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Genuine tripartite nonlocality for random measurements in Greenberger-Horne-Zeilinger-class
states and its experimental test
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We present a comprehensive numerical analysis of violations of local realism by tripartite generalized
Greenberger-Horne-Zeilinger states. As an indicator of nonlocality we use the nonlocal fraction which describes
the probability of violation of local realism under randomly sampled observables. We compare two kinds of
local realism based on standard and hybrid local–nonlocal models. As a result, we show a great disproportion of
the results determined for both models. Although the nonlocal fraction for standard local realism and tripartite
generalized Greenberger-Horne-Zeilinger states significantly increases compared to the bipartite Clauser-
Horne-Shimony-Holt scenario, the genuine tripartite nonlocality (the strongest form of nonlocal correlations)
is observed with probability much smaller than its bipartite counterpart. Furthermore, when the effects of
decoherence on these states are introduced, such disproportion becomes significantly greater. Finally, we present
the statistical relevance of various classes of tight Bell inequalities as they are of paramount importance for
practical experimental investigation of all problems discussed in this paper. We also propose the nonlocal fraction
of hybrid local–nonlocal realism as a measure of genuine tripartite entanglement.
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I. INTRODUCTION

Local measurements performed on entangled composite
quantum system may yield correlations that are inconsistent
with any locally causal description [1]. Such measurement
statistics are commonly referred to as nonlocal and recognized
as a resource for various quantum information tasks [2] such
as quantum key distribution [3–5] or quantum randomness
generation [6].

The presence of nonlocality certifies the presence of en-
tanglement in the underlying quantum system without any
further assumption or modeling of the experimental setup.
However, nonlocal correlations are not solely a consequence
of entanglement, but also depend on the choice of measure-
ments. Therefore, the exact relation between entanglement
and nonlocality is unknown. For instance, it is unclear whether
an increase of entanglement should indicate an increase of
nonlocality and so whether the maximally entangled state
should also guarantee the maximum of nonlocality. Conse-
quently, what is a good quantifier of nonlocal correlations is
still in dispute [7].

The presence of nonlocality is usually revealed by a vi-
olation of various Bell inequalities and the degree of such
violation (hereafter the strength of violation) is thought of
as a measure of nonlocality [1,2]. This kind of demonstra-
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tion typically employs carefully chosen measurements whose
implementation requires the spatially separated observers to
share a complete reference frame [8]. Moreover, it was shown
that the maximal quantum violation of certain Bell inequal-
ities crucially requires partial entanglement [9]. The authors
of Ref. [7] found this inequivalence between entanglement
and strength of violation to be an anomaly. In our paper,
we adopted this term to maintain continuity with previous
research in this field.

Another interesting possibility to quantify the nonlocality
of complex states is based on the probability that random
measurements generate nonlocal statistics. In this approach,
the following quantity is considered [10,11]:

pV (ρ) =
∫

f (ρ,�)d�, (1)

where we integrate over a space of measurement parameters
� according to the Haar measure. The function f (ρ,�) is
an indicator function that takes the value 1 whenever the
generated behavior is nonlocal and 0 otherwise. Note that with
proper normalization the quantity pV can be interpreted as a
probability of violation of local realism. To avoid confusion,
we prefer to use the unique term of nonlocal fraction to
describe this quantity [12]. It is said that a state ρ1 is more
nonlocal than ρ2 if pV (ρ1) > pV (ρ2).

Recently, an intensive theoretical effort has been devoted
to study the nonlocal fraction [12–16], showing, for instance,
the disappearance of the anomaly between the maximally
entangled and maximally nonlocal states. In other words, an
increase of entanglement implies the growth of nonlocality
measured by pV and hence the anomaly appears only as an
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artifact of the measure that was used [12,14]. On the other
hand, the nonlocal fraction was used to witness entanglement.
It was shown that pV rapidly tends to unity as the number of
the parties increases [10,11] and so, pV provides an effective
and experimentally friendly method to detect entanglement in
the multiqubit case. However, all of these tests were designed
to rule out the so-called standard local realistic models (here-
after the standard model). These purely classical models do
not allow for any nonlocal correlation at all and hence in the
case of a multipartite system, any two observers are prohib-
ited to share nonlocal correlations. Consequently, the results
presented in Refs. [10,11] refer to the distinction between
entangled and separable states without distinguishing specific
types of multipartite entanglement. The authors of Ref. [14]
showed that whenever the nonlocal fraction considering stan-
dard local realism with two measurement settings per party is
greater than 2(π − 3) ≈ 28.318%, a state cannot be expressed
as a convex combination of bipartite entangled states. The
cases of pV � 2(π − 3) are designated as inconclusive. For
this reason, it is valuable to analyze this problem more deeply.

It is known that multipartite scenarios offer a much richer
and more complex source of correlations (including entan-
glement and nonlocality) than the bipartite one. Such cor-
relations have already been proven useful for several quan-
tum information tasks [17–19]. Specifically, for more than
two observers it is possible to have a hybrid local–nonlocal
realistic model (henceforth the hybrid model) that, given
a set of projective measurements, permits the existence of
nonlocal correlations within subsets of observers while there
are local correlations across these subsets [20]. The quantum-
mechanical description of nature provides for the existence of
correlations that cannot be explained by such a hybrid model.
These correlations constitute what is known to be a genuine
multipartite (or n way) nonlocality, where all parties are
required to be nonlocally correlated [21,22]. The presence of
genuine multipartite nonlocality entails the genuine tripartite
entanglement [22,23]. Assuming that pV is a better (or at least
alternative) measure of nonlocality [12] than the strength of
violation, several important questions arise. (i) What is the
nonlocal fraction in the hybrid model? (ii) How it is related
to pV in the standard models? (iii) Is the mutual relation
of the nonlocal fraction for the standard and hybrid models
correlated to the relationship between the strength of violation
for these models? (iv) Can we use the nonlocal fraction of the
hybrid model for the experimental detection (quantification)
of genuine multipartite entanglement? To the best of our
knowledge, none of these questions has been answered yet.

In this work, we concentrate on these problems and analyze
the genuine multipartite nonlocality measured by the nonlocal
fraction considering local realism under random measure-
ments and its relation with multipartite entanglement and the
strength of violation. We focus on generalized Greenberger-
Horne-Zeilinger (gGHZ) states as representative members of
one of the most important families of quantum states, charac-
terized only by the genuine multipartite entanglement without
the bipartite one. These states are therefore a quite natural
choice for our investigations. Moreover, it is known that apart
from the simplest Clauser-Horne-Shimony-Holt (CHSH) case
[24], the nonlocal correlations of multipartite state are de-
scribed by several inequivalent families of Bell inequalities.

To dispense with the choice of a particular inequality a
priori, we consider all possible tight Bell inequalities of both
models of nonlocality. In contrast to Ref. [14], we adapt
the method to work with the correlation coefficients instead
of using a linear programming approach. The advantage of
such a procedure is its direct experimental implementation,
which can be useful for entanglement detection [10,11]. The
drawback, however, is a large number of Bell-type inequalities
which should be considered in a given Bell scenario. For
instance, in the tripartite case with binary inputs and outcomes
the complete description of standard and genuine nonlocal
correlations requires more than 450 000 Bell inequalities and
this value grows exponentially with the number of parties
[25,26]. This is the reason why our investigations are lim-
ited to the tripartite scenario. Furthermore, by admixing the
gGHZ states with white noise we investigate the robustness
of the above-mentioned results in an experimentally realistic
scenario. We discuss the ability of the experimental measure
of pV in several currently developed setups [27–30]. Finally,
we present experimental verification of our predictions.

II. DESCRIPTION OF THE METHOD

In the standard tripartite Bell scenario, the observers Alice
(A), Bob (B), and Charlie (C) share entangled systems and
each performs local measurements on its shares in spatially
separate laboratories. At first, each participant chooses or
receives their own independent set of two dichotomic mea-
surements. This corresponds to defining two measurement
bases that we label x, y, z ∈ {0, 1} for Alice, Bob, and Charlie,
respectively. The measurement in each basis provides each
observer with one out of two possible outcomes, denoted
a, b, c ∈ {0, 1}, respectively. Formally, these local dichotomic
measurements can be described by a set of orthogonal projec-
tors

{
ÔA

a|x, ÔB
b|y, ÔC

c|z
}
, (2)

where ÔA
a|x = U †

A,x|a〉〈a|UA,x and likewise for other projectors.
Here |a〉 stands for Alice’s computational basis state and UA,x

denotes a unitary single-qubit transformation parameterized
by three angles

UA,x
(
φA

x , γ A
x , χA

x

) =
(

cos φA
x eiγ A

x sin φA
x eiχA

x

− sin φA
x e−iχA

x cos φA
x e−iγ A

x

)
. (3)

In other words, each party starts by fixing two sets of angles
φi, γi, and χi, thus choosing its two local measurement bases
that are subsequently being used throughout the Bell exper-
iment. Even though these angles are continuous quantities,
preselecting two sets of angles per party yields a discrete
number of possible measurements {ÔA

a|x, ÔB
b|y, ÔC

c|z} (3 × 2 ×
2 = 12 in this case) as investigated below.

Following the standard terminology, the corresponding
Bell experiment is then fully characterized by the set of
joint conditional probability distributions P = {P(abc|xyz)},
given by P(abc|xyz) = Tr{Ôa|x ⊗ Ôb|y ⊗ Ôc|z · ρ}, where ρ is
a normalized quantum state.

The standard local realistic model is based on the assump-
tion of the existence of a probability distribution q(λ) such
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FIG. 1. A schematic representation of the space of quantum
correlations. Local correlations form two polytopes denoted by LS

and LH with respect to standard and hybrid models, respectively. Cor-
relations falling outside LS (LH ) are called nonlocal with respect to
standard (hybrid) model and belongs to NLS (NLH ). Bell inequalities
are the facets represented by straight lines.

that

P(abc|xyz) =
∑

λ

q(λ)Pλ(a|x)Pλ(b|y)Pλ(c|z), (4)

the set of local correlation P(abc|xyz) (denoted as LS) is con-
vex with finitely many vertices and called the local polytope
[31]. The LS polytop is bounded by 53 856 facets (hyper-
planes) [32–34]. Each facet can be described by a linear func-
tion of the probabilities ILS (P) ≡ ∑

abc,xyz gxyz
abcP(abc|xyz) =

CLHV, where gxyz
abc are real coefficients and we assume CLHV ≡

1 since one can always rewrite I (P) in terms of gxyz
abc/CLHV.

Correlations which do not admit the above decomposition
are referred to as nonlocal and lie outside the local polytope
LS . In other words, they must violate at least one inequal-
ity ILS (P) � 1. Such an inequality is called the tight Bell
inequality and CLHV ≡ 1 depicts the upper threshold of one
inequality for the standard local realism [33]. To simplify our
notation, henceforth by NLS , we denote the set of probability
distributions P(abc|xyz) which are nonlocal by the mean of
standard model, i.e., NLS is the complement of LS as shown
in Fig. 1(a).

The standard definition of nonlocality and resulting Bell
inequalities, however, do not cover all possible variants of tri-
partite nonlocal correlations. For that reason, one can relax the
locality assumption, where pairs of parties are now allowed to
group together and share nonlocal resources. In consequence,
by LH we denote the set of tripartite probability correlations
admitting the hybrid local–nonlocal decomposition

P(abc|xyz) =
3∑

i=1

∑
λi

q(λi )Pλi (δi|βi )Pλi (δ jδk|β jβk ), (5)

where {i, j, k} is an even permutation of {1, 2, 3}, δ =
{a, b, c}, and β = {x, y, z} as before. In analogy to the previ-
ous paragraph, the boundaries of LH set are given by 405 056
tight Bell inequalities ILH (P) � 1 derived by Bancel et al.
[22]. The probability distributions P(abc|xyz) cannot be de-
composed in the hybrid local–nonlocal form, and hence pro-
vide a violation of any ILH � 1, are named genuine tripartite
nonlocal and denoted as NLH [Fig. 1(b)].

An alternative parametrization of ILS (P) and ILH (P)
is provided by 26 correlation coefficients {〈Ax〉,
〈By〉, 〈Cz〉, 〈AxBy〉, 〈AxCz〉, 〈ByCz〉, 〈AxByCz〉} for all

x, y, z ∈ {0, 1}, which satisfy the relation P(abc|xyz) = 1
8

[1 + (−1)a〈Ax〉+(−1)b〈By〉+ (−1)c〈Cz〉 + (−1)a+b〈AxBy〉 +
(−1)a+c〈AxCz〉 + (−1)b+c〈ByCz〉 + (−1)a+b+c〈AxByCz〉].
This is the parametrization used in Refs. [22,33]. It is worth
mentioning that all correlation coefficients can be measured
experimentally. For instance, in the case of the experimental
setup based on correlated photons, the correlation coefficients
can be expressed as a function of coincidence counts
measured on the detectors [30] (discussed later).

The aim of our method is to find, for the gGHZ state,

|θ〉 = cos θ |000〉ABC + sin θ |111〉ABC (6)

with 0 � θ � π
4 and a set of observables {Ôa|x, Ôb|y, Ôc|z},

whether the local realistic model exists and so whether all
Bell inequalities ILS � 1 and ILH � 1 are satisfied. If even
one of ILS or ILH is violated then the state is standard non-
local or genuine nonlocal, respectively [22,33]. We calculate
how many sets of settings (in percents) lead to the violation
of local realism [see Eq. (1)]. To simplify our notation,
by pV (NLS ) ≡ pNLS

V (|θ〉) we describe the nonlocal fraction
considering standard local realism for the gGHZ state and
likewise for pV (NLH ). In other words, pV (NLS ) corresponds
to the probability that the state |θ〉 is standard nonlocal under
random measurements.

We stress that the only analytical result on tight inequalities
was obtained in Ref. [10] for the simplest scenario of two
settings and two outcomes. Naturally, due to the significantly
larger number of Bell inequalities appearing in the tripartite
case, we see no possibility to make a similar calculation.
Instead, we use a numerical approach to integrate over a space
of measurement parameters. The measurement operators are
sampled according to the Haar measure [35]. The angles γi

and χi are taken from uniform distributions on the intervals:
0 � γi, χi � 2π . To generate φi in interval 0 � φi � π/2 it is
convenient to use an auxiliary random variable ξi distributed
uniformly on 0 � ξi < 1 and φi = arcsin (

√
ξi ). Of course, all

variables are generated independently for each observer, mea-
surement, and outcome. The theoretical calculations discussed
in this paper have been performed for 109 randomly chosen
settings.

III. RESULTS AND DISCUSSION

A. Nonlocal fraction: Noiseless scenario

We start by investigating the most ideal scenario: a pure
gGHZ state. The particular instance of θ = 45◦ was previ-
ously analyzed in the context of the standard model. In that
case, our result of pV (NLS ) ≈ 74.688 % is consistent with
calculations based on linear programming [10,11,14]. As we
see in Table I, this value is significantly higher than the
nonlocal fraction for the hybrid model, where pV (NLH ) is
around 11.580%. For other values of θ such an observation
is also valid and the nonlocal fraction pV (NLS ) exceeds
pV (NLH ) (see Fig. 2). Naturally, this is not surprising. The
definition of local realism admits, if there exists a set of
observables which provides factorization (4), than the hybrid
nonlocal-local decomposition (5) is also possible but not vice
versa. Consequently, the probabilities that the standard and
hybrid models exist under randomly chosen measurements
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TABLE I. Nonlocal fraction pV observed for the gGHZ state in
Eq. (6) and random measurement settings. The second and third
columns corresponds to the nonlocal fraction within standard and
hybrid models, respectively. Columns no. 4 to 6 denote various
subsets of the hybrid local–nonlocal realism (see the main text).

θ pV (NLS ) pV (NLH ) pV (NLH |T ) pV (T |Sv ) pV (Sv )

45.00 74.688 11.580 6.309 4.735 0.535
42.63 74.564 11.507 6.299 4.695 0.513
40.26 74.251 11.297 6.285 4.567 0.445
37.89 73.675 10.945 6.222 4.374 0.349
35.53 72.885 10.413 6.052 4.121 0.240
33.16 71.758 9.701 5.722 3.840 0.139
30.79 70.286 8.836 5.214 3.558 0.063
28.42 68.241 7.850 4.564 3.267 0.019
26.05 65.655 6.783 3.817 2.964 0.002
23.68 62.226 5.708 3.053 2.655 1.7×10−5

21.32 57.959 4.682 2.334 2.348 0.0
18.95 52.695 3.713 1.692 2.022 0.0
16.58 46.382 2.843 1.164 1.679 0.0
14.21 39.190 2.078 0.757 1.321 0.0
11.84 31.196 1.423 0.463 0.960 0.0
9.47 22.889 0.878 0.255 0.623 0.0
7.11 14.604 0.455 0.118 0.337 0.0
4.74 6.666 0.161 0.036 0.126 0.0
2.37 0.731 0.018 0.004 0.014 0.0

fulfill the relation pV (LS ) = 1 − pV (NLS ) � pV (LH ) = 1 −
pV (NLH ) and hence, pV (NLS ) � pV (NLH ). However, the
exact value of pV (NLH ) and the ratio pV (NLS )/pV (NLH ) are
not straightforward. (i) The nonlocal fraction pV (NLH ) for the
three-qubit GHZ state is about 2.5 times smaller than the result
achieved for the two-qubit GHZ state, i.e., 28.318 % [10]. It

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35  40  45

p V
 [%

]

θ  [deg]

 0

 2

 4

 6

 8

 10

 12

 0  5  10  15  20  25  30  35  40  45

 0  10  20  30  40
 0

 20

 40

 60

 80

p V
 [%

]

θ  [deg]
 0  10  20  30  40

 0

 20

 40

 60

 80

FIG. 2. Nonlocal fraction for the gGHZ state vs θ . The green
line with diamond symbols represents the probability of detection of
genuine tripartite nonlocality [pV (NLH )], the blue line with circuit
symbols denotes pV (NLH |T ), the red line with square symbols
corresponds to pV (T |Sv ), and the black line with triangle symbols is
related to pV (Sv ). The green dotted line corresponds to pV (ILH

4 ). The
inset shows the mutual relations between pV (NLS ) (reversed triangle
symbols) and pV (NLH ) (diamond symbols). Finally the blue dashed
line represents pV (ILS

4 ).

is very interesting since both states are maximally entangled
in the two- and three-qubit sense. Assuming pV to be a
measure of nonlocality, one can say that the genuine tripartite
nonlocality is much weaker than its bipartite counterpart. (ii)
For the GHZ state the ratio pV (NLS )/pV (NLH ) ≈ 6.45 and
could be even higher when θ < 45◦. Consequently, the degree
of genuine tripartite nonlocality decreases much faster with θ

than for standard nonlocality. Interestingly, an opposite con-
clusion can be found when the strength of violation is taken
as a measure of nonlocality. Specifically, for gGHZ states and
the standard model the strength of violation is provided either
by the 2nd or 15th facet Bell inequality (see Appendix A)
while in the hybrid case, one should take the 10th, 96th, or
185th facet inequality [30]. Then it is easy to verify that the
ratio max(ILS )/ max(ILH ) = √

2 when 29.45◦ < θ � 45◦ and
it decreases with decreasing θ . In other words, the relation be-
tween the strength of violation of both models of nonlocality
either remains constant or the standard nonlocality decreases
faster (with θ ) than the genuine tripartite one.

Further analysis of pV also reveals that not every Bell
inequality is equivalently important, which yields several
important consequences. Specifically, for states |θ〉 there are
two classes of Bell inequalities which play a dominant role,
namely, the 4th facet inequality given in Ref. [33] (hereafter
ILS
4 ) and the 4th facet inequality determined by Bancal et al.

[22] (denoted as ILH
4 ). As we see in Fig. 2, these two classes

lead to results very close to the exact outcomes for pV (NLS )
and pV (NLH ) in the entire range of angles θ . The appropriate
relation is written as

pV (NLS ) = pV
(
ILS
4

) + OLS
4 ,

pV (NLH ) = pV
(
ILH
4

) + OLH
4 , (7)

where pV (ILS
4 ) and pV (ILH

4 ) denote the probabilities of vio-
lation for fixed Bell inequality ILS

4 � 1 and ILH
4 � 1, respec-

tively, OLS
4 /pV (NLS ) < 0.06, and OLH

4 /pV (NLH ) < 0.09 for
all θ (see Appendix B: Tables II and III).

As we have no analytical expression for pV , the error func-
tions remain unknown and they can be only approximated, for
instance, as OLS

4 = 0.071pV (ILS
4 ) and OLH

4 = 0.085pV (ILH
4 ).

Then, in the particular case of θ = 45◦, the nonlocal fraction
for ILS

4 is pV (ILS
4 |45◦) ≈ 69.998 % and OLS

4 = 4.690 % while
pV (ILH

4 |45◦) ≈ 10.627 % and OLH
4 ≈ 0.953 % (cf. Table I).

At this point, it is important to note that pV (ILS
4 |45◦)

is significantly higher than the results previously achieved
for Mermin-Ardehali-Belinskii-Klyshko and Werner-Wolf-
Zukowski-Brukner inequalities, i.e., 10.002 % and 13.313 %,
respectively [10,11]. Consequently, the problem of entan-
glement detection via random measurements discussed in
Refs. [10,11] can be remarkably improved by matching the
inequality class. Finally, it should be emphasized that ILS

4

(ILH
4 ) corresponds to 96 (1536) Bell expressions, which are

equivalent under the relabeling of parties, inputs, and outputs.
It means that all predictions described so far can be recon-
structed (with precision up to OLS

4 and OLH
4 ) by considering

just 96 instead of 53 856 Bell inequalities for the standard
model and 1536 instead of 405 056 Bell inequalities for the
hybrid model. In other words, it provides a great simplification
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of the analyzed problems and thus facilitates experimental
implementation.

Let us now discuss the structure of genuine nonlocal cor-
relations more deeply. It is known that multipartite nonlocal
correlations may have several origins [20–22], namely: the
nonsignaling principle (NLH set); time-order-dependent prin-
ciple (T set), i.e., one-way signaling case; and Svetlichny
principle (Sv set) where a two-way signaling scenario is
assumed. For these sets the following relation is satisfied,
Sv ⊂ T ⊂ NLH , where the inclusion is strict [22].

The necessity to distinguish various kinds of genuine
nonlocality comes from the perspective of classical simu-
lations of quantum correlations in terms of shared random
data and communication [36]. For instance, the model of T
nonlocality is crucial for the simulation of quantum corre-
lations in all protocols where measurements performed on
a particular system may depend on the measurement out-
come obtained from another system, e.g., measurement-based
computation. For that reason, it is important to investigate
the nonlocality of the subsets NLH |T , T |Sv , and Sv . The
first one denotes the nonlocal correlations which belong to
the set NLH but not to T and likewise for the later one.
Obviously,

pV (NLH ) = pV (NLH |T ) + pV (T )

= pV (NLH |T ) + pV (T |Sv ) + pV (Sv ). (8)

As we see in Table I and Fig. 2, the Svetlichny-type nonlo-
cality is detected in extremely rare cases, with the probability
below 0.55 %. This type of nonlocality is caused by violation
of the Svetlichny inequality ILH

185 [20,22]. As the inequality
ILH
185 � 1 is satisfied when θ � 22.5◦ [30,37,38], the nonlocal

fraction pV (Sv ) also vanishes in this regime. In the case
of NLH |T and T |Sv , the nonlocal fraction pV is noticeably
higher and reaches its maximal value of 6.3 % and 4.7 %,
respectively. Interestingly, when θ � 22.5◦ the nonlocal frac-
tion pV (T |Sv ) > pV (NLH |T ) (see Fig. 2), changing the origin
of nonlocal correlations in this sense that the major impact
to pV (NLH ), comes from the time-order-dependent model
without nonsignaling principle assumption.

B. Nonlocal fraction in the presence of noise

Let us now verify whether the above-described observa-
tions are also satisfied when a more realistic scenario is taken
into consideration. In any experimental preparation of the
quantum state, various kinds of imperfections are inevitably
present. They are caused, e.g., by improper setting of indi-
vidual experimental components or by depolarization effects
(presence of noise). As the influence of the first imperfec-
tion factor is rather hard to be expressed quantitatively, we
concentrate on the later one. For that reason, we extend our
calculations of the nonlocal fraction to the following state:

ρ = v|θ〉〈θ | + 1 − v

8
18, (9)

where |θ〉 denotes pure gGHZ state, the parameter v is called
the visibility of the state (0 � v � 1), and 18 stands for
the identity matrix. In contemporary experiments, the gGHZ
states were successfully generated with v ≈ 0.83 [27–29] and
recently even v ≈ 0.97 [30].
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FIG. 3. Nonlocal fraction within standard local realism for
gGHZ state. Presented curves refer to various v ∈ (0.8, 1) as de-
scribed in the legend.

It is known that the presence of noise implies a lin-
ear decline in the strength of violation. This is valid
for both standard and hybrid models. Therefore, the ratio
max(ILS )/ max(ILH ), which describes the relation between the
degree of standard and genuine tripartite nonlocality does not
depend on v, as long as both inequalities are violated for a
noisy state. In the case of pV , the impact of noise is more
complicated and stronger. First, it results in an exponential
decay of pV (see Figs. 3 and 4). This is clearly visible espe-
cially for the genuine nonlocality. For instance, if one takes
the GHZ state and v = 0.97, as in the experiment discussed
in Ref. [30], the nonlocal fraction pV (NLH ) decreases from
11.580% to 6.285%, i.e., becomes almost two times smaller
with respect to the noiseless scenario. Furthermore, when v <

0.90 the nonlocal fraction pV (NLH ) < 0.7 %. Consequently,
all experiments performed with the visibility of the gGHZ
state around 0.83 [27–29] yield pV (NLH ) < 0.05 % and are,
thus, hardly measurable. On the other hand, the nonlocal
fraction pV (NLS ) for the GHZ state and v = 0.97 is equal
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FIG. 4. Nonlocal fraction within hybrid local–nonlocal realism
for gGHZ state. Presented curves refer to various v ∈ (0.9, 1) as
described in the legend.
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to 66.117% (initially 74.688%). When v decreases to 0.85
then the nonlocal fraction pV (NLS ) drops down to 25.192%.
It means that the presence of noise affects the results to
varying degrees, depending on the chosen model of nonlo-
cality. Therefore, the ratio pV (NLS, v < 1)/pV (NLH , v < 1)
becomes even greater than pV (NLS, v = 1)/pV (NLH , v = 1)
in the entire range of θ . For exact results see Appendix B:
Tables IV and V.

Despite that, the dominant role of Bell inequalities ILS
4 � 1

and ILH
4 � 1 is also valid in the presence of noise (at least

for v � 0.8). Therefore, we can generalize Eq. (7) in the
following way:

pV (NLS, v) = pV
(
ILS
4 , v

) + OLS
4 (v),

pV (NLH , v) = pV
(
ILH
4 , v

) + OLH
4 (v), (10)

where a potential approximation of both error functions
[linear with respect to pV (ILS

4 , v)] are given by OLS
4 (v) =

(4.074 − 7.611v + 3.607v2) pV (ILS
4 , v) and OLH

4 (v) =
[0.002559/(v3 − 2.91497v2 + 2.833967v − 0.916638) − 1]
pV (ILH

4 , v).

C. Nonlocal fraction versus tripartite entanglement

We stress that in all cases analyzed above, the nonlocal
fraction pV increases with θ . Similar behavior is expected for
the tripartite entanglement of the gGHZ state. For that reason,
it is important to compare these two quantities.

It is known that when the gGHZ state is mixed with
white noise, its entanglement properties change with the v

parameter. Depending on the visibility, the resulting state ρ

belongs to different entanglement classes, defined as inequiv-
alent under stochastic local operations and classical commu-
nication [39]. As the genuine tripartite nonlocality occurs
in both the GHZ and W class [40], the appropriate tripar-
tite entanglement measure is the genuine concurrence CGME

which vanishes only for biseparable and fully separable states
[41]. For the noisy-gGHZ state, ρ, the genuine concurrence
is given by CGME(ρ) = max {0, v sin(2θ ) − 2(1−v)

3 }. As we
see, for constant v the genuine concurrence CGME(ρ) always
increases with θ . For instance, when v = 1 then the genuine
concurrence behaves as CGME(|θ〉) = sin(2θ ). Consequently,
one can expect that pV is a monotonic function of tripartite
entanglement and vice versa.

The lack of analytical expression for pV prohibits us from
writing an exact relation between tripartite entanglement and
nonlocal fraction. However, we can still find its approxi-
mation. In particular, for the genuine nonlocality such an
outcome looks very interesting. Specifically, using nonlinear
regression one can obtain a simple formula

C2
GME(ρ) = α0 pV (NLH , v) + α1

√
pV (NLH , v)

+ 3.7(1 − v), (11)

where α0 = 14.79 [1.0064 sin(0.511 + v) − 1] and α1 =
−13.14 + 32.51v − 19.31v2. As we see, none of the coef-
ficients α0 and α1 depend on the angle θ . Such a depen-
dence is hidden within pV (NLH , v) as given in Table I and
Appendix B. The last term in Eq. (11) is caused by the
fact that entanglement and nonlocality have different critical
visibility, i.e., there exist tripartite entangled states which are
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FIG. 5. Relation between genuine concurrence C2
GME and nonlo-

cal fraction pV (NLH ). Presented symbols correspond to numerical
outcomes, where pV (NLH ) ≡ pNLH

V (|θ〉, v) are given in Table I and
Appendix B, and CGME(ρ ) = max {0, v sin(2θ ) − 2(1−v)

3 }. The shape
of symbols denotes: v = 1 (circuit symbols), v = 0.99 (square sym-
bols), v = 0.97 (triangle symbols), v = 0.95 (diamond symbols),
and v = 0.90 (reversed triangle symbols). Solid lines correspond
to Eq. (11) with various v. The inset shows C2

GME as a func-
tion of pV (NLS ) for v = 1. The corresponding fitting function is
given by C2

GME(|θ〉) = 0.00542pV (NLS ) − 1.47 × 10−5 pV (NLS )2 +
2.8386 × 10−10 pV (NLS )5.

not genuine tripartite nonlocal (see, for instance, Ref. [40]).
As we see in Fig. 5, the quality of our approximation of C2

GME
is very good. In particular, when visibility v = 1 Eq. (11)
reduces to

C2
GME(|θ〉) = 0.068 pV (NLH ) + 0.06

√
pV (NLH ), (12)

and such an approximation provides the coefficient of deter-
mination R2 = 0.999. It means that by measuring the nonlo-
cal fraction pV (NLH ) one can directly estimate the genuine
concurrence C2

GME(|θ〉) with precision ±0.012. In the general
case, the estimation precision of genuine concurrence by
Eq. (11) is not greater than ±0.016. Moreover, using Eq. (7)
the above relation can be further modified to reduce the
number of analyzed Bell inequalities, as mentioned before.

By analogy, one can perform a numerical approximation of
C2

GME(ρ) with respect to other sets of nonlocality [pV (NLS ),
pV (NLH |T ) etc.]. However, in all such cases, the fitting
function takes much more complicated form. For instance,
C2

GME(|θ〉) vs pV (NLS ) require the polynomial approximation
of fifth order (see inset in Fig. 5). Furthermore, in general, the
nonzero value of pV (NLS ) does not guarantee C2

GME(|θ〉) �= 0
as mentioned in Ref. [14].

D. Nonlocal fraction of individual Bell inequalities

Despite the utility of inequalities ILS
4 and ILH

4 described
above, in general the conclusions resulting from a given Bell
inequality may be inconsistent with the behavior of the whole
set of nonlocal correlations. For instance, the monotonic rela-
tion between nonlocal fraction pV and tripartite entanglement
is not always satisfied if one assumes a priori fixed Bell
inequality. To highlight this fact, this paragraph is dedicated
to the description of several examples of Bell inequalities
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FIG. 6. Comparison between nonlocal fraction pV and the
strength of violation for various Bell inequalities.

which, applied to the gGHZ states, demonstrate various kinds
of anomalies.

Let us start with the 13th facet inequality of the LH polytop
[22]. Then, for the gGHZ states both the tripartite entangle-
ment and the strength violation of ILH

13 � 1 increase mono-
tonically with θ . Despite that the nonlocal fraction pV (ILH

13 )
reaches its maximum for θ ≈ 33◦ [see Fig. 6(a)]. In other
words, we have an anomaly between CGME and pV , which is
an analogy of the original anomaly reported in Refs. [9,42,43].

On the other hand, if one takes the 21st facet inequal-
ity of LS or the 10th facet inequality of LH (examined in
Ref. [30]), then two kinds of anomalies are observed, namely,
the anomaly between entanglement and nonlocality and the
anomaly between the strength of violation and the nonlocal
fraction [Figs. 6(b) and 6(c)]. Specifically, based on the calcu-
lations presented in Ref. [30] one can find that max [ILH

10 (θ )]
occurs when θ = 27◦ while the maximum of pV (ILH

10 ) is
located around θ = 21◦.

A similar situation was described in Ref. [15] in the con-
text of Collins-Gisin-Linden-Masser-Popescu inequality [44].
It was shown that the anomaly between entanglement and
nonlocality occurs regardless of the method used to measure
nonlocality, despite the nonlocal fraction for the entire poly-
tope increases monotonically with entanglement [16].

All these examples confirm that the behavior of pV for
individual Bell inequality may be significantly different than
results presented in previous sections.

Finally, it is worth mentioning that even if two Bell in-
equalities are violated with the same strength, the nonlocal
fraction does not have to be the same. As an example let
us take the 96th and 99th facet inequalities of LH . It was
shown that max [ILH

96 (θ )] ≡ max [ILH
99 (θ )] in the entire range of

θ [30]. However, pV (ILH
96 ) > pV (ILH

99 ) as presented in Fig. 6(d).
Although such behavior is not surprising, it still deserves
confirmation.

state preparation

qubit B

qubit A

qubit C

/2 /4

BBO

CC

DetPBS

BD BDPBS
@ 45o/4 /2

/4 /2

DetPBS/4 /2

FIG. 7. Scheme of the experimental setup, in the state prepara-
tion part on the left three-qubit gGHZ states are generated, on the
right three preparation parts and drown. λ/2: half-wave plate; λ/4:
quarter-wave plate; BBO: double crystal cascade; PC: polarization
controller; BD: beam displacer; PBS: polarizing beam splitter; Det:
detector.

E. Experimental verification

To verify the above-described theoretical predictions, we
perform experiments generating and measuring the nonlocal
fraction on three-qubit generalized GHZ states of the form (6).
Our experimental setup is depicted in Fig. 7. First, we gener-
ate polarization-entangled pairs of photons in the process of
Type-I spontaneous parametric down-conversion. To achieve
that, a laser beam of about 200mW pumps a cascade of
two β-BaB2O4 (BBO) crystals [45–47]. These crystals have
their optical axes rotated to mutually orthogonal planes, and
because of the coherence of the pumping beam, the cascade
generates an indistinguishable superposition of horizontally
and vertically polarized photon pairs. Note that the probability
of generating two pairs simultaneously is negligible. Labeling
horizontal (vertical) polarization |0〉 (|1〉), the state generated
immediately behind the crystal cascade reads

cosθ |00〉 + sinθ |11〉, (13)

having the parameter θ set by controlling the pumping beam
polarization.

Once generated, one photon of the pair is brought to a beam
displacer (BD), where we encode an additional qubit into
its spatial mode. If horizontally (|0〉) polarized, this photon
maintains its spatial mode (associated with logical state |0〉),
but when vertically (|1〉) polarized, the photon’s spatial mode
changes to spatial mode that we associate with logical state
|1〉). The second photon does not undergo such an operation.
As a result, we obtain a generalized three-qubit GHZ state in
the form of

|θ〉 = cos θ |000〉ABC + sin θ |111〉ABC (14)

with the first qubit (A) corresponding to the spatially encoded
qubit of the first photon. The second (B) and third (C) qubits
correspond to polarization-encoded qubits of the first and
second photons, respectively.

To implement local measurements on polarization-encoded
qubits B and C, we subject the photons to standard polariza-
tion projections consisting of quarter- and half-wave plates
followed by polarizers. The measurement on the spatially
encoded qubit A is achieved afterwards by having the first
photon spatial modes (already polarization-projected) interact
on another beam displaced converting the spatial encoding to
polarization encoding. Then a standard polarization projection
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is used to measure the state of qubit A. The freedom in
choosing local measurement bases allows us to subject the
three qubits to all combinations of local projections onto
|0〉, |1〉, 1√

2
(|0〉 ± |1〉), 1√

2
(|0〉 ± i|1〉) states corresponding to

a complete tomography of the three-qubit state [47] from
which its density matrix can be estimated. We were able to
adjust the parameter θ = 45◦ with a precision of ±0.5◦. We
observed the typical value of fidelity of the generated state
to be 0.973 ± 0.009, i.e., the estimated visibility v = 0.97 ±
0.01 (for details see Ref. [30]).

To measure any correlation coefficient, we set accordingly
the six wave plates in the three projection parts of the setup
and measure coincidence counts on the two detectors, de-
noted Nabc

xyz . This quantity is proportional to the probability
that Alice, Bob, and Charlie observe outcomes a, b, c when
measuring in bases x, y, z [see projectors (2)]. The proportion
constant is the overall state generation rate. To link the ex-
perimental results with the above-described theory we have to
properly normalize measured coincidences. That is why we
measure also all seven orthogonal projections. As a result, the
expectation value in the x, y, z setting reads

〈AxByCz〉 =
∑

abc∈{0,1}(−1)a+b+cNabc
xyz∑

abc∈{0,1} Nabc
xyz

, (15)

and similarly for other correlation coefficients: 〈Ax〉, 〈AxBy〉,
and so on (see, for instance, Ref. [30]). Using corre-
lation coefficients, the violation of individual Bell in-
equalities ILS � 1 and ILH � 1 is verified. As an ex-
ample, let us consider the 4th facet inequality ILS

4 �
1, where ILS

4 = [〈A0B0〉 + 〈A0B0C1〉 − 〈A0B1〉 − 〈A0B1C1〉 +
〈A1B0〉 + 〈A1B0C1〉 + 〈A1B1〉 + 〈A1B1C1〉 − 2〈C1〉]/2. Then,
for the particular set of angles

φA
0 = 45◦, χA

0 = −120◦,

φA
1 = 71◦, χA

1 = −120◦,

φB
0 = 60◦, χB

0 = 60◦,

φB
1 = 60◦, χB

1 = 240◦,

φC
0 = 60◦, χC

0 = 60◦,

φC
1 = 60◦, χC

1 = 240◦, (16)

and all γ
j

i = 0, we found the experimental value

ILS
4 = 1.1286 ± 0.015, (17)

which is in line with theoretical prediction ILS
4 = 1.114.

However, such experimental results received from mea-
sured coincidence rates, in principal, fluctuate due to shot
noise. It means that Bell expressions I which, for the GHZ
state, give the outcomes close to the upper threshold are un-
suitable for experimental verification of the nonlocal fraction
since a violation of the inequality I � 1 might be simply
accidental (due to shot noise). As an example of such Bell
expression see ILH

10 discussed in Section D (see for instance
Fig. 6(c)) and Ref. [30]. That is why we selected the more
robust calculation based on the 4th facet inequalities, ILS

4 � 1
and ILH

4 � 1. To determine the nonlocal fraction both inequal-
ities have been tested for 105 randomly chosen settings. As a

result we found that

pV
(
ILS
4 , v

) = 56 % ± 5 %,

pV
(
ILH
4 , v

) = 6 % ± 2 %. (18)

Theoretical values for these quantities are
pV (ILS

4 , v = 0.97) = 61.144% and pV (ILH
4 , v = 0.97) =

5.672% (see Appendix B: Tables II and III). As we see, our
measurements are in complete agreement with theoretical
predictions.

The error bars of pV were estimated by properly shifting
the upper threshold of Bell inequalities ILS

4 and ILH
4 . Specif-

ically, our experimental determination of ILS
4 and ILH

4 are
performed with uncertainties not greater than 0.015. It means
that for all settings which provide |ILS − 1| � 0.015 (|ILH −
1| � 0.015) one cannot unambiguously verify whether Bell
inequality ILS � 1 (ILH � 1) is violated or not. Following the
propagation of the uncertainty theorem, we calculate pV for
two boundary cases: (i) assuming that ILS > 0.985 (ILH >

0.985) is nonlocal, and (ii) assuming that ILS � 1.015 (ILH �
1.015) is local. In this way the error bars of pV were estimated.

IV. CONCLUSION

In this paper we investigated the nonlocal fraction as an
indicator of nonlocal correlations. While such as analysis was
successfully used in many recent papers, several crucial aspect
were not addressed. The main limitation of these studies
is that the standard local realistic model is used to witness
nonlocal correlations in multipartite state. In our work, we
provided alternative calculations for the genuine multipartite
nonlocality.

We applied that idea to the tripartite GHZ state and showed
that the probability of finding a genuine nonlocal correlation
is significantly smaller than for the standard nonlocality. Inter-
estingly, it is even smaller than results previously obtained for
the bipartite GHZ counterpart. While the nonlocal fraction for
standard realistic model rapidly tends to unity as the number
of parties increases, it is unknown whether such behavior is
valid for hybrid local–nonlocal realistic models. Our result
for the tripartite state indicates a rather opposite scenario and
provides a motivation for further work. Naturally, this result
could be an anomaly and for n-partite GHZ states (n > 3) the
nonlocal fraction should tend to unity. However, we see no
argument to expect that. In a more general context, our result
suggests a negative answer to the question whether without
a shared reference frame, a violation of a genuine n-partite
Bell inequality can still be demonstrated reliably without
resorting to complicated state preparation or the consumption
of expensive quantum resources, which is in contradiction
with standard nonlocality [10].

Furthermore, we clearly showed that the tripartite genuine
concurrence is a monotonic function of the nonlocal fraction.
An increase of the later implies growth of entanglement,
which solves the anomaly observed between entanglement
and nonlocality when using other measures. Moreover, we
proposed the formula which allows for experimental estima-
tion of genuine concurrence CGME by using pV (LH ).

For real-world applications of our results, we investigated
their robustness against decoherence. We showed that the
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influence of noise affects the results to varying degrees, de-
pending on the chosen model of nonlocality. The strongest
impact was observed for genuine nonlocality, showing that
an experimental detection of pV (LH ) requires the use of
generalized GHZ state with visibility v > 0.9. Otherwise, the
nonlocal fraction pV (LH ) < 0.07 %.

Finally, we studied the statistical relevance of various
classes of tight Bell inequalities showing a dominant role
of two of them. Using these two classes one can estimate
the nonlocal fraction for both standard and hybrid realistic
model. Such an estimation was also investigated experimen-
tally, showing a good agreement with theoretical predictions.
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APPENDIX A

The 2nd or 15th facet Bell inequality for standard realistic
model are given by

ILS
2 = 1

2 (〈A0B0C0〉 + 〈A1B1C0〉 + 〈A1B0C1〉 − 〈A0B1C1〉) � 1,

ILS
15 = 1

4 (2〈A0B0〉 + 2〈A1B0〉 + 〈A0C0〉 + 〈A1C0〉 − 2〈B0C0〉
+ 〈A0C1〉 + 〈A1C1〉 − 2〈B0C1〉
+ 〈A0B1C0〉 − 〈A0B1C1〉 − 〈A1B1C0〉+〈A1B1C1〉) � 1,

(A1)

where we assume to have an ensemble of projective measure-
ment A0 = �a0 · �σA, or A1 = �a1 · �σA on qubit A, B0 = �b0 · �σB,
or B1 = �b1 · �σB on qubit B, C0 = �c0 · �σC , or C1 = �c1 · �σC on
qubit C. The vector �σ = {σx, σy, σz}, where σx, σy, and σz

denote the Pauli operators associated with three orthogonal
directions.

To find a global maximum of ÎLS
2 and ÎLS

15 for the gGHZ
state a similar method as in Refs. [30,40] was applied. First,
we represent all unit vectors in spherical coordinates, i.e.,
�a0 = (sin 2φa

0 cos ξ a
0 , sin 2φa

0 sin ξ a
0 , cos 2φa

0 ) and likewise for
similarly defined terms. The notation is chosen in such a way
to be in line with Eq. (3). Our aim is to find a set of optimal
spherical angles for all measurements A0,...,C1. Without lose
of generality, we restrict our calculation to azimuthal angles
in the interval [0, π/2] and polar angles in [0, 2π ].

Let us now concentrate at ÎLS
15 . First, we rewrite ÎLS

15 in terms
of unit vectors �d0 and �d1 defined such that �c0 + �c1 = 2 �d0 cos η

and �c0 − �c1 = 2 �d1 sin η. Note that

�d0 · �d1 = cos θd
0 cos θd

1 + sin θd
0 sin θd

1 cos
(
φd

0 − φd
1

) = 0.

(A2)

Then, with settings D0 = �d0 · �σC and D1 = �d1 · �σC one obtains

ILS
15 = 1

2 (〈A0B0〉 + 〈A1B0〉 + 〈(A0 + A1 − 2B0) D0〉 cos η

+〈(A0 − A1)B1D1〉 sin η). (A3)

Now, for the gGHZ state

∂ILS
15

∂φd
0

= −2
(

cos 2φa
0 + cos 2φa

1 − 2 cos 2φb
0

)
cos 2φd

0 , (A4)

and the global maximum is reached when ∂ILS
15 /∂φd

0 = 0,
i.e., when φd

0 = 0, π/2. Substituting this result into Eq. (A2)
yields φd

1 = π/4. Consequently, when inserting {φd
0 , φd

1 } =

TABLE II. Nonlocal fraction, pV (ILS
4 , v), for Bell inequality ILS

4 and generalized GHZ state ρ = v|θ〉〈θ | + 1−v

8 18.

θ v = 1.0 v = 0.99 v = 0.97 v = 0.95 v = 0.90 v = 0.85 v = 0.80 v = 0.75 v = 0.70

45. 69.998 67.173 61.144 54.731 37.671 21.07 7.976 1.08 0.002
42.632 69.928 67.088 61.047 54.604 37.485 20.865 7.796 1.005 0.0
40.263 69.614 66.76 60.658 54.136 36.833 20.155 7.26 0.817 0.0
37.895 69.046 66.133 59.909 53.261 35.657 18.888 6.324 0.543 0.0
35.526 68.23 65.226 58.808 51.958 33.928 17.091 5.085 0.266 0.0
33.158 67.102 63.977 57.266 50.112 31.5 14.745 3.673 0.067 0.0
30.789 65.633 62.297 55.201 47.649 28.363 11.913 2.22 0.002 0.0
28.421 63.694 60.088 52.425 44.376 24.48 8.76 1.006 0.0 0.0
26.053 61.3 57.319 48.967 40.321 19.932 5.584 0.232 0.0 0.0
23.684 58.224 53.785 44.579 35.338 14.888 2.771 0.006 0.0 0.0
21.316 54.443 49.437 39.28 29.441 9.68 0.808 0.0 0.0 0.0
18.947 49.806 44.113 32.949 22.709 4.928 0.052 0.0 0.0 0.0
16.579 44.182 37.725 25.633 15.428 1.488 0.0 0.0 0.0 0.0
14.21 37.634 30.317 17.6 8.31 0.095 0.0 0.0 0.0 0.0
11.842 30.208 22.024 9.576 2.667 0.0 0.0 0.0 0.0 0.0
9.474 22.361 13.45 3.049 0.166 0.0 0.0 0.0 0.0 0.0
7.105 14.383 5.571 0.131 0.0 0.0 0.0 0.0 0.0 0.0
4.737 6.607 0.534 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.368 0.725 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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TABLE III. Nonlocal fraction, pV (ILH
4 , v), for Bell inequality ILH

4 and generalized GHZ state ρ = v|θ〉〈θ | + 1−v

8 18.

θ v = 1.00 v = 0.99 v = 0.97 v = 0.95 v = 0.90 v = 0.85 v = 0.80

45.00 10.627 8.773 5.672 3.363 0.489 0.006 0.0
42.63 10.569 8.712 5.615 3.313 0.472 0.006 0.0
40.26 10.372 8.513 5.43 3.161 0.425 0.004 0.0
37.89 10.023 8.167 5.119 2.911 0.352 0.002 0.0
35.53 9.487 7.649 4.671 2.568 0.266 0.001 0.0
33.16 8.762 6.962 4.104 2.157 0.18 0.00023 0.0
30.79 7.856 6.125 3.453 1.714 0.105 0.000022 0.0
28.42 6.816 5.187 2.758 1.266 0.049 0.0 0.0
26.05 5.692 4.200 2.07 0.856 0.016 0.0 0.0
23.68 4.559 3.229 1.438 0.512 0.003 0.0 0.0
21.32 3.482 2.335 0.904 0.259 0.0001 0.0 0.0
18.95 2.497 1.554 0.491 0.1 0.0 0.0 0.0
16.58 1.666 0.93 0.216 0.024 0.0 0.0 0.0
14.21 1.007 0.478 0.066 0.002 0.0 0.0 0.0
11.84 0.535 0.195 0.010 0.0 0.0 0.0 0.0
9.47 0.237 0.053 0.0002 0.0 0.0 0.0 0.0
7.11 0.082 0.007 0.0 0.0 0.0 0.0 0.0
4.74 0.020 0.00001 0.0 0.0 0.0 0.0 0.0
2.37 0.002 0.0 0.0 0.0 0.0 0.0 0.0

{0, π/4} into Eq. (A3) one has

ILS
15 = 1

2

[
2 cos

(
φa

0 − φa
1

)
cos

(
φa

0 + φa
1

)
cos 2φb

0

+ (
cos 2φa

0 + cos 2φa
1 − 2 cos 2φb

0

)
cos η

+ sin 2θ sin 2φb
1

(
sin 2φa

0 cos ξ abd
0

− sin 2φa
1 cos ξ abd

1

)
sin η

]
, (A5)

where ξ abd
0 = ξ a

0 + ξ b
1 + ξ d

1 and ξ abd
1 = ξ a

1 + ξ b
1 + ξ d

1 . From
Eq. (A5) it is easy to notice that the maximum is obtained
for φb

1 = π/4 and then, ∂ILS
15 /∂φb

0 = 0 when φb
0 = π/2. Fur-

thermore, if one solves ∂ILS
15 /∂ξ abd

0 = ∂ILS
15 /∂ξ abd

1 = 0 then

ξ abd
0 = π and ξ abd

1 = 0. As a result we have

ILS
15 = 1

2

[ − 2 cos
(
φa

0 − φa
1

)
cos

(
φd

0 + φd
1

)
+ (

cos 2φa
0 + cos 2φa

1 + 2
)

cos η

− sin 2θ
(

sin 2φa
0 + sin 2φa

1

)
sin η

]
. (A6)

Now, solving ∂ILS
15 /∂φa

0 = ∂ILS
15 /∂φa

1 = 0 we obtain φa
0 = φa

1 .

TABLE IV. Nonlocal fraction within standard local realism, pV (LS, v), for generalized GHZ state ρ = v|θ〉〈θ | + 1−v

8 18.

θ v = 0.99 v = 0.97 v = 0.95 v = 0.90 v = 0.85 v = 0.80 v = 0.75 v = 0.70 v = 0.65 v = 0.62 v = 0.60

45.00 74.059 68.117 61.59 43.485 25.192 10.332 2.186 0.458 0.147 0.057 0.026
42.63 73.652 67.708 61.166 43.106 24.877 10.088 2.071 0.43 0.134 0.051 0.023
40.26 72.986 66.977 60.373 42.195 23.949 9.367 1.765 0.377 0.113 0.043 0.019
37.89 72.021 65.889 59.171 40.709 22.388 8.158 1.313 0.29 0.079 0.027 0.011
35.53 70.811 64.477 57.554 38.645 20.223 6.584 0.841 0.199 0.047 0.013 0.004
33.16 69.286 62.644 55.377 35.813 17.407 4.773 0.433 0.113 0.021 0.005 0.001
30.79 67.366 60.289 52.585 32.201 14.02 2.916 0.195 0.049 0.006 0.001 0.0
28.42 64.873 57.171 48.901 27.735 10.25 1.351 0.077 0.014 0.001 0.0 0.0
26.05 61.77 53.297 44.343 22.506 6.455 0.344 0.019 0.002 0.0 0.0 0.0
23.68 57.796 48.393 38.744 16.695 3.12 0.024 0.001 0.0 0.0 0.0 0.0
21.32 52.891 42.44 32.124 10.723 0.874 0.0 0.0 0.0 0.0 0.0 0.0
18.95 46.902 35.38 24.617 5.372 0.055 0.0 0.0 0.0 0.0 0.0 0.0
16.58 39.81 27.356 16.632 1.576 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14.21 31.769 18.693 8.9 0.097 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11.84 22.912 10.111 2.812 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
9.47 13.906 3.188 0.168 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7.11 5.723 0.132 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.74 0.543 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.37 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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TABLE V. Nonlocal fraction within hybrid local–nonlocal realism, pV (LH , v), for generalized GHZ state ρ = v|θ〉〈θ | + 1−v

8 18.

θ v = 0.99 v = 0.97 v = 0.95 v = 0.90 v = 0.85 v = 0.80 v = 0.75 v = 0.72

45.00 9.590 6.285 3.821 0.686 0.052 0.004 0.0001 0.0
42.63 9.520 6.218 3.765 0.660 0.047 0.004 0.00008 0.0
40.26 9.312 6.026 3.597 0.587 0.037 0.002 0.00003 0.0
37.89 8.960 5.702 3.322 0.480 0.023 0.001 0.000001 0.0
35.53 8.441 5.238 2.945 0.355 0.011 0.0002 0.0 0.0
33.16 7.754 4.644 2.489 0.233 0.004 0.00001 0.0 0.0
30.79 6.926 3.953 1.980 0.130 0.0007 0.0 0.0 0.0
28.42 5.993 3.202 1.463 0.060 0.00007 0.0 0.0 0.0
26.05 5.002 2.451 0.993 0.021 0.000002 0.0 0.0 0.0
23.68 4.024 1.757 0.605 0.004 0.0 0.0 0.0 0.0
21.32 3.107 1.161 0.320 0.0003 0.0 0.0 0.0 0.0
18.95 2.270 0.683 0.135 0.000003 0.0 0.0 0.0 0.0
16.58 1.545 0.340 0.038 0.0 0.0 0.0 0.0 0.0
14.21 0.947 0.125 0.004 0.0 0.0 0.0 0.0 0.0
11.84 0.485 0.024 0.00002 0.0 0.0 0.0 0.0 0.0
9.47 0.174 0.0007 0.0 0.0 0.0 0.0 0.0 0.0
7.11 0.025 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4.74 0.00007 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2.37 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Then, after some standard algebra the global maximum of

Eq. (A6) is reached when φa
0 = arctan (−

√
1+cos θ sin θ

cos θ sin θ
) and

η = 2 arctan (
√

1
1+cos θ sin θ

). Consequently

ILS
15 � sin(2θ )[1 + sin(2θ )] + 1

1 + sin(2θ )
. (A7)

The set of measurement angles that provides the equality in
the above expression is given by

θa1 = θa2 = 2 arctan(
√

1 + cot θ + tan θ );

θb1 = π ; θb2 = 3π

2
;

θc1 = θc2 = 2 arctan(1/
√

1 + cot θ + tan θ ),

φa1 = φb1 = φc1 = 0; φa2 = φc2 = π ; φb2 = 3π. (A8)

In the same way one can get

ILS
2 � 2 sin(2θ ), (A9)

which is saturated for the following set of unit vectors:

θa1 = θb1 = θc1 = π

2
; θa2 = θb2 = θc2 = 3π

2
,

φa1 = φb1 = φc1 = 0; φa2 = −φb2 = −φc2 = π

2
. (A10)

APPENDIX B

In Tables III–V we provide a complete results of nonlocal
fraction for various indicators of nonlocality.
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[18] A. Barasiński and J. Svozilík, Phys. Rev. A 99, 012306 (2019).
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[33] C. Śliwa, Phys. Lett. A 317, 165 (2003).

[34] D. Collins and N. Gisin, J. Phys. A 37, 1775 (2004).
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