovianity increases
with γ0 and decreases with � for a given environment (fixed
γ0). We are not strictly to the regime reported in [21], since
we are studying the situation for different evolving times.
However, we must say that if we want to maintain the Marko-
vian regime, we should only add low detuning frequencies
(if any at all), because by adding detuning frequencies and
driving frequencies we would be modifying considerably the
dynamics of the system and a comparison with the undriven
situation would be useless. However, we can still note that
when adding a low-frequency driving, the geometric phases
acquired are very similar to the nondriven isolated geometric
phases for bigger values of �. This fact agrees with the
result obtained in [34], where authors state that for a small
qubit classical field coupling, nonresonant control (� �= 0)
is more convenient to stabilize the geometric phase of the
open qubit. The use of driven systems can help the mea-
surement of geometric phases under some sets of parameters.
This knowledge can aid the search for physical setups that
best retain quantum properties under dissipative dynamics.
As can be inferred for the different simulations done, for
weak coupling, the better scenario would be to have a small
detuning frequency and very-low-frequency driving field so
as to maintain the smoothness of the Markovian evolution and
acquire a geometric phase similar to the unitary geometric
phase.

B. Geometric phase under intermediate coupling

In the preceding section we showed the geometric phase
acquired by the two-level driven system in a weakly coupled
structured environment. The above selection of parameters
rendered a Markovian situation where one could still find
evidence of a quasicyclic evolution, since the degradation of
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FIG. 7. Shown on top is the Bloch vector R(τ ) temporal evolution for different sets of model parameters. The top right plot shows the
following matrix elements: the population ρ11(τ ) and the absolute value of the off-diagonal term ρ12(τ ) for three different sets of parameters.
Shown on the bottom are trajectories in the Bloch sphere [ �R = (x, y, z)] for three sets of parameters with γ0/λ � 1: ωD = 0 = � (magenta),
ωD = 0 and � = 5 (orange), and ωD = 4 and � = 7 (light blue). In all cases τc = 100 and � = 20.

the pure state was done slowly and there were no revivals.
In the following we show what happens if the parameters are
chosen so as to simulate a non-Markovian environment by
considering γ̄0/λ > 0.25, as was done in [21]. This situation
can model, for example, a two-level emitter with a transition
frequency driven by an external classical field of frequency
ωD embedded in a zero-temperature reservoir formed by the
quantized modes of a high-Q cavity. In such a case, the evolu-
tion is wildly modified and one can find revivals after a given
number of periods. This will help us to understand the role
of driving in this type of environment. If we set parameters
so as to see non-Markovian behavior, then finding tracks of
the geometric phase can be much more difficult. In Fig. 7
we show different scenarios by setting the model parameters.
At the top of Fig. 7 we show the temporal evolution of the
Bloch vector [|R(τ )|] for different driven frequencies with γ̄0

and fixed λ. As can be seen, this type of environment starts
to exhibit a non-Markovian environment though revivals are
small in amplitude: The magenta solid line represents � =
0.0 = ωD; the magenta dot-dashed line is for � = 0.5 and
ωD = 0, the orange solid line is for � = 5, the red dot-dashed

line is for � = 5 and ωD = 1, the green dotted line is for
� = 5 and ωD = 5, and the cyan solid line is for � = 7 and
ωD = 4. We have also included a Markovian evolution for
reference (black dotted line for γ0 = 0.001). We can easily
note that the amount of driving changes considerably with
the evolution of the initial quantum state. The top right plot
shows the population’s probability: The magenta dashed line
represents � = 0.0 = ωD, the orange dot-dashed line � = 5,
and the cyan solid line ωD = 4 and � = 7. We can see that by
adding a frequency � and a driving frequency ωD, revivals
disappear, recuperating the opportunity to track traces of a
geometric phase. This fact can be easily observed in the Bloch
sphere. At the bottom of Fig. 7, we represent the trajectory
[ �R = (x(τ ), y(τ ), z(τ ))] in the Bloch sphere of the initial state
of the three different sets of parameters for the same number
of cycles evolved. We can see that the transition between
states is done in a short time for the magenta line. The revivals
stimulate the exploration of the south pole of the Bloch sphere
for another period of time until it finally decays. In such an
evolution, one can only achieve a geometric phase during
the revivals and compare it to the one the system would

052112-7



PAULA I. VILLAR AND ALEJANDRO SOBA PHYSICAL REVIEW A 101, 052112 (2020)

N
1 2 3 4 5 6 7 8 9 10

g

2

4

6

8

10

12

14

16
Markovian

unitary

non-
Markovian

FIG. 8. Geometric phase accumulated φg as the number of pe-
riods evolved for different sets of parameters. Colors represent the
parameters: the black dotted line is the unitary geometric phase,
the black dashed line with squares is if for a Markovian evolution
as described above, the magenta solid line with circles is for non-
Markovian evolution for ωD = 0 = �, the orange solid line with
diamonds is for � = 5 and ωD = 5, the green dot-dashed line with
stars for � = 6 and ωD = 2.5 and the light blue solid line with
asterisks is for � = 7 and ωD = 4. The parameters are γ0 = 1,
� = 20, and θ0 = π/4.

have acquired if it had started at that latitude of the Bloch
sphere. In the case of the orange line, the transition between
states is delayed by the frequency change of the system’s
period τS = 2π/(� + �). In this case, the geometric phase
can be measured for very short initial periods. Finally, for the
cyan curve we can observe that the evolution remains frozen
at a latitude for almost three cycles before continuing the
transition between states.

We can therefore compute the geometric phase for these
different situations in order to see if it is possible to track
traces of an accumulated geometric phase during the evolu-
tions. In Fig. 8 we show the geometric phase accumulated
for different set of parameters (such as those considered in
Fig. 7). The colors of the lines in Fig. 8 correspond to the
same values as in Fig. 7. The magenta solid line with circles
is the temporal evolution of an initial state under a structured
environment in a non-Markovian regime with � = 0. In this
case after four periods, the evolution presents some revivals
after having made a transition from the upper state to the lower
state (therefore revivals are done in the south pole sphere).
This is easily understood with the information given in Fig. 7,
where we see that the transition is done at very short times.
Therefore, the geometric phase acquired for � = 0 is very
different from that which the system would have acquired
in a Markovian regime (black dashed line with squares) or
an isolated evolution (black dotted line). However, in Fig. 8
we also present the geometric phase for driven systems in a
non-Markovian regime. The orange solid line with diamonds
represents a driven case of ωD = 5 and � = 5. In such a situa-
tion, we see that the evolution of the system initially recovers
some unitarity, acquiring a geometric phase very similar to

FIG. 9. Geometric phase accumulated φt/φg in the (�, ωD) plane
for different numbers of periods evolved in a non-Markovian envi-
ronment: N = 2, 3, 4, and 5. The parameters are γ0 = 1, � = 20,
and θ0 = π/4.

that of the unitary case. Finally, after several periods, it makes
a transition and the evolution explores the south pole sphere.
Finally, the light blue solid line with asterisks for ωD = 4 and
� = 7 acquires a geometric phase similar to the Markovian
one for longer time periods. In this last driven case, we see
that adding driving has a relevant consequence: The geometric
phase acquired is closer to the one acquired under a Marko-
vian evolution and therefore closer to the unitary one for a
small number of periods evolved (on the order of N = 10). For
smaller time periods, we see that adding driving preserves the
geometric phase: In all cases shown, the geometric phase is
recovered compared to the case when � = 0. Finally, in Fig. 9
we show a general scenario of the situation described above
for φg/φu at different times: N = 2, 3, 4, and 5. We effectively
notice regions of the ωD − � space where the accumulated
geometric phase φg/φu remains close to one, meaning that
the geometric phase acquired is close to the unitary one.
There are regions where φg departs enormously from φu. As
this situation exhibits non-Markovian effects as revivals, it
is not that easy to find a general rule as to when it is more
convenient to measure the geometric phase. However, there
are some situations where driving enhances the robustness
condition of the geometric phase when � delays the revivals
and ωD is small. We can see that for some particular situations,
the addition of a frequency � and driving ωD becomes a
useful scenario to get control of the geometric phase. These
situations deal with a smoothening of the revivals as shown
in Fig. 7 by the cyan curve. The authors of [21] showed that
there is a large region, corresponding to ωD/� ∼ O(1), where
non-Markovianity is suppressed altogether for intermediate
coupling. They even stated that in a strong-coupling regime
(γ0 > 1), the driving is unable to increase the degree of non-
Markovianity, contrary to what one can expect when adding
driving to the system. Regarding this aspect, the authors of
[34] state that intense classical fields strongly reduce non-
Markovianity of the system. To prevent this, they state that
the larger the coupling, the higher the values of detuning
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FIG. 10. Loss of purity R(τ ) as a function of time for (a) weak coupling (γ0 = 0.01) and (b) intermediate coupling (γ0 = 1) for different
initial angles θ0. We can see that as θ0 reaches π/2 (labeled 1.5) the curves are closer to the unitary evolution.

required to maintain a given degree of non-Markovianity
when dealing with hybrid quantum-classical systems. Herein,
we assume intermediate coupling γ0 = 1, where there are
some parameters ωD/� ∼ O(1) that verify the suppression of
revivals and ensure a smooth evolution and an acquisition of a
geometric phase more similar to the unitary one. This fact, in
addition to some other features related to the initial quantum
state explained below, contribute to a better understanding of
driven systems and should be taken into consideration when
designing experimental setups to measure geometric phases.

Dependence on ρs(0)

In this section we study the dependence on the initial state
of the quantum system. As explained above, we consider
an initial pure state of the form |�(0)〉 = cos(θ0/2)|0〉 +
sin(θ0/2)|1〉, with 0 � θ0 � π/2. This determines the initial
values of the reduced density matrix ρ11(0) = cos(θ0)2 and
ρ12(0) = 1/2 sin(2θ0). In this paper we always start with an
initial θ0 = π/4 so as to consider an initial average state
(where the geometric phase is more stable). In the following
we study how decoherence affects different initial states of
the two-level system. We use the change in time of the
absolute value of |R(τ )| = R(τ ) as a measure of decoherence.
In Fig. 10 we show R(τ ) as a function of time for weak
coupling [Fig. 10(a)] and intermediate coupling [Fig. 10(b)].
The curves start from an angle of θ0 = 0.15 rad (near the north
pole of the Bloch sphere) to θ0 = 1.5 rad (near the equator).
The measurement of the robustness of quantum states is that
the loss of purity of the state vector is very small for many
cycles. The dependence of this magnitude on time (measured
in cycles) depends on the initial quantum state for the same
parameters of the model. As it can be seen there, the state is
more affected for smaller initial angles. The purity of the state
remains close to unity (isolated case) when the initial state
is located near the equator of the Bloch sphere (θ0 ∼ π/2)
for both environments. This means an initial state of the form
|+〉 = cos(π/4)|0〉 + sin(π/4)|1〉. This can be understand by

noting that the interaction Hamiltonian is proportional to σx,
which in turn is the eigenstate of the interaction Hamiltonian.

As for the experimental detection of the geometric phase,
we need to find a compromise between the loss of purity
and the area enclosed in the path trajectory. As the natural
evolution of the system would be to make a transition to
the lower state of the quantum state, we need to control this
evolution so as to obtain small variations of the trajectory and
still find traces of the geometric phase. The non-Markovian
evolution is the one that provides the more interesting results
and the one that can be used to model experimental situations
such as hybrid quantum classical systems feasible with current
technologies, so we will explore in detail the dependence on
the initial angles.

In Fig. 11 we show the loss of purity R(τ ) for a non-
Markovian evolution with the driving considered in the pa-
per (included in Fig. 8) for different initial angles θ0: The
smaller initial angle considered is 23.5◦ (red solid line) and
the bigger angle considered is θ0 = 84.5◦ (brown solid line).
In between, we consider several angles θ0 = 35◦, 40◦, 45◦,
50◦, 62◦, and 73◦. For reference, we also include the static
non-Markovian evolution ωD = 0 = � represented by a black
dotted line.

We can see that all cases considered are qualitatively
similar; however, θ0 ∼ π/4 is the one that maintains the
degree of purity for several cycles. This fact can be fruitfully
exploited for the detection of the geometric phase. In Fig. 12
we show the geometric phase accumulated normalized by the
unitary geometric phase accumulated for several cycles of the
evolution under a non-Markovian environment for different
initial angles. The smaller angle considered is 23.5◦ and we
can see that the GP acquired is very different from the unitary
one (φg/φu �= 1). We considered increasing initial angles up
to 45◦, indicated by a magenta solid line which gives a φg/φu

close to 1 for several cycles (in agreement with the results
shown in Fig. 8). The next line (light blue with asterisks) is
for θ0 = 50◦ and shows a similar behavior. Angles continue to
increase to the blue dashed line with hexagrams representing
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FIG. 11. Loss of purity R(τ ) as a function of the number of
cycles evolved for a non-Markovian environment with driving for
different values of the initial quantum state (θ0 labeled in degrees).
For reference, we also include the static non-Markovian evolution
ωD = 0 = � represented by a black dotted line. The parameters are
γ0 = 1, � = 20, ωD = 4, and � = 7.

θ0 = 73◦. Therein, we can see that as the angle increases the
difference between φg and φu grows, becoming considerable
for large angles. That is the reason we believe that in order
to experimentally detect the geometric phase we need to
consider not only the decoherence model of noise but the
geometric aspects of SU(2) as well.

V. CONCLUSION

In this paper we have focused on the hierarchy equations
of motion method in order to study the interplay between

FIG. 12. Geometric phase accumulated normalized (φg/φu) by
the unitary geometric phase accumulated for several cycles of the
evolution under a non-Markovian environment for different initial
angles. The parameters are γ0 = 1, � = 20, ωD = 4, and � = 7.

driving and geometric phases. This method can be used if
(i) the initial state of the system plus the bath is separable
and (ii) the interaction Hamiltonian is bilinear. It results in
an advantageous method since it provides a tool to simulate
Markovian and non-Markovian behavior in the structured
spectrum.

We therefore studied the dynamics of the system and com-
puted the geometric phase for different environment regimes
defined by the relation among the model’s parameters. In all
cases we focused on the effect of adding driving to the two-
state system. By numerically studying the proposed model for
various parameter regimes, we found a remarkable result: The
driving can produce a large enhancement of non-Markovian
effects, but only when the coupling between the system and
environment is small. We have seen, for a weakly coupled
configuration, that when adding a low-frequency driving to the
quantum system’s frequency, the system’s dynamics tends to
be corrected towards the undriven situation only for very small
values of ωD. This can be understood to mean that adding a de-
tuning frequency changes considerably the system’s timescale
and therefore the geometric phase would be different from the
unitary undriven one.

More interesting is that for a stronger-coupling or non-
Markovian regime there are some situations where driving
enhances the robustness condition of the geometric phase
when � delays the revivals and ωD is small, particularly
when ωD/� ∼ O(1). As stated in the literature, in the strong-
coupling regime, the driving is unable to increase the degree
of non-Markovianity. In this paper we have further studied
the intermediate coupling, since we try to track traces of
the geometric phase, which is literally destroyed under the
strong influence of the environment. In this regime, where
there are some non-Markovian features characterizing the
dynamics, we have noted a suppression of non-Markovianity
altogether, allowing for a smooth dynamical evolution. We
have further shown that for low-frequency driving, the driving
fails to increase the degree of non-Markovianity with respect
to the static case, recuperating in some cases a scenario
where a geometric phase can still be measured (φg = φu +
δφ). This knowledge can aid the search for physical setups
that best retain quantum properties under dissipative dynam-
ics.

As we have noticed that the non-Markovian evolution (with
intermediate coupling) is the situation that provides the more
interesting results and further it is the one that can be used
to model experimental situations such as hybrid quantum
classical systems feasible with current technologies, we have
explored in detail the dependence on the initial angles for
a better understanding of the results. We have found that
a set of more stable initial angles exists. This means that
while there are dissipative and diffusive effects that induce a
correction to the unitary GP, the system maintains its purity
for several cycles, which allows the GP to be observed. It
is important to note that if the noise effects induced in the
system are of considerable magnitude, the coherence terms
of the quantum system are rapidly destroyed and the GP
literally disappears. It has been argued that the observation
of GPs should be done for times long enough to obey the
adiabatic approximation but short enough to prevent decoher-
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ence from deleting all phase information. As the geometric
phase accumulates over time, its correction becomes relevant
on a relatively short timescale, while the system still preserves
purity. All the above considerations lead to a scenario where
the geometric phase can still be found and it can help us infer
features of the quantum system that otherwise might be hidden
to us.
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