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In this paper we determine a lower bound to the mean value of the quantum potential for an arbitrary
state. Furthermore, we derive a generalized uncertainty relation that is stronger than the Robertson-Schrödinger
inequality and hence also stronger than the Heisenberg uncertainty principle. The mean value is then associated
to the nonclassical part of the covariances of the momenta operator. This imposes a minimum bound for the
nonclassical correlations of momenta and gives a physical characterization of the classical and semiclassical
limits of quantum systems. The results obtained primarily for pure states are then generalized for density matrices
describing mixed states.
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I. INTRODUCTION

Quantum mechanics defines a formal procedure to consis-
tently quantize dynamical systems. The noncommutability of
pairs of operators translates into the well-known uncertainty
relations, which is one of the most important kinematic fea-
tures of quantum mechanics. However, from a completely
different perspective, the debate on interpretation of quantum
mechanics frequently focuses on the quantum potential, which
seems to have no direct connection with the uncertainty
relations due to the lack of an operator definition for it.

In nonrelativistic quantum mechanics, the dynamics is
defined by the Schrödinger equation that unitarily evolves the
wave function. Using a polar form for the wave function, the
Schrödinger equation turns into two real coupled equations for
the phase and the modulus of the wave function. One of them
is very similar to a Hamilton-Jacobi equation for the phase
but possessing an extra term, dubbed the quantum potential
(QP), without a classical analog. The QP is responsible for all
distinct quantum effects such as entanglement and tunneling.
As such, there has been much attention on its properties and
several proposals to interpret its physical meaning.

Among the most popular interpretations is Bohmian me-
chanics, which is a causal interpretation since it dismisses the
collapse of the wave function to describe the measurement
process [1–6]. The probabilistic description appears due to
the unknown initial position of the particle which plays the
role of a hidden parameter, hence it is an instantiation of a
successful hidden-variable quantum theory in the sense that
it reproduces all experimental results of canonical quantum
theory. The Born rule, which in this scope is called equilib-
rium distribution, need not be imposed but can be dynamically
derived. It can be shown that initial nonequilibrium states
relax to equilibrium on a coarse-grained level [7–11]. It is
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worth mentioning that the ontological nature of the Bohmian
trajectories and the interpretation of the QP have concrete
applications in quantum cosmology [12–15] and offer a new
approach to semiclassical approximations [16–18].

In Bohmian mechanics the QP is interpreted as carrying
information but has no material support. Other scenarios
give completely different physical interpretation to the QP.
For instance, in Weyl space [19,20] it is interpreted as a
geometrical object associated to the nonmetricity of the metric
tensor, hence a manifestation of non-Euclidean geometry at
the microscopic scale [21,22], while from the point of view of
information theory a connection with nonrelativistic quantum
mechanics appears as a principle of minimum Fisher infor-
mation [23,24]. The latter constitutes a rare example of a
natural connection between the QP and uncertainty relations
(see [23–30] for details).

In the present paper we study the mathematical and phys-
ical properties of the mean value of the quantum potential
(MVQP). In contrast to the QP, its mean value satisfies in-
equalities that can be used to derive generalized uncertainties
relations, which are shown to be more restrictive than the
Heisenberg uncertainty principle. Furthermore, the MVQP
is associated to a parcel of the covariances among all the
momenta components, which will be called the nonclassical
correlations. Thus, some of our results reproduce part of the
Fisher information scenario [23,24] but without including any
extra hypothesis. We also depart from this perspective when
generalizing the results for mixed states directly from the
Liouville–von Neumann equation.

Our entire analysis is made within the Copenhagen formal-
ism, but since it makes no reference to the collapse of the
wave function it can be straightforwardly generalized to other
scenarios as well. For instance, the question of the classical
and semiclassical limits is described entirely in terms of the
presence of nonclassical correlations in the system.

The paper is organized as follows. In the next section we
briefly review the basic equations and fix our notation. In
Sec. III we derive the generalized uncertainty relations for
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pure states and in Sec. IV we show that the MVQP encodes the
nonclassical momenta correlations. In Sec. V we generalize
our pure state previous results for density matrices describing
mixed states. In Sec. VI we present several comparisons of
our results with the Heisenberg and Robertson-Schrödinger
uncertainties. In Sec. VII we exemplify with concrete physical
systems and in Sec. VIII we conclude with final remarks.

II. CLASSICAL AND QUANTUM DYNAMICS

In this section we briefly review some basic equations in
order to fix our notation used in the rest of the paper. Let
q := (q1, . . . , qn)� and p := (p1, . . . , pn)� be column vectors
of, respectively, the n coordinates and canonically conjugated
momenta of a system with n degrees of freedom (DFs), which
has its evolution governed by the Hamiltonian

H (q, p) = 1
2 p · Mp + q · Cp + p · ξp + U (q), (1)

where ξp ∈ Rn is a constant column vector, and M = M�
and C are n × n real matrices. The term U (q) is a real
function describing any other contribution to the potential
energy of the system, such that H (q, p) is the most generic
Hamiltonian comprising a quadratic kinetic energy, possibly
time dependent.

Canonical quantum mechanics promote classical variables
to operators, hence we have q̂ := (q̂1, . . . , q̂n)† and p̂ :=
( p̂1, . . . , p̂n)†, two column vectors of, respectively, coordi-
nates and canonically conjugated momenta operators of the
system. Considering the position eigenstates of the system,
|q〉 := |q1〉 ⊗ ... ⊗ |qn〉, the momenta matrix elements are

〈q′
j | p̂k|ql〉 = −ih̄ δ(q′

j − ql ) δ jl δlk ∂k, (2)

where ∂k := ∂/∂qk . Here we will adopt a symmetric quantiza-
tion scheme, such that the quantized version of Hamiltonian
(1) becomes the function of operators

H (q̂, p̂) = 1
2 p̂ · M p̂ + 1

2 q̂ · Cp̂ + 1
2 p̂ · C�q̂ + p̂ · ξp + U (q̂).

(3)
In nonrelativistic quantum mechanics the evolution is dic-

tated by the Schrödinger equation, namely, using the position
representation ψ (q, t ) := 〈q|ψt 〉 we have

ih̄∂tψ (q, t ) = H (q,−ih̄∂q)ψ (q, t ), (4)

where ∂q := (∂1, . . . , ∂n)�. As any complex function, the
wave function associated to the state |ψt 〉 may be written in
polar form:

ψ (q, t ) = �(q, t ) e
i
h̄ S(q,t ), (5)

where �(q, t ) = |ψ (q, t )| and S(q, t ) = h̄arg[ψ (q, t )]. Using
the polar decomposition for the wave function in the time-
dependent Schrödinger equation (4), one obtains two coupled
real equations [5] as follows. One is the continuity equation

∂t�
2 + ∂q · Jq = 0 (6)

for the probability density �2(q, t ) = ψ∗(q, t )ψ (q, t ) with
probability current given by

Jq := �2 ∂pH |p=∂qS = �2(ξp + C�q + M∂qS); (7)

the other is like the classical Hamilton-Jacobi equation for the
phase S(q, t ),

∂t S + H (q, ∂qS) + Q(q, t ) = 0, (8)

but with an extra term,

Q(q, t ) := − h̄2

2�
∂q · M∂q�, (9)

dubbed the quantum potential, which is a nonlocal potential
encoding the information about the state of the system and
depends only on �(q, t ). Moreover, given its invariance under
� → k� for a constant k, we see that the QP does not depend
on the strength of �(q, t ), but only on its form.

In the presence of any sort of classical randomness, the
system state in quantum mechanics should be described by a
density operator ρ̂, the evolution of which is governed by the
Liouville–von Neumann equation: ih̄ ∂t ρ̂ = [Ĥ, ρ̂]. Taking
the position matrix elements of the evolution equation for
the Hamiltonian (3), using a position-completeness relation
together with (2), it becomes

ih̄∂t 〈q|ρ̂|q′〉 = [H (q,−ih̄∂q) − H (q′, ih̄∂q′ )]〈q|ρ̂|q′〉. (10)

Similarly to (5), we will use the polar decomposition

〈q|ρ̂|q′〉 = �̄(q, q′, t ) exp

[
i

h̄
S̄(q, q′, t )

]
, (11)

which, when inserted in (10) for the Hamiltonian (1), gives
us also two coupled differential equations. A continuitylike
equation now reads

∂t �̄
2 + ∂q · Jq + ∂q′ · Jq′ = 0, (12)

where Jq is exactly written as (7) but replacing �(q, t ) →
�̄(q, q′, t ) and S(q, t ) → S̄(q, q′, t ) and the current associated
to the q′ coordinates is

Jq′ := �̄2
(
ξp + C�q′ − M∂q′ S̄

)
.

The other equation is again a kind of Hamilton-Jacobi equa-
tion with some extra terms:

∂t S̄ + H (q, ∂qS̄) − h̄2

2�̄
∂q · M∂q�̄

− H (q′,−∂q′ S̄) + h̄2

2�̄
∂q′ · M∂q′�̄ = 0. (13)

For a pure state ρ̂ = |ψt 〉〈ψt |, �̄(q, q′, t ) =
�(q, t )�(q′, t ), and S̄(q, q′, t ) = S(q, t ) − S(q′, t ). In this
circumstance, one can apply a separation of variables into
the partial differential equations (12) and (13) to obtain,
respectively, two versions of (6) and (8); the separation
constant, possibly a function of t , can be regarded as a shift
of the potential energy.

III. QUANTUM POTENTIAL UNCERTAINTY RELATIONS
FOR PURE STATES

We consider the amplitude � : Rn × R → R+ of the pure
state |ψ〉 in (5) as a (classical) probability density func-
tion twice differentiable and continuous everywhere in Rn+1.
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Since, by definition, it is non-negative and∫
Rn

dnq [�(q, t )]2 = 1, ∀t ∈ R,

thus lim||q||→∞ �(q, t ) = 0; this excludes non-normalizable
solutions of the Schrödinger equation to provide good can-
didates for �.

The set of all square-integrable functions with respect to
the measure �2 is denoted as L2(�2). We also assume that
any element of L2(�2) is continuous and has continuous
first and second derivatives. If Ti, Tj ∈ L2(�2), then the mean
value and the covariances of these functions are defined,
respectively, by

〈Ti〉 :=
∫
Rn

dnq [�(q, t )]2 Ti(q),

cov(Ti, Tj ) := 〈TiTj〉 − 〈Ti〉〈Tj〉.
(14)

Furthermore, by the Cauchy-Schwartz inequality [31] we have

|cov(Ti, Tj )|2 � cov(Ti, Ti ) cov(Tj, Tj ). (15)

As a matter of compactness, we shall write for a vector
function T : Rn → Rn and cov(T, T ) means the n × n matrix
with elements cov(Ti, Tj ) for i, j = 1, . . . n.

The mean value of the quantum potential can readily be
obtained from Eq. (9) and reads

〈Q(t )〉 = − h̄2

2

∫
Rn

dnq � ∂q · M∂q�

= h̄2

8

∫
Rn

dnq ∂qln�2 · M∂q�
2,

(16)

where we omit the (q, t ) variables in �, which is responsible
for the time dependence of 〈Q(t )〉. Furthermore, it is con-
strained by the following theorem.

Theorem 1. Let a quantum system with n degrees of free-
dom have its evolution governed by the Hamiltonian (3) where
the kinetic matrix M is positive definite, real, and symmetric.
If the system is in a pure state, given a generic function
T0 ∈ L2(�2), the mean value of the quantum potential given
by (16) satisfies the following inequality:

〈Q(t )〉 � LQ(T0, t ) := h̄2

8

〈∂qT0〉 · M〈∂qT0〉
cov(T0, T0)

. (17)

Proof. Since the matrix M is real and symmetric, it can
be diagonalized by a real orthogonal transformation: M =
O��O, where � := Diag(λ1, . . . , λn) is the diagonal matrix
of the positive real eigenvalues of M, i.e., λi > 0 ∀i. Thus, we
can define the functions

Ti(q) :=
n∑

j,k=1

δi j

√
λ jO jk ∂kln�2 (i = 1, . . . , n), (18)

all of which belong to L2(�2). Note that 〈Ti〉 = 0 for i =
1, . . . , n, since �2 → 0 as ‖q‖ → ∞. Rewriting the MVQP
in (16) using (18), one finds

〈Q(t )〉 = h̄2

8

n∑
i=1

cov(Ti, Ti ). (19)

Using the definition (14), the covariance of T0 ∈ L2(�2)
with each Ti in (18) is given by

cov(T0, Ti ) = −
n∑

j,k=1

δi j

√
λ jO jk〈∂kT0〉.

Therefore, squaring and summing for all functions Ti in (18),

n∑
i=1

|cov(T0, Ti )|2 = 〈∂qT0〉 · M〈∂qT0〉. (20)

Finally, using the Cauchy-Schwartz inequality (15) together
with (19)–(20) we obtain (17). �

Given that cov(T0, T0) � 0 and M is a positive-definite
matrix, the arbitrariness of the function T0 in (17) implies
that 〈Q(t )〉 > 0, which is a remarkable property of the QP.
Furthermore, the bound function in (17) is affine symmetric,
namely, LQ(αT0 + β, t ) = LQ(T0, t ) for α, β ∈ R.

In quantum mechanics, the uncertainty relations [32,33]
are related with pairs of noncommuting quantum operators.
In particular, the Robertson-Schrödinger uncertainty relation
[34,35], derived from the canonical position-momentum com-
mutation relation, plays a central role. Note, however, that
the QP inequality is completely different. Theorem 1 shows
that the QP satisfies the inequality (17) for any function T0 ∈
L2(�2). In principle, one can choose all kinds of functions to
relate to the QP: this raises a multitude of possible inequalities
in (17). Despite the fact that the derivation relies on classical
probability rules, this kind of generalized uncertainty relation
is associated to the (quantum) randomness of the system. We
shall analyze these characteristics in detail in the following
sections but now we want to prove another important result.

Theorem 2. Let a quantum system with n degrees of free-
dom have its evolution governed by the Hamiltonian (3) where
the kinetic matrix M is positive definite, real, and symmetric.
If the system is in a pure state, there is a specific function
T∗ ∈ L2(�2) that extremizes the bound on the mean value of
the quantum potential given by (17) such that the inequality
depends only on �2 and will be given by

〈Q(t )〉 � h̄2

8
λ∧(Q), (21)

where λ∧ is the largest eigenvalue of the n × n real matrix Q
defined as

Q := −〈
∂2

qqln�2
〉
M. (22)

Proof. LQ(T0, t ) can be viewed as a functional of T0(q) and
let us suppose that it has at least one extremum at T0(q) =
T∗(q). Consider small variations around this function as

T̃0(q) = T∗(q) + ε φ(q) with ε � 1, (23)

where φ(q) ∈ L2(�2) is a continuous and differentiable func-
tion. Keeping only first-order terms in ε and imposing δLQ :=
LQ(T̃0, t ) − LQ(T∗, t ) = 0 we find

cov(T∗, T∗)

〈∂qT∗〉 · M〈∂qT∗〉 = cov(T∗, φ)

〈∂qT∗〉 · M〈∂qφ〉 ,
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which can be recast as∫
Rn

dnq �2φ[∂qln�2 · M〈∂qT∗〉cov(T∗, T∗)]+∫
Rn

dnq �2φ[〈∂qT∗〉 · M〈∂qT∗〉(T∗ − 〈T∗〉)] = 0 .

Given the arbitrariness of φ(q) in (23) we conclude that

T∗(q) = 〈T∗〉 − h̄2

8

∂qln�2 · M〈∂qT∗〉
LQ(T∗, t )

. (24)

Taking the derivative of (24) with respect to q and averag-
ing with �2 over all state space, we have

h̄2

8
Q〈∂qT∗〉 = LQ〈∂qT∗〉, (25)

where Q is the n × n real matrix defined in (22). Thus, the
extreme of LQ(T0, t ) is an eigenvalue of Q associated to
the eigenvector 〈∂qT∗〉. Therefore, the functional in (17) is
bounded by

h̄2λ∨(Q)/8 � LQ(T0, t ) � h̄2λ∧(Q)/8,

where λ∧ (resp. λ∨) is the largest (resp. smallest) eigenvalue
of the matrix Q. Since 〈Q(t )〉 > 0, the largest eigenvalue in
λ∧(Q) must be positive. In order to obtain the most con-
strained bound possible, we can choose the largest eigenvalue,
namely, λ∧(Q). �

Given a quantum state with probability amplitude �(q, t ),
the solution T∗ of Eq. (24) is a necessary and sufficient
condition for the extremization of LQ(T0, t ) [36]. In other
words, assuming that it exists, the extremum of LQ(T0, t )
must satisfy Eq. (24). This extremum will be a maximum for
specific functions �(q, t ), which will be now explored.

Sufficient conditions for the maximum: Gaussian states
and the linear function

We will analyze particular solutions of (24) such as to
construct sufficient conditions for extrema of the function LQ.

1. Linear bound function

The simplest nontrivial inequality in (17) is attained for the
linear function T0(q) = ζ · q + ζ0 ∈ L2(�2), with ζ ∈ Rn and
ζ0 ∈ R two constant vectors. Inserting this in (17),

LQ(ζ · q + ζ0, t ) = h̄2

8

ζ · Mζ

ζ · Vζ
,

where V = cov(q, q) > 0 is the the position covariance ma-
trix1 (PCM) defined through (14). Note that the above LQ is
a relative Rayleigh quotient; hence, by the Courant-Fischer
theorem [37],

h̄2

8
λ∨(V−1M) � LQ(ζ · q + ζ0, t ) � h̄2

8
λ∧(V−1M), (26)

1The matrix cov(q, q) = 〈qq�〉 − 〈q〉〈q〉� > 0 is the same as the
one obtained for a pure state ρ̂ = |ψ〉〈ψ |, when inserting position
completeness relations in (29) and using the polar structure (5).
Note also that a null eigenvalue of V would imply total precision
of a position measurement, which is forbidden by the Heisenberg
uncertainty principle, thus the positive definiteness of cov(q, q).

where λ∨ (resp. λ∧) is the smallest (resp. largest) eigenvalue
of MV−1 and the equality occurs when ζ = ζ∨ (resp. ζ = ζ∧)
is the eigenvector associated to λ∨ (resp. λ∧).

Since (17) is valid for any function T0(q) ∈ L2(�2), we can
write

〈Q(t )〉 � LQ(ζ · q + ζ0, t ) := h̄2

8
λ∧
(
V−1M

)
. (27)

As long as V and M are positive definite symmetric ma-
trices, the above eigenvalue is positive. The limiting interval
in (26) and the bound in (27) for the function LQ are valid
for any quantum state and depend on it only through its
covariance matrix V. Notwithstanding, nothing inhibits that
another choice of T0(q) will provide a greater (better) bound
for the MVQP. Thus, the linear function constitutes only a
sufficient condition for (26) and (27).

2. Gaussian states

The probability amplitude for a generic pure Gaussian state
is given by [see (A4)–(A7)]

�(q, t ) = exp
[− 1

4 (q − ηq) · V−1(q − ηq)
]

[(2π )n det V]1/4 , (28)

where V is the position covariance matrix and ηq := 〈ψ |q̂|ψ〉
is the position vector of the mean values. For the amplitude
of a Gaussian state in (28), the solution of (24) is a linear
function, i.e., T∗(q) = ζ · q + ζ0, where, according to (25), ζ

is one of the eigenvectors of the matrix Q = V−1M [see (22)].
If we choose the largest eigenvalue, then T0(q) = ζ∧ · q + ζ0

is a necessary condition to

LQ(T0, t ) � LQ(ζ∧ · q + ζ0, t ) = h̄2

8
λ∧(V−1M).

We have previously shown that the linear function is a
sufficient condition for (26), which is valid for arbitrary states.
Thus, a linear function T0(q) = ζ∧ · q + ζ0, where ζ∧ is the
eigenvector associated to the largest eigenvalue of the matrix
V−1M, is a necessary and sufficient condition for a maximum
value of the functional LQ(T0(q), t ) when the state of the
system is Gaussian.2

In conclusion, the linear function is the solution that ex-
tremizes the bound function LQ(T0(q), t ) when the state is
Gaussian and vice versa, namely, the set of states that has
the linear function as the solution that extremizes LQ(T0(q), t )
consists of Gaussian states.

IV. CORRELATIONS AND THE CLASSICAL LIMIT

For a generic mixed or pure state ρ̂, we define the
n × n (symmetric) position covariance matrix and the
n × n (symmetric) momentum covariance matrix (MCM),

2It is important to take into account that any requirement of the state
to be Gaussian can be relaxed to a state with a Gaussian probability
density (28), since the phase of such states does not play any role in
our results, i.e., the phase of the state does not necessarily have the
quadratic form described in (A7).
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respectively, as

V := Tr(ρ̂ q̂q̂†) − Tr(ρ̂ q̂)Tr(ρ̂ q̂†),

Ṽ := Tr(ρ̂ p̂p̂†) − Tr(ρ̂ p̂)Tr(ρ̂ p̂†).
(29)

In this section we will continue to deal only with pure states,
ρ̂ = |ψ〉〈ψ |, and postpone the appropriate generalization for
mixed states to the subsequent section.

Using the wave function of a pure state in the polar form,
Eq. (5), the correlations contained in the MCM of the state
can be broken into two distinct contributions. In fact, inserting
position completeness relations into (29), considering the
matrix elements in (2), and using (11), it is possible to show
that

Ṽ = Ṽc + Ṽnc, (30)

where

Ṽc := cov
(
∂qS, ∂qS

)
, Ṽnc :=

〈
− h̄2

�
∂2

qq�

〉
, (31)

with the mean value and the covariance both defined in (14),
i.e., using the “classical” probability �2.

The above structure distinguishes the correlations Ṽc gen-
erated by the Hamilton-Jacobi dynamics (8) and the purely
quantum ones in Ṽnc. This description is in accordance with
the notion developed in [29,30], where the momenta operator
is decomposed as a sum of classical and nonclassical opera-
tors, p̂ = p̂c + p̂nc. The decomposition is such that the mean
value of the classical part is

pc := 〈ψ | p̂|ψ〉 = 〈∂qS〉. (32)

As a consequence, the nonclassical operator, while having
null mean value, pnc := 〈ψ | p̂nc|ψ〉 = 0, still influences the
system dynamics due to “quantum induced noises” through
the nonclassical correlations represented by Ṽnc. Note that
this matrix is related to the concavity of the function �(q, t ),
actually to a kind of “mean concavity.”

Comparing the first line in (16) with Ṽnc in Eq. (31), one
finds

〈Q(t )〉 = 1
2 Tr[ṼncM], (33)

which shows that MVQP can be interpreted as a measure of
the “quantumness” of the state of the system inasmuch as the
Hamilton-Jacobi equation gives the classical dynamics. We
can obtain the same result by integrating by parts (22), thus
the matrix Q [defined in (22)] can be written as

h̄2

4
Q = ṼncM. (34)

Therefore, the inequality for the MVQP on (21) sets a
bound on the quantum and classical correlations, which are
constrained by the uncertainty relation

Tr[ṼncM] = Tr[ṼM − ṼcM] � λ∧(ṼncM). (35)

Since M > 0, the inertias3 of Q and Ṽnc are the same [37],
even though in principle they are generic. Notwithstanding,

3The inertia is the triple containing the number of positive, the
number of negative, and the number of null eigenvalues of a matrix
[37].

the relation (35) imposes a stronger physical constraint: what-
ever the sign of the eigenvalues of Ṽnc, the quantum potential
uncertainty relation guarantees a minimum of quantum corre-
lations determined by the largest (positive) eigenvalue of Q or
Ṽnc.

A quantum system approaches the classical limit where the
QP is negligible. However, the QP can vanish only in some
regions of the configuration space, since we have proven that
〈Q(t )〉 > 0. The latter is a statement about the average over
the whole configuration space and the positivity condition of
the MVQP by itself is not sufficient to forbid the classical
behavior of the system. In fact, the vanishing of 〈Q(t )〉 would
imply the vanishing of the nonclassical correlations Ṽnc due to
the positive definiteness of M [see (33)]. Therefore, (35) can
be understood as saying that it is impossible to find a quantum
state that has no quantum momenta correlations.

In addition, the semiclassical limit is commonly taken
as the rough limit h̄ → 0. A WKB approximation consists
in keeping only first-order terms in h̄, which, in principle,
succeeds to describe all sorts of quantum phenomena such
as superposition, entanglement, and coherence. Thus, it is
not clear what is discarded when we neglect second- or
higher-order terms in h̄. In contrast, using our description,
the situation is more precise. In terms of the correlations,
the WKB approximation describes quantum systems that are
dominated by classical correlations, i.e., the nonclassical ones
are small compared to the classical correlations. For instance,
the QP of a Gaussian state such as (54) does not vanish in the
semiclassical limit, since V depends on h̄ [see (A8)]. This is
consistent with the fact that not all pure Gaussian states are
WKB wave packets [38].

As a last comment, from the structure of Eqs. (30)
and (31), the decomposition of the momenta is such that
〈ψ | p̂nc p̂†c|ψ〉 = 0, i.e., the classical and nonclassical com-
ponents are linearly uncorrelated, namely, they do describe
independent degrees of freedom.

V. MIXED STATES

In the last section we analyzed only pure states. Now
we proceed to generalize all previous results to mixed states
evolving under the Liouville–von Neumann equation (10). In
Eq. (13), derived from (10), there are two analogous terms to
the quantum potential defined in (9). One of them is

Q̄(q, q′, t ) := − h̄2

2�̄
∂q · M∂q�̄ (36)

and the other is equal to −Q̄(q′, q, t ). All the results in this
section are invariant under such interchanges between q′ and
q, since �̄(q, q′, t ) = �̄(q′, q, t ). Hence, it will be enough
to work with definition (36). As will become clear soon, it
will be enough for our purposes to deal with the quantity
Q̄(q, q′, t )|q′=q, which means that we calculate the function
in (36) and only afterwards evaluate the diagonal terms by
making q′ = q.

As before, we interpret �̄(q, q′ = q, t ) in (11) as a (classi-
cal) probability, since �̄ : R2n+1 → R is non-negative and∫

Rn

dnq �̄(q, q, t ) = 1, ∀t ∈ R.
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Again we assume that �̄(q, q′, t ) is twice differentiable and
continuous everywhere in R2n+1. Consequently,

lim
||q||→∞

�̄(q, q′, t ) = lim
||q′||→∞

�̄(q, q′, t ) = 0.

Note, however, that �̄(q, q′, t ) is a probability density only
when q′ = q. In order to make a clear distinction from (14),
the (ensemble) mean value of a function T̄i ∈ L2(�̄) will be
denote with a subindex ρ as

〈T̄i〉ρ :=
∫
Rn

dnq �̄(q, q, t ) T̄i(q),

and similarly for the covariance, which will be denoted by
cov(T̄i, T̄j )ρ .

Calculating the mean value of (36) with respect to the
probability measure �̄(q, q, t ) we get

〈Q̄(t )〉ρ =
∫
Rn

dnq �̄(q, q, t ) Q̄(q, q′, t )|q′=q

= − h̄2

2

∫
Rn

dnq ∂q · M∂q�̄|q′=q.

(37)

Inserting the completeness relation in position on the defi-
nition (29) and using the polar structure (11), it is not difficult
to show that Ṽ still decomposes as Ṽ = Ṽc + Ṽnc but now with

Ṽc := cov(∂qS̄|q′=q, ∂qS̄
∣∣
q′=q

)ρ,

Ṽnc :=
〈[

− h̄2

�̄
∂2

qq�̄

]
q′=q

〉
ρ

.
(38)

The above definitions for mixed states are natural extensions
of the “quantum-classical” dichotomy of the momenta opera-
tor, where the mean value of the nonclassical part p̂nc is null,
i.e., pnc = 0, while the classical part is such that

pc := Tr(ρ̂ p̂) = 〈∂qS̄|q′=q〉ρ. (39)

As expected, both equations in (38) and (39) reduce, re-
spectively, to (31) and (32) for pure states ρ̂ = |ψ〉〈ψ |. In ad-
dition, one has �̄(q, q′, t ) = �(q, t )�(q′, t ) and S̄(q, q′, t ) =
S(q, t ) − S(q′, t ).

An interesting result is that, for a generic mixed state, with
the above definitions, the relation between the MVQP and
the nonclassical correlations of momenta is still preserved.
Indeed, it is easy to see from Eqs. (37) and (38) that

〈Q̄(t )〉ρ = 1
2 Tr[ṼncM]. (40)

Since ρ̂ is a positive definite operator operator with unity
trace, we can choose its spectral decomposition

ρ̂ =
∑

k

ωk|ψk〉〈ψk|,
∑

k

ωk = 1, (41)

where ωk � 0 and |ψk〉 are, respectively, its eigenvalues and
eigenvectors. Expression (41) is called a convex decompo-
sition of ρ̂ in terms of pure states. Inserting (41) in (29),
one recovers the well-known result that a convex combination
of covariance matrices is also a covariance matrix (see, for
instance, [39]). In fact, (39) with the decomposition (41) reads

pc := Tr(ρ̂ p̂) =
∑

k

ωk〈∂qSk〉, 〈∂qSk〉 = 〈ψk| p̂|ψk〉.

From (29), which also can be written as Ṽ = ∑
k ωk〈ψk|( p̂ −

pc)( p̂ − pc)†|ψk〉, we find

Ṽ =
∑

k

ωk
[
Ṽ(k)

c + Ṽ(k)
nc + δV(k)

]
,

where

Ṽ(k)
c := cov(∂qSk, ∂qSk ), Ṽ(k)

nc :=
〈
− h̄2

�k
∂2

qq�k

〉
(42)

are the matrices in (31) for each eigenstate |ψk〉 of the decom-
position and

δV(k) := 〈∂qSk − pc〉〈∂qSk − pc〉� (43)

are the correlations induced by the statistical mixture. To
obtain (42) and (43), we wrote each state of the decomposition
as (5), with �k (q, t ) = |〈q|ψk〉| and Sk (q, t ) = h̄ arg(〈q|ψk〉).

Neither the phase S̄(q, q′, t ) nor the amplitude �̄(q, q′, t )
is a convex combination, respectively, of the phases and
amplitudes of the pure states |ψk〉. Thus, due to the terms
(43), the matrices Ṽc and Ṽnc in (38) are not decomposable
exclusively into convex combinations of Ṽ(k)

c and Ṽ(k)
nc .

However, Ṽnc in (38) still can be written as a convex sum,
just rewriting properly the second derivatives of �̄(q, q′, t ).
This tour de force is carefully detailed in Appendix B and the
final form is

Ṽnc =
∑

k

ωkṼ(k)
nc + δṼnc, (44)

where δṼnc is the symmetric positive-semidefinite matrix
given by (B5). Now, we are in a position to establish a
generalized uncertainty relation, analogous to (21), for mixed
states.

Theorem 3. Let a quantum system with n degrees of free-
dom have its evolution governed by the Hamiltonian (3) where
the kinetic matrix M is positive definite, real, and symmetric.
If the system is in a mixed state, the MVQP defined in (37)
has a lower bound given by

〈Q̄(t )〉ρ � h̄2

8

∑
k

ωk λ∧(V(k)−1
M), (45)

where λ∧ is the largest eigenvalue of V(k)−1M and V(k) is the
PCM defined in (29) for each state |ψk〉.

Proof. Using (40) and (44), the MVQP reads

〈Q̄(t )〉ρ = 1

2

∑
k

ωkTr
[
Ṽ(k)

nc M
] + 1

2
Tr[δṼncM]

� 1

2

∑
k

ωkTr
[
Ṽ(k)

nc M
] =

∑
k

ωk〈Qk (t )〉,
(46)

where we have used the fact that M is positive definite and
δṼnc is positive semidefinite. Each 〈Qk (t )〉 is the MVQP for
each pure state of the convex decomposition (41), and each
one of them is bounded by a respective function Lk

Q(T k
0 , t )

in (17). By choosing linear functions T k
0 (q) = ζ k

∧ · q + ζ k
0 ,

where ζ k
∧ ∈ Rn is the eigenvector associated to the largest

eigenvalue λ∧ of V(k)−1M, and ζ k
0 ∈ R is a constant, we

immediately arrive at (45). �
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Similarly to the pure case, a quantum system in a mixed
state has a minimum of quantum correlations. As long as δṼnc

is a symmetric positive-semidefinite matrix, the decomposi-
tion (44) shows that

Tr[ṼncM] �
∑

k

ωk λ∧
(
Ṽ(k)

nc M
)

� λ∧

(∑
k

ωkṼ(k)
nc M

)
,

(47)

where the last inequality relies on Weil’s theorem for the sum
of eigenvalues [37].

VI. POSITION-MOMENTUM UNCERTAINTIES

In this section we present several comparisons of our
results with the Heisenberg and Robertson-Schrödinger uncer-
tainty principles. To this end, we need the position-momentum
covariance matrix, which is the 2n × 2n symmetric and
positive-definite matrix defined through the following block
structure:

V :=
(

V Vqp

V�
qp Ṽ

)
,

where V and Ṽ are the n × n symmetric and positive-definite
matrices in (29). The n × n matrix Vqp encodes the covari-
ances among positions and momenta:

Vqp := Tr(ρ̂ {{q̂, p̂}}) − {{Tr(ρ̂ q̂), Tr(ρ̂ p̂)}},
where {{A, B}} := 1

2 (AB† + BA†). The Robertson-Schrödinger
uncertainty relation (RSUR) is written as [40]

V + ih̄

2
J � 0,

where J is defined in (A2). Since V > 0, the above condition
on V can be expressed in terms of the Schur complement [37]:

Ṽ − [
Vqp + ih̄

2 In
]†

V−1
[
Vqp + ih̄

2 In
]
� 0. (48)

For a system with only one DF,

�q2�p2 − [cov(q, p)]2 − h̄2

4
� 0, (49)

which is a sufficient condition to the Heisenberg principle
�q�p � h̄

2 . Let us now compare our results with the RSUR
for separate cases: an arbitrary one-DF system, pure Gaussian
states, quantum states with no classical correlations, and a
system with n independent DFs.

A. Systems with one DF

Considering a system with only one DF and described by
a pure state, we write M = 1/m > 0 in (3) and the general
uncertainty relation (17) becomes

〈Q(t )〉 � LQ(T0, t ) := h̄2

8m

〈∂qT0〉2

cov(T0, T0)
. (50)

The maximum value attained by the function LQ in (25)
simplifies to

LQ(T∗(q), t ) = − h̄2

8m

〈
∂2

qqln�2
〉
. (51)

From the definition of the MVQP in (22), it is evident that
〈Q(t )〉 = LQ(T∗(q), t ) for one-dimensional systems. Actually,
the equality is a direct consequence of the saturation of the
Cauchy-Schwartz inequality in (15). This inequality becomes
an equality if and only if the functions Ti(q) and Tj (q) are lin-
early correlated [31], i.e., when there exists α, β, γ ∈ R, such
that αTi(q) + βTj (q) + γ = 0. Accordingly, the saturation of
the uncertainty relation for the MVQP in (17) occurs when
such a linear relation is obeyed by Ti in (18) and T0.

When a system described by a pure state has only one DF,
there exists only one Ti(q) in (18) and it is easy to see from
(24) that

T∗(q) = 〈T∗〉 − h̄2

8

〈∂qT∗〉
LQ(T∗, t )

T1(q).

This means that, for all one-DF systems, the uncertainty
principle in (17) is saturated by the solution T0(q) = T∗(q).
Therefore, in general, the saturation of the MVQP for mixed
states differs from the sum of the MVQP for each pure state
comprising the mixed state [see (46)]. As a last comment, as
far as we know, there is not a relation between the saturation
of the RSUR and the dimension of the system.

Even though there is no new information about the behav-
ior of the quantum potential in (51), the inequality in (50)
is still valid and can give important information about the
system. In particular, the generalized uncertainty relation is
stronger than the RSUR as shown by the following theorem.

Theorem 4. Let a quantum system with one degree of
freedom have its evolution governed by the Hamiltonian (3)
where the kinetic matrix M is positive definite, real, and
symmetric. If the system is in a pure state, its variance on
position �q2 and momentum �p2 satisfies the inequality

�p2�q2 − cov(∂qS, ∂qS)�q2 − h̄2

4
� 0, (52)

where S(q, t ) is the phase of the wave function describing the
state of the system. Furthermore, inequality (52) is stronger
than the RSUR in the sense that is a sufficient but not neces-
sary condition for the RSUR.

Proof. For the system considered, we can choose a linear
function T0(q) = ζq + ζ0, with ζ , ζ0 ∈ R, to obtain the one-
DF version of (27):

〈Q(t )〉�q2 � h̄2

8m
. (53)

In addition, in this case the covariance matrix is simply
the position variance, V = �q2, while the MVQP is only
related to the nonclassical correlations [see (33)]. The one-DF
version of (30), where Ṽ = �p2, Ṽc = cov(∂qS, ∂qS), and
Ṽnc = �p2

nc, when inserted in (53), gives exactly (52). In order
to prove that it is stronger than the RSUR, let us define the
quantity δ := cov(∂qS, ∂qS)�q2 − [cov(q, p)]2. Summing it
to both sides of (52), we recognize its left-hand side identical
to the left-hand side of Eq. (49), while the right-hand side
is just δ. Defining the vector x := (∂qS, q)�, one notes that
δ = det cov(x, x). Since a generic covariance matrix is always
non-negative [31], then δ � 0. �

The above result shows that the generalized uncertainty
principle for the quantum potential (53) is a sufficient con-
dition to the RSUR (48), for any one-DF system.
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B. Pure Gaussian states

For a generic pure Gaussian state, the QP and its mean
value, using (16), read

Q(q, t ) = h̄2

4
Tr(V−1M) − h̄2

8
(q − ηq) · V−1MV−1(q − ηq),

〈Q(t )〉 = h̄2

8
Tr(V−1M). (54)

It is interesting to notice that the MVQP is half of the
maximum value of the QP, which is reached for the center
of the wave packet 〈q〉 = ηq, i.e., 〈Q(t )〉 = 1

2 Q(ηq, t ).
We have shown in Sec. III that the system in a pure

Gaussian state is a sufficient condition for the maximization
of the bound function in (17). Thus, we can find a relation
between the correlations of the system that are more restrictive
than the RSUR. Using the definition (22) for the matrix Q
together with the amplitude for a pure Gaussian state (28), the
identification (34) can be recast as

VṼnc = h̄2

4
In, (55)

which establishes an exact relation (instead of an inequality)
between the quantum and classical correlations for the states.
For the one-DF case, it reduces to

�p2
nc�q2 = h̄2

4
, (56)

which can be seen as an equality encoded within Heisenberg’s
uncertainty relation. Note that (56) is simply (53) for the
present case.

Noteworthy, the uncertainty relation in (55) is stronger than
the RSUR for pure Gaussian states. Actually, we will prove
that (55) is a sufficient condition to (48). We begin by using
(30) in (55), and choosing w ∈ Cn in order to write an inner
product as

w†
[

Ṽ − Ṽc − h̄2

4
V−1

]
w = 0.

Adding the term � := Ṽc − V�
qpV−1Vqp on both sides of

the above equation, and noting that the pair of Hermitian con-
jugated terms ( ih̄

2 V�
qpV−1,− ih̄

2 V−1Vqp) give zero contribution
to the inner product, we find

w†[Ṽ − (
Vqp + ih̄

2 In
)†

V−1
(
Vqp + ih̄

2 In
)]

w � w†�w,

where the matrix inside the brackets is the same as in (48).
Note that � is the Schur complement of the covariance

matrix cov(x, x) for x := ((∂qS)�, q�)�. As long as a co-
variance matrix is always positive semidefinite [31] and a
positive-semidefinite matrix has a positive-semidefinite Schur
complement [37], we conclude that � � 0. Therefore, for
pure Gaussian states, the uncertainty relation (55) implies the
RSUR (48). In particular, (53) or (52) implies (49) for an
arbitrary one-DF Gaussian state.

C. Absence of classical correlations

The uncertainty relations (35) and (47) assert the necessary
presence of quantum correlations on any physical system.
Notwithstanding, there is no bound for the classical correla-
tions, hence we shall analyze what happens when Ṽc in (31)
or (38) vanishes.

For pure states, a sufficient condition to have Ṽc = 0n is
that ∂qS = 0, while for mixed states we need ∂qSk = 0,∀k
[see Eq. (B3)]. In these cases we have pc = 0 in (32) and in
(39). Moreover, since Vqp = 0n, the RSUR in (48) becomes

VṼnc �
h̄2

4
In, (57)

which is an uncertainty relation including just nonclassical
correlations.

Typically, this situation occurs for real eigenfunctions of
the Hamiltonian operator. Indeed, the unitary evolution of
an eigenstate |ψk〉 with eigenvalue Ek is exp(−iEkt/h̄)|ψk〉,
while the phase is given by Sk (q, t ) = Sk (q, 0) − Ekt/h̄. Con-
sequently, ∂qSk (q, t ) = ∂qSk (q, 0). If the phase of the initial
state is at most linear in q, then ∂qSk (q, t ) will be a constant
vector, and cov(∂qSk, ∂qSk ) = Vqp = 0n.

For real wave functions, it is convenient to write
ψk (q, 0) = �k (q, 0) cos [Sk (q, 0)/h̄]. It is well known that
eigenfunctions of time-inversion symmetric Hamiltonians are
real; consequently, ∂qSk (q, t ) = 0,∀t ∈ R. Note that this is
not the case for the generic Hamiltonian in (3) due to the terms
q · Cp + p · ξp.

Another example of a state with no classical correlations is
the Gaussian state described in (A4) where the phase in (A7)
has Im(�S) = 0. This happens when b = c = 0n or a = d =
0n in (A3).

From inequality (57), one can prove that

h̄2

4
Tr(V−1M) � Tr[ṼncM],

which is clearly saturated (becomes an equality) for pure
Gaussian states since they satisfy (55). Nevertheless, for
mixed states this issue is more involved.

Let us assume that ∂qSk = 0 (∀k) and hence δV(k) = 0n.
Furthermore, according to (38), there are no classical corre-
lations either (Ṽc = 0n) since ∂qS̄|q′=q = 0 [see (B3)]. There-

fore, we have Ṽ = Ṽnc [see (38)], which becomes the convex
combination of the Ṽ(k)

nc ’s in (42). This is what happens,
for example, when all |ψk〉 in (41) are eigenstates of the
Hamiltonian of the system.

However, δV(k) = 0n (∀k) is not a necessary condition for
expressing the matrices in (38) as convex combinations of the
ones in (42). In fact, when all states |ψk〉 in (41) are such that
〈∂qSk〉 = 0, then δV(k) = 0n (∀k), but this does not imply that
either one in (38) becomes the convex sum of the others in
(42).

Note that the same condition for δV(k) = 0n also implies
δṼnc = 0n [see (B5)]. In this case, (46) gives the convex
decomposition of 〈Q̄(t )〉ρ in terms of 〈Qk (t )〉.

D. Systems with independent n DFs

Let us assume a system with n DFs that are completely in-
dependent from each other, i.e., the evolution of which is gov-
erned by a Hamiltonian given by H (q, p) = ∑n

i=1 Hi(qi, pi )
with

Hi(qi, pi ) := 1

2mi
p2

i + Liqi pi + ξ i
p pi + Ui(qi ).
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Thus, if the system starts in an uncorrelated initial state, it
will remain uncorrelated for all times. From (9), the quantum
potential also factorizes into

Q(q, t ) =
n∑

i=1

Qi(qi, t ), Qi(qi, t ) := − h̄2

2mi�i

∂2�i

∂q2
i

.

Now, choosing n functions T i
0 (q) = ζiqi ∈ T 1

�i
, and follow-

ing the same reasoning as in Theorem 1, one can show that
each degree of freedom satisfies an inequality identical to
(53). Summing all these inequalities, one obtains

〈Q(t )〉 =
n∑

i=1

〈Qi(t )〉 � h̄2

8

n∑
i=1

1

mi�q2
i

,

which is different from (27).

VII. EXAMPLES

In this section we will exemplify our results with known
physical systems. We hope that analyzing concrete examples
will help to gain physical insight into our previous conclu-
sions.

A. Harmonic oscillator eigenfunctions

Consider the eigenfunctions for a one-DF Harmonic oscil-
lator:

ψn(q) = 1√
2nn!

(
1

2π�q2
0

)1
4

e
− q2

4�q2
0 Hn

(
q√

2�q0

)
, (58)

where Hn(x) are the Hermite polynomials and �q2
0 is the

position variance of the ground state, which is a Gaussian state
since H0(x) = 1. The variances of these states are given by

�q2
n = (2n + 1)�q2

0, �p2
n = (2n + 1)

h̄2

4�q2
0

. (59)

Considering the harmonic oscillator Hamiltonian as

Ĥ = ν

2
(q̂2 + p̂2),

and using (9), the quantum potential reads

Qn(q) = (2n + 1)
h̄2ν

4 �q2
0

− h̄2ν

8 �q4
0

q2,

which is time independent inasmuch as the time evolution
does not change the modulus of ψn(q). Since 〈q〉 = 0 for
the Harmonic oscillator eigenfunctions, the MVQP in (16) is
readily obtained:

〈Qn〉 = (2n + 1)�q2
0

h̄2ν

8 �q4
0

= h̄2ν

8

�q2
n

�q4
0

, (60)

where we have used (59). The function T0 which solves (24)
can be determined using H ′

n = 2xHn − Hn+1 [41], such that it
is given by

T∗(q) = α + β

[
q√

2�q0

− Hn+1(x)

Hn(x)

]
x= q√

2�q0

,

for α and β real constants. As can be seen, the above T∗ is no
longer a linear function, unless n = 0. From (18), the above

T∗(q) and T1(q) are linearly dependent, and thus LQ is equal
to 〈Q〉 in (60). Notwithstanding, the limiting function in (17)
for the linear function is

LQ(ζq + ζ0) = h̄2ν

8�q2
n

= h̄2ν

8(2n + 1)�q2
0

.

Since the linear T0(q) is a sufficient condition valid for any
state (see Sec. III), the function above constitutes a bound
for MVQP. Therefore the uncertainty relation for the wave
functions (58) is written as (53) with �q = �qn. Furthermore,
the comparison of the above bound with (27) shows that
〈Q〉 = LQ(aq + b) only for n = 0, which is a pure Gaussian
state. This shows that none of the Harmonic oscillator eigen-
functions with n > 0 saturates the linear uncertainty relation,
as expected.

As eigenstates, the classical correlations are null and the
one-DF version of (57) applies. Using (33), relation (57)
becomes

�q2
n〈Qn〉 = (2n + 1)2 h̄2ν

8
� h̄2ν

8
,

which is exactly (53).

B. Thermal state

As an example of a mixed state, let us consider the thermal
state of the harmonic oscillator. The density operator is written
as (41), with

ωk = e−h̄βνk

n̄ + 1
and n̄ := (eh̄βν − 1)−1.

The parameter β is the inverse of the temperature, |ψk〉 are
the harmonic oscillator eigenstates with eigenfunctions given
by (58), and the sum in (41) ranges in k = 0, 1, 2, . . . ,∞. As
discussed in Sec. VI, the classical correlations for this state
vanish, since the eigenstates of the spectral decomposition are
also eigenstates of the Hamiltonian of the system.

The position and momentum variances for the thermal state
are obtained as the convex sum of the ones for the Harmonic
oscillator eigenfunctions (59), namely,

�q2 = cotanh
(

1
2 h̄βν

)
�q2

0,

�p2 = cotanh
(

1
2 h̄βν

)
�p2

0.

Since there are no classical correlations for this system,
the above �p2 is due solely to the nonclassical part of the
momentum. In addition, from (46) with δṼnc = 0n, the MVQP
in (37) becomes the convex sum of the ones in (60):

〈Q̄〉ρ = h̄2ν

8�q2
0

cotanh

(
1

2
h̄βν

)
= ν

2
�p2.

Note that the QP is a monotonically decreasing function of
β, which shows that the quantum correlations are erased for
lower temperatures. Nevertheless, the limit limβ→∞〈Q̄〉ρ =
ν
2 �p2

0 is finite; hence, even for vanishing temperatures the cor-
relations remain in momentum. In general, correlations, such
as entanglement, are expected to vanish for high temperatures
[42]. However, there exist also correlations, such as quantum
discord [43], that increase with the temperature, similarly to
the correlations of momenta described above.
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C. Coherent and squeezed states

Let us consider a system with n DFs described initially by
a Gaussian state [see (A4)], with the symplectic matrix given
by

S = a ⊕ d , a = d−1, a = diag(a11, . . . , ann), (61)

which means that the system is uncorrelated and described by
the covariance matrix

V = diag
(
�q2

1, . . . ,�q2
n

)
,

with �qi =
√

h̄
2 |aii| for (i = 1, . . . , n) and aii are the squeez-

ing parameters of the state. The evolution is given by the
Hamiltonian of n noninteracting harmonic oscillators:

Ĥ =
n∑

i=1

νi

2

(
q̂2

i + p̂2
i

)
, (62)

which can be brought to the form in (3) with potential energy
in (A1) by setting M = diag(ν1, . . . , νn). Using (A2), the
symplectic matrix generated by this Hamiltonian reads

St =
(

cos(Mt ) sin(Mt )
− sin(Mt ) cos(Mt )

)
, Mi j = νiδi j,

and the evolved state [see (A6)] will also be a Gaussian state
with covariance matrix

Vt = h̄

2
[cos2(Mt )aa� + sin2(Mt )dd�]; (63)

if the initial mean value of position and momentum are,
respectively, ηq and ηp, the position mean value vector reads

ηq(t ) = cos(Mt )ηq + sin(Mt )ηp. (64)

Since the initial state is uncorrelated and the dynamics
is described by a noninteracting Hamiltonian, the MVQP in
(54), as well as the QP, becomes a sum of terms each for one
degree of freedom, i.e.,

〈Q(t )〉 =
n∑

i=1

〈Qi(t )〉, (65)

where

〈Qi(t )〉 = h̄2νi

8�q2
i

[
cos2(νit ) + a−4

ii sin2(νit )
]−1

. (66)

Noting that

�qi(t ) = �qi
[

cos2(νit ) + a−4
ii sin2(νit )

]−1/2
,

each of the individual quantum potentials saturates the uncer-
tainty relation as expected by (56). By the other side, the full
MVQP (65) satisfies (27), which becomes

〈Q(t )〉 � h̄2

8
max

{
νi

[�qi(t )]2
; i = 1, . . . , n

}
.

Let us now consider a n-DF coherent state, which can be
obtained by setting aii = 1,∀i in (61). This means that its
wave function is obtained from (A4) by choosing S = I2n

in (A3). It is well known [32,33] that the Hamiltonian (62)
preserves the coherent character of the state.

The QP in (54) will be the sum of the individual QPs,

Qi(qi, t ) = h̄2νi

4�q2
i

− h̄2νi

8�q4
i

[
qi − ηqi(t )

]2
,

and will be time dependent through the mean value vector in
(64). Notwithstanding, the MVQP will be time independent
since it depends only on the covariance matrix, which is
constant, as can be seen by setting a = In in (63). Thus, using
(66), we have 〈Qi〉 = h̄νi/4.

D. Nonlinear functions for the bound

It is interesting to see what changes when we choose
different functions T0(q) for the bound in (17). We will also
consider a one-DF Gaussian state evolving subjected to the
Hamiltonian (3) with a quadratic potential. Let us ignore the
solution that extremizes the bound (17) and choose a power-
law function of the form

T0(q) = (q − ηq)k, k ∈ N.

A known result about the centered moments of a Gaussian
distribution [44] is that its mean reads

〈(q − ηq)k〉 =
{

0 if k odd,

�qk (k − 1)!! if k even.

Inserting T0(q) above in (17) and using the above moments,
one can show that

LQ((q − ηq)k, t ) = Ck LQ(q − ηq, t ),

where

Ck :=
{

(k!!)2

(2k−1)!! if k odd,

0 if k even.

The coefficients Ck satisfy the following properties:

(i) C1 = 1,

(ii) Ck � 0,∀k ∈ N,

(iii) C2k+1 > C2k+3,∀k ∈ N.

Properties (i) and (ii) are straightforward, while (iii) can be
proved by induction. These properties show that LQ((q −
ηq)k, t ) � LQ((q − ηq), t ),∀k ∈ N. This agrees with the fact
that the linear bound in (27) is the greatest bound for Gaussian
states.

E. Inverted oscillator

Consider the one-DF Hamiltonian

Ĥ = ν

2
( p̂2 − q̂2),

which describes a scattering interaction through a parabolic
barrier. An initial coherent state evolves into a kind of
squeezed state with wave function (A4) determined by

St =
(

cosh(νt ) sinh(νt )
sinh(νt ) cosh(νt )

)
,

which implies V = �q2 = h̄
2 cosh(2νt ). The quantum poten-

tial given by (54) reads 〈Q(t )〉 = h̄ν/[4 cosh(2νt )].
As t increases, the dispersion on the position increases,

while the mean value of the QP becomes smaller in order to
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maintain the relation 〈Q(t )〉�q2 = h̄2/(8m) intact. However,
this saturation does not happen for the Heisenberg uncer-
tainty relation. The dispersion on the momentum can be
calculated directly from the wave function and gives �p2 =
h̄ cosh(2νt )/2. Thus, we have �q2�p2 > h̄2/4 for all t > 0.

F. Pöschl-Teller potential

The system described by the Hamiltonian

Ĥ = p̂2

2m
− λ(λ + 1)

2
sech(q̂)

constitutes one of the few examples of an analytically solvable
problem in quantum mechanics [45]. The eigenfunctions and
the Hamiltonian eigenvalues for this potential are, respec-
tively, given by

ψ
μ
λ (q) =

√
μ(λ − μ)!

(λ + μ)!
Pμ

λ [tanh(q)], Eμ = − h̄2μ

2m
,

where Pμ
λ (x) are the Legendre associated polynomials [41],

λ ∈ N, and μ = 1, 2, . . . , λ − 1, λ. Inserting the wave func-
tion in (9) and using the identity [41]

Pμ

λ+1(x) = (2λ + 1)

(λ − μ + 1)
xPμ

λ (x) − (λ + μ)

(λ − μ + 1)
Pμ

λ−1(x),

the QP and its MVQP for the Pöschl-Teller potential read

Qμ
λ (q) = −Eμ + h̄2

2m
λ(λ + 1)sech2(q),

〈Q〉 = −Eμ + h̄2

2m

2μλ(λ + 1)

2λ + 1
.

From (24), the function that extremizes the inequality is

T∗(q) = 2(λ + 1)tanh(q) − 2α(λ − μ + 1)
Pμ

λ+1[tanh(q)]

Pμ

λ [tanh(q)]
,

for a real constant α. In order to study the behavior of the
bound function (17), we will choose λ = μ, which corre-
sponds to the highest excited state of the Pöschl-Teller po-
tential for a given λ.

According to (18), the saturation of the Cauchy-Schwartz
inequality (see Sec. VI) happens when T∗(q) becomes propor-
tional to T1(q) = tanh(q). As a fact, using the identity [41]
Pμ

μ+1(x) = (2μ + 1)xPμ
μ+1(x) in the above function T∗(q) it

follows that 〈Q〉 = LQ[tanh(q)].
The uncertainty relation (17) can be (analytically) deter-

mined by considering functions of the form T0(q) = tanhn(q)
with n ∈ N. In this case, we find

〈T0〉 =
√

1 + (−1)n

2π

�
(
μ+ 1

2

)
�
(

n+1
2

)
�
(

n+1
2 +μ

) ,

〈
T 2

0

〉 = 1√
π

�
(
μ+ 1

2

)
�
(

n
2 +1

)
�
(

n
2 +μ+1

) ,

〈∂qT0〉 = [1 − (−1)n]μ
〈
T 2

0

〉
.
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10

m h̄
2
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(t
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n
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FIG. 1. Bound LQ[T0(q)] of the quantum potential associated
to the eigenstates of the Pöschl-Teller potential for the function
T0(q) = tanhn(q). The case n = 1 corresponds to the mean value of
the quantum potential, i.e., LQ[tanh(q)] = 〈Q〉.

Therefore, the bound function vanishes if n is even,
LQ(tanhn(q), t ) = 0, and gives

LQ(tanhn(q), t ) = μ2h̄2

2m

�
(
μ+ 1

2

)
�
(
n+μ+ 1

2

)
�
(

n
2 +1

)2

√
π �

(
n+ 1

2

)
�
(

n
2 +μ+1

)2 ,

for n odd. Figure 1 shows this bound for some values of n.
Let us now consider the uncertainty relation (53) for a

linear function T0(q) = ζq + ζ0. In accordance with (53), we
need to determine the position variance, which is given by
a generalized hypergeometric function rFs[(ar ); (bs); z] [41].
Indeed, we have

�q2 =
∫ +∞

−∞

[
ψμ

μ (q)
]2

q2dq = (2μ − 1)!!

(2μ − 2)!!

∫ ∞

0
sech2μ(q) q2dq

= 2μ−1(2μ − 1)!!

μ2 μ!
4F3

[
μ μ μ 2μ

μ + 1 μ + 1 μ + 1; −1

]
.

In Fig. 2, we compare the bound function with the MVQP
(case n = 1 in Fig. 1). Note that the uncertainty relation for
the linear function (53) gives a stronger constraint than the
next function in Fig. 1, i.e., the case n = 3.

0 10 20 30 40
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

m h̄
2

[
Q

L Q
(ζ

q
+

ζ 0
)]

μ

FIG. 2. Difference between the mean value of the quantum po-
tential and the bound LQ(ζq + ζ0 ) for the eigenstates of the Pöschl-
Teller potential. The mean value 〈Q〉 is the curve n = 1 in Fig. 1.
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As a final remark, note that the wave function for λ = μ

corresponds to the most excited states. As μ increases, the be-
havior of the system approaches a plane wave and Q(q, t ) →
0 for q → ±∞. Numerical tests up to n ∼ 103 show that the
monotonic decrease observed in Fig. 2 is persistent. Thus the
quantum potential approaches the linear bound function in this
limit, even though the wave function of a free particle does not
belong to the set L2(�2), and the Cauchy-Schwartz inequality
is not applicable.

VIII. CONCLUSIONS AND FINAL COMMENTS

The debate on interpretation of quantum mechanics has
been centered on the properties of the quantum potential
and rarely makes any connection between the QP and the
uncertainty relations. Instead of focusing on the quantum
potential, in the present paper we analyzed the properties and
physical meaning of its mean value.

In Sec. III, we showed that the MVQP satisfies an in-
equality for an arbitrary scalar function T0 ∈ L2(�2) and,
by suitably choosing this function, the MVQP is always
positive and bounded from below. Furthermore, we derived
a generalized uncertainty relation that is stronger than the
Robertson-Schrödinger inequality.

The physical meaning of the MVQP is that it is related
to the nonclassical part of the momentum covariance ma-
trix. Decomposing it as Ṽ = Ṽc + Ṽnc, where Ṽc is exactly
the momentum covariance matrix of the classical Hamilton-
Jacobi formalism, i.e., Ṽc = cov(∂qS, ∂qS), the nonclassical

part identifies with the MVQP, namely, Ṽnc := 〈− h̄2

�
∂2

qq�〉.
Thus, the bound on MVQP implies that any quantum system
has a minimum of quantum momentum correlation. While
classical systems can have zero momenta correlations, quan-
tum systems are always correlated.

The results obtained primarily for pure states are then gen-
eralized for density matrices describing mixed states. Using
a spectral decomposition ρ̂ = ∑

k ωk|ψk〉〈ψk|, where |ψk〉 are
eigenstates, neither Ṽc nor Ṽnc can be decomposed exclu-
sively as a convex combination of Ṽ(k)

c nor Ṽ(k)
nc , respectively.

Notwithstanding, Ṽnc can still be written as a convex sum,
namely, Ṽnc = ∑

k ωkṼ(k)
nc + δṼnc, where the latter term is a

symmetric positive-semidefinite matrix. As a consequence,
the MVQP defined in (37) for mixed states is always greater
than or equal to the sum of the MVQP for each pure state
in the spectral decomposition. As a corollary, the MVQP for
mixed states also has a positive lower bound.

The identification of the MVQP with the nonclassical part
of the momentum covariance matrix allows us to interpret
the semiclassical limit in an adequate manner, which might
give new insights for this regime. Indeed, in [38], the WBK
propagation becomes a good description for the dynamics
of the system when a dynamical stretching of the initial
(non-WKB) Gaussian state along an unstable manifold of the
classical dynamics is performed. On the lines developed here,
this stretching is responsible for the vanishing of the quantum
correlations. Thus, our studies might open up new connections
in the influence of the quantum potential on the semiclassical
propagation.
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APPENDIX A: PURE GAUSSIAN STATES

In this Appendix we summarize some information about
pure Gaussian states of a system with n degrees of freedom
and their symplectic evolution.

It is well known that a quadratic Hamiltonian generates
a symplectic evolution and that this preserves the Gaussian
character of an initial Gaussian state [46]. The most generic
quadratic Hamiltonian can be constructed from the Hamilto-
nian in (3) with

U (q) = 1
2 q · Lq + ξq · q + H0 (A1)

where L = L� is a n × n symmetric real matrix, ξq ∈ Rn is a
column vector, and H0 is a real constant. Such a Hamiltonian
is the generator of the uniparametric symplectic subgroup
constituted by St such that

St := eJHt , J :=
(

0n In
−In 0n

)
, H :=

(
L C
C� M

)
. (A2)

A 2n × 2n real matrix S is said to be symplectic if S�JS =
SJS� = J, which is the case of St in (A2). These matrices can
be partitioned into n × n blocks a, b, c, and d, as follows:

S =
(

a b
c d

)
with

⎧⎨⎩ad� − bc� = In, a�c = c�a,

a�d − c�b = In, ab� = ba�,

cd� = dc�, b�d = d�b.

(A3)

The constraints over the blocks come from the symplectic
nature of S [46].

The wave function of a generic pure Gaussian state of n
DFs always has the following structure [46]:

ψ (q, t ) = e− 1
2h̄ (q−ηq )·�S(q−ηq )+ i

h̄ (ηp·q− 1
2 ηq·ηp)

(π h̄)
n
4
√

det (a + ib)
, (A4)

where

�S := [In − i(ca� + db�)](aa� + bb�)−1 (A5)

is a n × n matrix constructed with the n × n blocks of S in
(A3), and ηq := 〈ψ |q̂|ψ〉 ∈ Rn and ηp := 〈ψ | p̂|ψ〉 ∈ Rn are,
respectively, the mean value column vectors of position and
momentum operators (see below).

Under the quadratic Hamiltonian, which generates St in
(A2), the state in (A4) evolves into another Gaussian pure state
with the same structure, but with the replacements [46]

�S → �St S,

(
ηq

ηp

)
→ St

(
ηq

ηp

)
+
∫ t

0
dt ′St ′J

(
ξq

ξp

)
. (A6)
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Since the product St S is a member of the symplectic group,
the generic structure in (A4) is preserved by this temporal
evolution.

The polar structure in (5) is readily obtained for the wave
function in (A4):

�(q, t ) = exp
[− 1

4 (q − ηq) · V−1(q − ηq)
]

[(2π )n det V]1/4 ,

S(q, t ) = 1
2 (q − ηq) · Im(�S)(q − ηq)

+ (
ηp · q − 1

2ηq · ηp
) − h̄

2 arg[det(a + ib)].

(A7)

In these last equations, the matrix V is the position covariance
matrix in (29) and, for the Gaussian state in (A4), is equal to

V = h̄

2
[Re(�S)]−1 = h̄

2
(aa� + bb�), (A8)

and is determined by (A5). Furthermore, the already defined
mean values are written as

ηq = 〈ψ |q̂|ψ〉 =
∫
Rn

dnq [�(q, t )]2 q,

ηp = 〈ψ | p̂|ψ〉 =
∫
Rn

dnq [�(q, t )]2 ∂qS(q, t ).

The mean value of the momenta vector is also in accordance
with (32), i.e., pc = ηp for a Gaussian state.

APPENDIX B: CONVEX DECOMPOSITION OF ˜Vnc

In this Appendix the reader will find the demonstration that
the quantum (and consequently the classical) correlations of a
mixed state can be written as a convex sum. In summary, we
will show the relation among the matrix Ṽnc in Eqs. (38) and
the matrices Ṽ(k)

nc in Eq. (42). To this end we will only properly
rewrite all the derivatives appearing in (38).

For a question of compactness, let us define ρqq′ :=
〈q|ρ̂|q′〉 for the matrix element in (11), and by the hermiticity
of ρ̂ it is clear that ρq′q = ρ∗

qq′ . Using the spectral decomposi-
tion (41), we calculate

ρqq = �̄(q, q, t ) =
∑

k

ωk|ψ∗
k (q)|2 =

∑
k

ωk �2
k,

∂ jρqq′ |q′=q =
∑

k

ωk ψ∗
k (q) ∂ jψk (q)

=
∑

k

ωk

[
�k∂ j�k + i

h̄
�2

k∂ jSk

]
,

(B1)

with �k = �k (q, t ) being the amplitude and Sk = Sk (q, t ) the
phase of ψk (q) = 〈q|ψk〉.

The amplitude in (11) can be written as

�̄(q, q′, t ) = |ρqq′ | = √
ρqq′ρq′q.

Taking the derivative with respect to qj and using (B1), one
has

∂ j�̄|q′=q =
[

1

2�̄
(ρq′q∂ jρqq′ + ρqq′∂ jρq′q )

]
q′=q

= 1

2
[∂ jρqq′ + ∂ jρq′q]q′=q

= 1

2

∑
k

ωk ∂ j |ψk (q)|2 = 1

2
∂ j�̄(q, q, t ).

(B2)

Note the factor 1/2 at the end, which shows the noncommu-
tation of the derivative with the selection of the diagonal term
q′ = q.

A clever way to obtain the derivative of the phase of (11) is
to write it as follows:

∂ j S̄|q′=q = −ih̄ [e− i
h̄ S̄(q,q′,t ) ∂ je

i
h̄ S̄(q,q′,t )]q′=q

= −ih̄ e− i
h̄ S̄(q,q,t ) ∂ j

(ρqq′

�̄

)∣∣∣
q′=q

= 1

�̄(q, q, t )

∑
k

ωk �2
k ∂ jSk,

(B3)

where we used Eqs. (11) and (B1) and the fact that S̄(q, q′ =
q, t ) = 0. Note that

〈∂ j S̄|q′=q〉ρ =
∫
Rn

dnq �̄(q, q, t ) ∂ j S̄|q′=q =
∑

k

ωk 〈∂ jSk〉

is the jth component of the classical momenta in (39).
Now, we calculate the second derivative of the amplitude

and write it as

∂2
i j�̄|q′=q = �1(q, t ) + �2(q, t ) + �3(q, t ). (B4)

The first term in the above equation is

�1(q, t ) := −
[

∂i�̄

2�̄2
(ρq′q ∂ jρqq′ + ρqq′ ∂ jρq′q)

]
q′=q

= − 1

4�̄(q, q, t )
∂i�̄(q, q, t ) ∂ j�̄(q, q, t ),

where we used (B2) and the derivatives of ρqq′ were calculated
using (11). The second term is

�2(q, t ) :=
[

1

2�̄

(
ρq′q ∂2

i jρqq′ + ρqq′ ∂2
jiρq′q

)]
q′=q

=
∑

k

ωk Re
[
ψ∗

k (q) ∂2
i jψk (q)

]
=
∑

k

ωk�k∂
2
i j�k − 1

h̄2

∑
k

ωk�
2
k ∂iSk ∂ jSk,
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where we use Eq. (B2) and the second derivatives were
performed directly from Eq. (41). The last term is

�3(q, t ) :=
[

1

2�̄
(∂iρqq′ ∂ jρq′q + ∂iρq′q ∂ jρqq′ )

]
q′=q

= − �1(q, t ) + 1

h̄2 �̄(q, q, t ) ∂iS̄|q′=q ∂ j S̄|q′=q,

where the derivatives were calculated using (11). Finally,
comparing Ṽnc in (38) with (B4), we obtain the desired result:

Ṽnc = −h̄2
3∑

m=1

∫
Rn

dnq �m(q, t ) =
∑

k

ωkṼ(k)
nc + δṼnc,

where �1 cancels with part of �3, while the first summation
in the final form of �2 gives rise to the summation of the

quantum potentials in (42). The remaining terms of �2 and
�3 are grouped in

δṼnc :=
∑

k

ωk

∫
Rn

dnq �2
k ∂qSk (∂qSk )�

−
∫
Rn

dnq �̄(q, q, t ) ∂qS̄|q′=q (∂qS̄|q′=q)�

=
∑

k

ωk

∫
Rn

dnq �2
k (∂qSk − ∂qS̄|q′=q)(∂qSk − ∂qS̄|q′=q)�.

(B5)

From its structure, the matrix δVnc is a positive-semidefinite
matrix, which is the most important observation of this
Appendix.
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