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We develop a generic model for a cyclic quantum heat engine that makes it possible to coherently amplify a
periodically modulated input signal without the need to couple the working medium to multiple reservoirs at the
same time. Instead, we suggest an operation principle that is based on the spontaneous creation of population
inversion in incomplete relaxation processes induced by periodic temperature variations. Focusing on Lindblad
dynamics and systems with equally spaced energy levels, e.g., qubits or quantum harmonic oscillators, we derive
a general working criterion for such cyclic quantum amplifiers. This criterion defines a class of candidates for
suitable working media and applies to arbitrary control protocols. For the minimal case of a cyclic three-level
amplifier, we show that our criterion is tight and explore the conditions for optimal performance.

DOI: 10.1103/PhysRevA.101.052106

I. INTRODUCTION

Quantum amplifiers generate coherent electromagnetic en-
ergy using the stimulated emission of photons in a population-
inverted medium [1–3]. Early on, Scovil and Schulz-DuBois
realized that, when driven by a thermal gradient, such de-
vices can be understood as quantum-mechanical heat engines,
whose efficiency is subject to the Carnot bound [4]. In their
approach, the working medium is a collection of three-level
atoms, whose transitions are coupled either to a hot or a
cold reservoir acting as a source of energy and a sink of
entropy, respectively. A resonant driving field plays the role
of a moving piston enabling the extraction of usable work in
form of coherent radiation; see Figs. 1(a) and 1(b).

Owing to its universal and transparent structure, this model
has contributed significantly to our basic knowledge of energy
conversion in the quantum regime [1–10]. At the same time,
it has become a prototype for practical devices like photocells
[11–14] and small-scale refrigerators [15–18]. Moreover, the
three-level amplifier has served as a template for new types of
thermal machines that utilize complex quantum effects such
as lasing without inversion [19,20], noise-induced coherence
[21–23], or electromagnetically induced transparency [24];
recent proposals include even two-level variants that operate
without population inversion using thermal evaporation [25],
squeezed driving fields [26], or two-photon transitions [27].
These developments have led to profound theoretical insights
over the past years. They might soon also be tested in practice
as coherence-based heat engines can now be realized experi-
mentally [28,29].

The ideas of Scovil and Schulz-DuBois have shaped our
perception of thermal quantum amplifiers as a distinct sort
of heat engines, which operate in a steady state and use
reversible energy filters to maintain a population-inverted
working medium [30,31]. In this article, we investigate an
alternative strategy for coherent power generation: we de-
velop and analyze a generic model for a cyclic quantum
amplifier. Resembling a reciprocating heat engine, our device

operates in a thermodynamic cycle [31–34], where heat is
transferred periodically from a hot to a cold reservoir to create
population inversion; see Figs. 1(c) and 1(d). In contrast to
earlier proposals, this working principle does not rely on

FIG. 1. Quantum amplifiers. (a) Continuous device using a
medium of three-level atoms, whose transitions are selectively cou-
pled to a hot (Th) and cold (Tc) reservoir via ideal energy filters;
the coherent power P is extracted by applying an input signal on
resonance with the inverted transition. (b) Steady-state populations
pn of the atomic energy levels En. (c) Cyclic device operating in
three strokes. The internal energy E of a multilevel atom is first
increased by injecting heat from a hot reservoir and then reduced
in a cold environment to create a population-inverted state with
finite ergotropy E ; see Eq. (2). In the third stroke, a resonant pulse
extracts the power P, whereby the system returns to its initial state.
(d) Energy-ergotropy diagram of the amplifier cycle. Insets show the
state of a three-level atom at the beginning of each stroke.
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energy filters. Instead, it requires at least one metastable
energy level, which can be temporarily overpopulated while
the system returns to equilibrium. To capture this condition
quantitatively, we derive a general working criterion for cyclic
quantum amplifiers, which makes it possible to characterize
the applicable working systems without reference to a specific
control protocol.

Our manuscript is organized as follows. In Sec. II, we in-
troduce the theoretical framework to describe cyclic quantum
amplifiers. In Sec. III A, we present our working criterion
and explain its physical content. Mathematical derivations are
provided in Sec. III B. In Sec. IV, we apply our working
criterion to a three-level quantum amplifier and analyze its
power and efficiency. Finally, we conclude in Sec. V by
discussing future perspectives.

II. SETUP

A. Cyclic quantum amplifiers

Our setup consists of two basic components: a working
medium with tunable Hamiltonian

Ht ≡
N∑

n=1

En|nt 〉〈nt | (1)

and a heat source to control the temperature Tt of the envi-
ronment. The time dependence of the energy eigenstates |nt 〉
is determined by the input signal, while the energy levels En

are fixed. This condition ensures that the device exchanges
only coherent power with the driving field [35]. At the same
time, it reduces the accessible energy content of the system to
the maximum amount of work that can be extracted through
unitary operations. This quantity is given by the ergotropy
[36–39]

Et ≡ tr[ρt Ht ] − minU tr[ρtUHtU
†] ≡ Et − E res

t � 0, (2)

where ρt denotes the state of the system and Et its total inter-
nal energy. The residual energy E res

t is found by evaluating the
minimum over all unitary operators U .

Taking the time derivative of Eq. (2) yields

Ėt = Jt − Pt . (3)

This balance equation plays the role of the first law of thermo-
dynamics for quantum amplifiers. The quantities

Pt ≡ − tr[ρt Ḣt ] =
N∑

n=1

〈ṅt |[Ht , ρt ]|nt 〉,

Jt ≡ tr[ρ̇t Ht ] − Ė res
t =

N∑
n=1

(〈nt |ρ̇t |nt 〉 − 〈
rn

t

∣∣ρ̇t

∣∣rn
t

〉)
En (4)

correspond to the instantaneous power output and the rate
of reservoir-induced ergotropy production [35,40]. Here, we
have used the ordered spectral decomposition

ρt =
N∑

n=1

rn
t

∣∣rn
t

〉〈
rn

t

∣∣ (5)

of the state ρt to evaluate the time derivative of the residual
energy. The energy levels En are thereby arranged in ascend-
ing order, i.e., rn

t � rm
t and En � Em for m > n. The derivative

of the residual energy in Eq. (4) has been evaluated with
the help of the Hellmann-Feynman theorem [41]. The second
expression for Pt follows from Eq. (1) and vanishes if the
system is in a quasiclassical state, i.e., if ρt commutes with
Ht . This observation shows that coherent power generation is
a genuine quantum phenomenon, which requires the creation
of superpositions between the energy levels of the medium
[35].

Once the system has settled to a cyclic state, the ergotropy
Et becomes a periodic function of time. Thus, upon averaging
Eq. (3) over one period τ , the mean extracted work becomes

W =
∫ τ

0
Pt dt =

∫ τ

0
Jt dt . (6)

This relation shows that a cyclic quantum amplifier can only
deliver finite output if the thermal ergotropy production Jt

becomes positive during its operation cycle. Hence it must
be possible to drive the system into a population-inverted
state by changing the temperature of its environment. In the
following, we will further examine the necessary conditions
for this effect.

B. Quantum ladders

We now specify the working medium as a quantum ladder
with equally spaced energy levels, i.e., we set En = h̄ωn,
where h̄ω denotes the overall energy scale [42]. Such systems
include, for example, qubits and quantum harmonic oscilla-
tors. In order to describe the interaction of the medium with its
environment, we use the well-established Lindblad approach
[43–46], which relies on the assumption that the coupling
between system and environment is weak and that the driving
is slow compared to both the unitary dynamics of the bare
system and the relaxation dynamics of the reservoir. Under
these conditions, the time evolution of the state ρt is governed
by a Markovian quantum master equation [40,47],

ρ̇t = − i

h̄
[Ht , ρt ] + γ νt ([Ltρt , L†

t ] + [Lt , ρt L
†
t ])/2

+ γ (νt + 1)([L†
t ρt , Lt ] + [L†

t , ρt Lt ])/2. (7)

Here, the jump operators

Lt ≡
N−1∑
n=1

�n|(n+1)t 〉〈nt |, L†
t ≡

N−1∑
n=1

�n|nt 〉〈(n+1)t | (8)

describe the exchange of photons between system and reser-
voir, assuming for the sake of simplicity that the weighting
factors �n are real. The rate γ > 0 determines the average
frequency of emission and absorption events and the Bose-
Einstein factors νt ≡ 1/(eh̄ω/kBTt − 1) ensure thermodynamic
consistency [48]. For a quantitative review of the conditions
for the validity of the master equation (7), see, e.g., the
Supplemental Material of [49] and the references therein.

III. WORKING CRITERION

A. Bound on ergotropy production

The operation principle of our engine relies on the possibil-
ity to thermally create population inversion in the system. In
order to achieve this effect, the working medium has to satisfy
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a minimal condition that follows from the upper bound on the
reservoir-induced ergotropy production

Jt � h̄ωγ

N∑
n=1

(
rn

t − rn+1
t

)
�n, (9)

which we derive in the next section. Here, we have used
the definition rN+1

t ≡ 0 and introduced the system specific
constants

�n ≡
n∑

k=1

[
(k − n)πk

({
�2

m−1−�2
m

}) − πk
({

�2
m−1

})]
, (10)

where the function πk (M ) returns the kth-lowest element of
the set M, the index m assumes values 1�m� N , and �0 ≡
�N ≡ 0. Since, by assumption, rn

t � rn+1
t , it follows that Jt

can become positive only if

�max ≡ maxn �n > 0. (11)

If �max is zero or negative, Jt cannot be positive at any
time during the cycle and it follows from Eq. (6) that work
extraction is impossible. The criterion (11) thus provides a
necessary condition that makes it possible to identify suit-
able working media for cyclic quantum amplifiers. Quite
remarkably, it depends neither on the Hamiltonian Ht , the
temperature profile Tt , nor on the specific state ρt . Hence it
can be used to determine whether or not relaxation-induced
population inversion can occur in a given system.

Two natural choices of potential working media are qubits
and quantum harmonic oscillators. Applying our criterion to a
qubit, i.e., N = 2, we find

�
QB
1 = �

QB
2 = �QB

max = 0. (12)

For the harmonic oscillator, which features infinitely many
energy levels and weighting factors �n = √

n, we similarly
obtain

�HO
n =

n∑
k=1

(n − 2k + 1) = �HO
max = 0. (13)

Hence our criterion rules out both qubits and harmonic oscil-
lators as working substances of cyclic quantum amplifiers.

B. Derivation

The mathematical derivation of our bound consists of the
following steps. First, we decompose the reservoir-induced
ergotropy production into two components, Jt = h̄ωγ (I1

t +
I2

t ), and show that I1
t � 0. Second, by applying the rearrange-

ment inequality to I2
t , we isolate the contributions depending

on the state of the system from those that are determined
solely by the Hamiltonian of the working medium and the dis-
sipation mechanism. Finally, we cast the resulting expression
into the form I2

t � ∑N
n=1(rn

t − rn+1
t )�n, thus proving Eq. (9).

In order to evaluate the thermal ergotropy production, we
plug the master equation (7) into Eq. (4). Upon inserting fac-
tors of 1 = ∑N

n=1 |rn
t 〉〈rn

t | and using the relations [Ht , Lt ] =
h̄ωLt and [Ht , L†

t ] = −h̄ωL†
t , we obtain the decomposition

Jt = h̄ωγ (I1
t + I2

t ) with

I1
t ≡

N∑
n,m=1

νt
(
rm

t − rn
t

)
(1 + m − n)

∣∣〈rn
t

∣∣Lt

∣∣rm
t

〉∣∣2
,

I2
t ≡

N∑
n,m=1

rn
t (n − m − 1)

∣∣〈rn
t

∣∣Lt

∣∣rm
t

〉∣∣2
. (14)

Due to the ordering of the probabilities rn
t , the expression

(rm
t − rn

t )(1 + m − n) in the first term cannot be positive for
any values of n and m. Since all other factors in this term
are positive, it follows that I1

t � 0. It remains to analyze the
second contribution I2

t . To this end, we introduce the partial
sums Rn

t ≡ ∑n
m=1 rm

t . Using the inequality rn
t (n − m) � Rn

t −
Rm

t , we obtain

I2
t �

N∑
n=1

Rn
t 〈rn

t |[Lt , L†
t ]|rn

t 〉 −
N∑

n=1

rn
t

〈
rn

t

∣∣Lt L
†
t

∣∣rn
t

〉
. (15)

In order to make this bound independent of the state ρt ,
we maximize the right-hand side of Eq. (15) with respect
to orthonormal vectors |rn

t 〉 in two steps [36]. First, we note
that each term of the form 〈ψ |X |ψ〉, with X being a Her-
mitian operator, is extremal as a function of the normalized
vector |ψ〉 whenever this vector is an eigenvector of X . The
orthonormal sets of vectors |rn

t 〉 that maximize the two sums in
Eq. (15) must therefore form eigenbases of [Lt , L†

t ] and Lt L
†
t ,

respectively. For the second step, we apply the rearrangement
inequality [50], which fixes the ordering of these bases. This
procedure leads to

I2
t �

N∑
n=1

[
Rn

t πn
({

�2
m−1−�2

m

}) − rn
t πn

({
�2

m−1

})]
, (16)

where the function πn was defined after Eq. (10). To bring this
bound into the form of Eq. (9), we express the partial sums Rn

t
in terms of the probabilities rn

t and perform a summation by
parts,

I2
t �

N∑
n=1

(
rn

t − rn+1
t

)
�n (17)

with

�n =
n∑

k=1

⎛
⎝ N∑

j=k

π j
({

�2
m−1−�2

m

}) − πk
({

�2
m−1

})
⎞
⎠. (18)

Using the relation
∑N

j=1 π j ({�2
m−1−�2

m}) = 0, we find that this
expression for �n is equivalent to Eq. (10). The proof of the
bound (9) is thus complete.

We note that, while this bound is effective to exclude
systems with �max � 0 as potential working media, it does
not imply a direct correspondence between the values of �n

and the amount of extracted work; see Fig. 2. Furthermore,
it is clear that, even for systems with �min ≡ minn �n > 0,
it is still necessary to choose a suitable working protocol in
order to achieve positive power output. Therefore, any suffi-
cient condition for coherent power generation must inevitably
depend on the applied driving protocols and can therefore not
be as universal as our exclusion criterion.
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FIG. 2. Work output of a cyclic quantum amplifier using a three-level quantum ladder and the operation protocol described in the main
text. (a) Work output W per cycle as a function of the ratio �2/�1 of jump weights for fixed input time th = 100γ −1 and four different values
kBTh = 100, 10, 5, 3.5h̄ω of the hot temperature. The thick arrow indicates the direction in which Th increases. The dashed gray line shows
the quantity �max × 10−3, which is zero for �2 �

√
2�1. (b) Same plot as in (a) with kBTh = 100h̄ω fixed and th = 1, 0.01, 0.005, 0.002γ −1.

(c) Time evolution of the level populations during the conversion stroke 2 for �2/�1 = 5, in the limit of large hot temperature Th and input time
th, i.e., Th, th → ∞. A spontaneous population inversion emerges between the levels 1 and 2, which is maximal at T � 0.063γ −1. Dashed lines
indicate the equilibrium populations with respect to the cold temperature Tc, which would be approached in the long-time limit. For all plots,
we have set �1 = 1 and kBTc = h̄ω/2.

IV. EXAMPLE

A. Three-level amplifier

Having excluded qubits and harmonic oscillators as poten-
tial working media, we now turn to a three-level system, where
�3LS

max = �2
1 − �2

2 if �2 � �1, �3LS
max = �2

2 − 2�2
1 if �2 �

√
2�1,

and �3LS
max = 0 otherwise. Hence three-level quantum ladders,

whose jump weights satisfy

�2 � �1 or �2 �
√

2�1, (19)

are suitable candidates for cyclic quantum amplification.
To explore the physical picture behind the condition (19),

we now apply the protocol of Fig. 1(c) to a three-level system.
In the first stroke, the state ρt follows the master equation (7)
with Tt ≡ Th for the time th. The temperature is then abruptly
reduced to the cold level Tc < Th. The system relaxes at this
temperature until its ergotropy becomes maximal, i.e., until
the time T , at which the difference p2

t − p1
t of populations

pn
t = 〈nt |ρt |nt 〉 is maximal; see Fig. 2(c). At this time, the

relaxation process is terminated and a π pulse is applied,
which swaps the populations of the lowest and the second
level, thus generating the coherent work

W = ET = h̄ω
(
p2
T − p1

T
)

(20)

and restoring the initial state of the system.
By applying this protocol repeatedly to an arbitrary initial

state, we obtain the cyclic state of the system [51,52]; the
work output is then determined numerically. The results of
our analysis are summarized in Fig. 2, which reveals two key
effects. First, beyond a certain threshold value, which depends
on Th and th, the average work W grows monotonically as
a function of the ratio �2/�1. This behavior arises from an
increasing separation between the characteristic relaxation
times τ2 = 1/(γ �2) and τ1 = 1/(γ �1) of the upper and the
lower level. If τ2 	 τ1, the population of level 3 can be
essentially transferred to level 2 before level 1 is significantly

affected. In this regime, a pronounced population inversion
emerges, leading to a large output W . Second, we find that
an increasing amount of work can be extracted if either the
hot temperature Th is raised or if the duration th of the input
stroke is extended; at the same time, the threshold value
of �2/�1 decreases. This phenomenon can be understood by
observing that the level populations after stroke 1 become
more homogeneous for larger values of Th and th. Hence less
population has to be redistributed during the second stroke to
create a strong inversion. In the limiting case Th, th → ∞, all
three levels are equally populated after the first stroke and the
bound (19) becomes tight.

B. Efficiency

So far we have studied the work output of our amplifier
without accounting for its thermodynamic cost. For heat en-
gines, this cost corresponds to the heat input Qh supplied by
the hot reservoir [4,48]. In our example, it is therefore given
by the increase in the system energy Et during the first stroke.
Note that the energy required to create the π pulse in the
third stroke should not be counted as input, since it remains in
the coherent light field together with the extracted work. The
thermodynamic efficiency of our cyclic quantum amplifier is
thus given by the ratio

η ≡ W/Qh. (21)

It satisfies the Carnot bound

η � ηC ≡ 1 − Tc/Th (22)

due to the second law of thermodynamics

�S = − 1

Th
Qh − 1

Tc
Qc � 0, (23)

where −Qc is the heat transferred to the cold reservoir and �S
the total entropy production in one period.

052106-4



THERMODYNAMICS OF CYCLIC QUANTUM AMPLIFIERS PHYSICAL REVIEW A 101, 052106 (2020)

FIG. 3. Efficiency of the three-level amplifier. (a), (b) Same plots as in Figs. 2(a) and 2(b), showing the efficiency η instead of the work
output W . (c) Ergotropy-energy diagram for various values of �2/�1 between

√
2 and 210. The thick arrow indicates the direction in which �2/�1

increases. During one driving period at fixed �2/�1, the cyclic state of the system follows the corresponding closed curve in clockwise direction,
where the red (left), blue (top right), and yellow (bottom right) segments correspond to the first, second, and third stroke, respectively. In every
cycle, the extracted work W is equal to the maximum of the ergotropy. The efficiency is therefore given by the ratio of the horizontal and the
vertical extent of the curve. The plot shows the limit of infinite hot temperature Th and input time th, and we have set �1 = 1 and kBTc = h̄ω/2.

Our results in Fig. 3 show that the efficiency behaves
qualitatively similar to the work output discussed before.
Specifically, it increases monotonically as a function of the
ratio �2/�1, the hot temperature Th, and the relaxation time th.
In the limit �2/�1, Th, th → ∞, it reaches the upper bound

η � ηmax ≡ 1/2, (24)

which is smaller than the Carnot bound (22) for the tem-
peratures used in the plots of Fig. 3. This constraint arises
because our three-level amplifier creates ergotropy in the
second stroke by transferring population from the third to the
second energy level. Due to the equidistant level spacing, this
process is accompanied by the loss of an equal amount of
internal energy, that is,

�2E � −�2E , (25)

as can be seen clearly in Fig. 3(c). Here, �2X denotes the
change of a quantity X during the second stroke. To formally
derive the inequality (25), it suffices to verify that either
Jt � 0 or Jt + tr[ρ̇t Ht ] � 0 holds for any diagonal state of
the system. We stress that the efficiency bound (24) is specific
for three-level systems. Cyclic quantum amplifiers with more
energy levels can reach efficiencies larger than 1/2.

V. CONCLUDING PERSPECTIVES

Having studied the three-level system in detail, we now
consider a more general type of quantum ladder, for which
N � 3 is arbitrary and the weights �n depend algebraically on
the level index, i.e., �n = nα . The corresponding coefficients
�α

max are plotted in Fig. 4 for different numbers of energy
levels. Notably, we find that, irrespective of N ,

�α
max = 0 for 0 � α � 1/2. (26)

This result suggests that the squared weights �2
n must ei-

ther decrease with n or increase at least linearly to enable
the spontaneous creation of population inversion. Whether

or not this observation can be corroborated for more com-
plicated relations between �n and n remains as an open
question.

Turning to more general situations, we note that the versa-
tile technique that we have developed to derive our working
criterion (11) can be easily adapted for setups with multiple
reservoirs or composite working systems that consist of a
collection of noninteracting quantum ladders. Further exten-
sions of our scheme might even make it possible to consider
nonequilibrium reservoirs [20,53–56] or strongly driven sys-
tems, for which the master equation (7) has to be replaced
by a Floquet-Lindblad equation [45,57,58]. In principle, the
qualitative behavior observed in our case study can be ex-
pected to persist for more general systems; that is, a strong
separation of relaxation time scales and the preparation of the
working system in a state with nearly flat level populations
during the input stroke should generically improve the perfor-
mance of cyclic quantum amplifiers. As the technology that

FIG. 4. Working criterion (11) for algebraically scaling jump
weights �n = nα and different numbers N of energy levels. Coherent
power generation can be achieved only for �max > 0. The dashed
lines are guides to the eye.
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is available to realize engineered quantum systems with fine-
tuned interactions is improving rapidly [46,59], we expect
that these assertions will become accessible for experimental
investigation in the near future.

These possibilities show that our work provides both an
alternative to assess the viability of coherence-based heat
engines and a valuable starting point for future investigations
seeking to further explore the mechanisms of thermal energy
conversion in the quantum regime. Our results thereby corrob-
orate the emerging picture that coherent power generation is a
technically demanding process, which requires a well-tailored
setup. In fact, it was shown only recently that thermodynamic
cycles cannot produce coherent work in the limits of linear
[35] and adiabatic [49] response, i.e., if either the overall am-
plitude or the frequency of the driving field and temperature

variations is small. Here, we have taken a first step towards
a more complete characterization of the necessary working
conditions for periodic thermal devices that deliver coherent
energy output. In particular, our working criterion (11) shows
that, even far from equilibrium, cyclic quantum amplifiers are
subject to much stronger restrictions than conventional cyclic
heat engines.
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