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Tensor networks are a powerful tool for many-body ground states with limited entanglement. These methods
can, nonetheless, fail for certain time-dependent processes–such as quantum transport or quenches—where
entanglement growth is linear in time. Matrix-product-state decompositions of the resulting out-of-equilibrium
states require a bond dimension that grows exponentially, imposing a hard limit on simulation timescales.
However, in the case of transport, if the reservoir modes of a closed system are arranged according to their
scattering structure, the entanglement growth can be made logarithmic. Here, we apply this ansatz to open
systems via extended reservoirs that have explicit relaxation. This enables transport calculations that can access
steady states, time dynamics and noise, and periodic driving (e.g., Floquet states). We demonstrate the approach
by calculating the transport characteristics of an open, interacting system. These results open a path to scalable
and numerically systematic many-body transport calculations with tensor networks.
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Many-body quantum systems are characterized by com-
plex ground and dynamic states, reflecting the emergence
of phenomena from superconductivity to exotic magnetism.
Furthermore, for nonequilibrium properties, systematic ex-
citations can yield a response that diverges markedly from
the ground state [1]. The analytical treatment of many-body
systems is thus challenging. This situation has driven the
development of numerical methods such as quantum Monte
Carlo [2,3], dynamical mean-field theory (DMFT) [4,5], and
tensor networks [6–11], which now lie at the forefront of
many-body theory. Among these, tensor networks leverage
the structure of correlations and entanglement to provide a lo-
cal, numerically controllable many-body description-limiting
computation to a submanifold of Hilbert space that captures
the underlying state.

While tensor networks, such as matrix product states
(MPSs), are extremely successful for correlated ground states,
their application to time-dependent behavior can be stifled
by a rapid growth of entropy [12,13]. In the context of
quantum transport, this is due to scattering, which generates
entangled electron-hole pairs in the adjacent contact regions
[14]. For a pair of electrodes, L and R, held at a bias μ,
the attempt frequency for scattering events is μ/2π [15]. The
bipartite entanglement entropy S between them then grows
linearly as S ≈ H[T (0)]μ t/2π , where H[T (ω = 0)] is the
binary entropy of the transmission probability T (ω) evaluated
at the Fermi level (and μ is taken to be small) [16–18].
Described qualitatively, a simulation will fail when S saturates
the entanglement entropy permitted by a MPS with dimension
D—a condition that is met when S ≈ log2 D. Increasing the
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simulation duration requires an exponentially larger D and
thus exponentially larger computational requirements (see,
e.g., Ref. [14]).

This exponential barrier can be mitigated by a basis that
reflects the scattering structure of current-carrying states [14]:
An incoming particle at energy h̄ωk will be transmitted from
one reservoir, through the system, and into an outgoing state at
the same energy (up to some characteristic spread in energy).
A mixed energy-spatial basis, where (nearly) isoenergetic
modes in L and R are adjacent on a one-dimensional (1D)
lattice, captures the highly local entanglement structure in
the energy domain. We recently leveraged this observation to
develop a time-dependent MPS approach for closed systems.
This approach shifts the temporal growth of entanglement
from linear to logarithmic [14]. The energy basis, also known
in the literature as the “star geometry,” has been employed in
MPS impurity solvers for nonequilibrium DMFT [19,20] and
in the study of quenched and Floquet states in the Anderson
impurity model [21,22], leading to suppression of entangle-
ment [22]. Nonetheless, our method is unique in pairing
the reservoir modes according to the actual entanglement
structure, giving accurate, extensive simulations of previously
entanglement limited nonequilibrium problems.

Here, we demonstrate that the mixed energy-spatial basis
naturally permits open MPS simulations where implicit reser-
voirs offset carrier depletion in the explicit leads (reservoirs) L
and R (Fig. 1). We first show that this method is numerically
stable in the physical regime that reflects transport in the
infinite reservoir limit (see Refs. [23,24]). We then apply
our approach to a nontrivial example of transport through a
two-site, interacting many-body impurity. The open-system
framework is critical for directly targeting steady states, in-
cluding at finite temperature. In doing so, it provides a unified
framework for addressing driven systems or those subject to
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FIG. 1. Open-system transport. (a) An “extended-reservoir” ap-
proach for transport through a many-body system S. The system is
flanked by explicit left, L, and right, R, reservoir modes of frequency
ωk and coupling vk to S. Implicit reservoirs relax the modes towards
a Fermi-Dirac distribution via distinct injection (γk+) and depletion
(γk−) rates tied to f L/R(ωk ). (b) The mixed energy-spatial basis has
L and R modes arranged according to their energy h̄ωk [14].

time-dependent perturbations, such as Floquet dynamics and
external noise on top of otherwise stationary states. These sce-
narios are generally difficult—and sometimes impossible—to
access using existing methods.

Quantum transport is typically modeled using a composite
system, containing noninteracting left (L) and right (R) reser-
voirs that drive transport through an “impurity” region [the
system S; see Fig. 1(a)] [25]. The Hamiltonian takes the form

H = HS + HL + HR + HI, (1)

where HS is the (many-body) Hamiltonian for S , HL orR =∑
k∈LR h̄ωka†

kak are the explicit reservoir Hamiltonians com-
posed of NL(R) modes, and HI = ∑

k∈L,R
∑

i∈S h̄vk,i(c
†
i ak +

a†
kci ) is the interaction Hamiltonian that couples S to LR.

The c†
i (ci ) and a†

k (ak) are fermionic creation (annihilation)
operators in S and LR, respectively. We take the index k to
implicitly include relevant reservoir labels (state, spin, etc.),
while ωk and vk,i are the reservoir mode frequencies and
system-reservoir coupling frequencies.

While steady states can form if each reservoir contains an
infinite number of explicit modes [25], only a finite reservoir
can be simulated. This will never give an actual steady state,
making some parameter regimes and protocols (e.g., dynamic
driving) difficult to access. Implicit reservoirs offer a remedy,
relaxing explicit modes to equilibrium distributions at differ-
ent chemical potentials and/or temperatures [26]. Simulating
this requires an evolution for the density matrix ρ of the
LSR composite system. A particularly useful approach is the
Markovian master equation

ρ̇ = − ı

h̄
[H, ρ] +

∑
k

γk+

(
a†

kρak − 1

2
{aka†

k, ρ}
)

+
∑

k

γk−

(
akρa†

k − 1

2
{a†

kak, ρ}
)

, (2)

where {·, ·} is the anticommutator. The first term gives the
Hamiltonian evolution of ρ (which includes explicit reser-
voirs), while the remaining terms inject and deplete particles
into and from modes k at a rate γk+ and γk−, respectively.
To ensure that explicit reservoirs relax to equilibrium in the
absence of S , these rates are γk+ ≡ γ f α (ωk ) and γk− ≡
γ [1 − f α (ωk )], where f α (ωk ) is the Fermi-Dirac distribution
in the α ∈ {L,R} reservoir [27].

When the reservoirs are at different chemical potentials μα

(or temperatures), the bias μ = μL − μR will drive a current
[28]. We call the reservoirs that are contained explicitly in the
dynamics the extended reservoirs. This particular Markovian
master equation has been widely employed (see Ref. [24])
to describe transport in noninteracting systems [23,24,29–
38]. It also follows naturally from the generic approach
(explicit reservoir or bath states with Markovian broadening
to represent the spectral function) suggested in Ref. [39]
for open-system dynamics. While it is provably correct in
noninteracting and many-body cases [23,24], the extended
reservoir size and γ must lie in a certain regime [23,24] to
avoid unphysical relaxation artifacts. A related DMFT method
uses an equation similar to Eq. (2) but optimizes relaxation
(including intermode relaxation) to represent the reservoir
spectral function [40–44]. While intermode relaxation can
represent the spectral function more effectively, it increases
the computational cost of the MPS simulation (we leave this
for a later contribution).

In order to demonstrate the stability and behavior of tensor
networks applied to the extended reservoir framework, we
solve Eq. (2) with the time-dependent variational principle
(TDVP) [45,46], where the density matrix is vectorized to
represent it within an MPS [47,48]. While a variety of tensor
network techniques exist [49–51], we use TDVP as it is
highly effective, accommodating a direct time evolution for
any Hamiltonian or Lindbladian that may be represented as a
matrix product operator (MPO). We note that time-evolving
block decimation may also be efficacious [52] and leave open
the question of an optimal implementation (via purification
schemes [53,54], etc.; see also Refs. [55,56] for a review). For
details of our setup, refer to the note in [57].

Our approach uses the reservoirs’ energy (or momentum)
bases, and thus, there is, in principle, no requirement for their
spatial dimensionality: They can be of arbitrary dimension
and have long-range hopping both within the reservoirs and
to S . The reservoirs only need to be noninteracting, without
a direct coupling between left and right regions (both require-
ments can be relaxed [14], albeit with a loss of efficiency). As
an example, we consider a system composed of two sites with
the Hamiltonian

HS = h̄vS (c†
1c2 + c†

2c1) + h̄Un1n2, (3)

where ni is the number operator at site i, U is the in-
teraction strength, and NR = NL = N spinless reservoir
modes defined by frequencies ωk = 2ω0 cos[kπ/(N + 1)] and
couplings vk,i = v

√
2/(N + 1) sin[kπ/(N + 1)] for (k, i) ∈

{(L, 1), (R, 2)}, where k carries a numerical (1 to N) and
reservoir label. This is the single-particle eigenbasis for
spatially one-dimensional reservoirs, with the left reservoir
connected only to site 1 of S and the right connected to
site 2 of S , of hopping frequency ω0. Physically, this is
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FIG. 2. Noninteracting benchmark. (a) Transient current for a
noninteracting (U = 0), spinless, two-site system. Data are given
for two values of vS at fixed relaxation γ = 0.1 ω0. Mixed-basis
MPS dynamics (black dashed line) match the exact result (solid
colored lines) even at a modest Dmax = 256. (b) Steady-state current
I (t = ∞) versus γ from diagonalizing the exact Lindbladian (solid
lines) and the long-time limit, up to time tmax, of MPS propagation
(data points). Exact and MPS data compare well, with deviations
only in the small-γ regime. The currents for infinite reservoirs with-
out relaxation, computed using nonequilibrium Green’s functions
[23,25], are shown as dotted lines. (c) Relative deviation of the
current (IMPS − ICorr )/ICorr and (d) relative trace distance (CMD) at
the last time of the simulation between the MPS and exact results
as a function of Dmax (the relative trace distance divides the trace
distance by the trace of the exact correlation matrix). (c) and (d) show
the convergence in Dmax at γ = 0.1 ω0 and vS = (1 + √

2)v2/ω0. All
calculations have a bias of μ = ω0/2 across implicit reservoirs of
N = 128 modes each, starting from Fermi-Dirac occupations (kBT =
h̄ω0/40), and a system-reservoir coupling v = ω0/2. The steady-
state current from MPS simulations is taken as an average over
the last �t = tmax/10. The error bars are ±σ , with σ 2 = σ 2

1 + σ 2
2 ,

where σ1 is the fluctuations of I in �t and σ 2
2 = ∑

i |Ii − I|2/3 is
the mismatch of currents at different interfaces i. The latter likely
captures the bulk of the error from truncating the bond dimension
D—the dominant source of errors here.

the time-independent version of a model for photoconductive
molecular devices where spin plays no role [58].

Figure 2 shows benchmark calculations of the current at
U = 0 that compare the exact solution to the MPS simulations
[59]. We calculate the current as the average across three
interfaces I = 〈Ii〉, with i ∈ {LS,SS,RR}, where, at the LS

interface, ILS (t ) = −4
∑

k∈L vk Im〈a†
kc1〉, with similar nota-

tion for the others [60]. In the steady state, these currents
should be identical and constant. Thus, their variation in time
and variance in i quantify errors within the calculation.

The transient current I (t ), in Fig. 2(a), rapidly reaches a
steady state at intermediate reservoir relaxation and is in tight
correspondence with simulations that employ the exact corre-
lation matrix. The required D is also modest, and time evolu-
tion does not break down like closed-system approaches in the
spatial basis (see Ref. [14]). Rather, once in the steady state,
the current remains constant up to small, easily quantifiable
errors. Prior to reaching the steady state, there are oscillations
that are a manifestation of the Gibbs phenomenon [61] and its
interplay with the initial state and other interactions. The rise
time to a quasisteady state is set by the reservoir bandwidth
(∝ 1/ω0), but ultimately, the time to reach the steady state—
where all oscillations, which can be both persistent [14,62]
and algebraically decaying [61], disappear—will be set by the
relaxation time γ −1.

The relaxation, however, also gives rise to distinct regimes
of conduction, as seen in Fig. 2(b) [63]: The current initially
increases linearly with γ , plateaus, and then decreases as 1/γ

[64]. The three distinct regimes reflect a simulation analog of
Kramers’ turnover in the rate of condensed-phase reactions
[65]. Instead of a turnover versus the solution friction, the
electronic conductance depends on the external relaxation
[23,24,37], which is a dependence also found in thermal
transport [66–70]. In this context, the steady state at small
γ resembles a reactive system that is rate limited by how
quickly equilibrium is restored among reactants after a subset
of them proceeds to products. For transport, this gives a
linear dependence in γ (and N), as this gives the rate at
which particles and holes are replenished in the reservoirs.
At large γ , transport parallels reactions that are controlled
by rapid environmental processes (e.g., solvent dynamics),
which redirect intermediates along the reactive pathway back
to reactants. For transport, the rapid relaxation suppresses the
development of coherence, which is a necessary condition for
current to flow. The intrinsic rate, when friction and relaxation
are absent, is the dominant factor between small and large γ

limits. Physical behavior corresponding to infinite, relaxation-
free reservoirs occurs only in this intermediate regime [23,24].

In addition to performing simulations for intermediate
relaxation, there are additional requirements to properly repre-
sent transport. Markovian relaxation is inherently not physical
[23,24], as it occupies modes according to their frequencies
in isolation rather than those properly broadened by contact
with the implicit reservoirs. Thus, γ must be sufficiently lower
than the thermal broadening, γ 
 kBT/h̄. The current should
also be on the plateau, which occurs at γ ≈ W/N , where W
is the reservoir bandwidth (W = 4ω0 in our example). This
requires that N � h̄W/kBT for physical simulations [23,24].
In practice, we take values of γ to be on the plateau for a given
N and compute errors due to the variation of N and γ . The
MPS simulations work very well from large γ down to the
plateau edge [Fig. 2(b)]. As γ leaves the plateau (γ < W/N),
long-time coherence of particles flowing back and forth in
the LSR system make MPS simulations difficult, albeit in a
turnover regime that is uninteresting from both physical and
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FIG. 3. Transport in an interacting, two-site system. (a) Current
versus time showing the initial transient oscillations and the rapid
approach to the steady state for several U and N = 128 with Dmax =
256. (b) Steady-state current versus γ for several values of U and at
N = 32, 64, and 128 and Dmax = 256. This demonstrates the same
regimes as the noninteracting case. Simulations are truncated at γ =
0.015 ω0, as converging this unphysical regime to the same accuracy
as for larger γ is exceptionally costly. (c) Steady-state current in
the thermodynamic limit I	 versus the many-body coupling U using
N = 128, γ 	 = 10−3/4 32ω0/N, and Dmax = 256. All parameters are
identical to those in Fig. 2 unless otherwise indicated. The error
bars in (b) are the same as in Fig. 2. The error bands in (c) also
include error due to improper plateau formation, σ 2

3 , which is the
variance of the four bold data points in (b) (at γ = 10−1/4 32ω0/N
and 10−3/4 32ω0/N for both N = 64 and 128).

practical standpoints [71]. The error in the current, arising
from MPS truncation, decays steadily, but nonmonotonically,
with D in the plateau regime [see Fig. 2(c)]. The convergence
of the state itself is monotonic in D (truncation gives the
dominant source of error at fixed N and γ ). We quantify this
using the relative trace distance between the exact and MPS-
based single-particle correlation matrices [see Fig. 2(d)].

The well-behaved nature of the simulations carries over
to the many-body case. Figure 3(a) shows I (t ) for several
values of the interaction strength U . Just as with U = 0, the
current rapidly approaches its steady state and remains there.
A modest D converges the results regardless of U . Figure 3(b)
shows the current versus γ , demonstrating the existence of
a many-body simulation analog to Kramers’ turnover. This
behavior is expected, as the junction plays only a tangential
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FIG. 4. Conductance versus temperature and bias. (a) Conduc-
tance versus the temperature T at μ = ω0/2. Closed-system calcu-
lations follow Ref. [14] and use N = 128. (b) Conductance versus
bias μ at kBT = h̄ω0/40. The setup for the simulations and the
determination of I	 = σ 	μ and its error are identical to Fig. 3(c).

role in the mechanism of transport in the small- and large-γ
regimes. Nonetheless, the many-body interaction does influ-
ence convergence to a smooth plateau. Moreover, the small-γ
regime remains difficult for MPS but does take on a linear
relationship where I ∝ γ .

Using the Kramers’ turnover in Fig. 3(b), we can find
the best estimator I	 for the current in the thermodynamic
limit and estimate its error. We take I	 to be at γ 	 =
10−3/4 32ω0/N , which is on the plateau just before the
turnover to the small-γ regime. Error estimates incorporate
the effect of a finite bond dimension (see σ1 and σ2 in
Fig. 2) and plateau formation (see σ3 in Fig. 3). In this
case, incomplete plateau formation is the main contribution
to the error. Figure 3(c) shows I	 versus U , which exhibits
an enhanced conductance at U = −0.5 ω0. There are two
eigenstates in S at ±vS when U = 0. When U is sufficiently
large and negative, there is a bound state of two fermions in
S lying outside the bias window, blocking the current (i.e.,
it will decay to zero as U → −∞). When U approaches but
remains less than zero, the system mode at −vS is nearly
occupied, and the higher-energy mode is effectively pulled
down in energy by the many-body interaction. Neglecting
the lower-energy mode, other than a mean-field effect on the
higher-energy mode, gives a peak current at U = −4vS/3.
This is in reasonable agreement with the full many-body
result. As U becomes repulsive, the system will begin to have
only a single particle present. Nevertheless, this can sustain a
finite current (half the current when U = 0) even as U → ∞,
giving rise to the asymmetry between very attractive and very
repulsive interactions.

The approach can be employed in both linear response
and out-of-linear response, at finite temperature, and for time-
dependent processes (e.g., Floquet states or noise). Figure 4(a)
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shows the conductance σ 	 across a range of temperatures and
biases for both interacting and noninteracting cases. There is a
robust correspondence in σ 	 among extended reservoir MPSs,
exact correlation matrix simulations, and the thermodynamic
limit from nonequilibrium Green’s functions [23,25]. The
magnitude of error becomes significant only when T is near
zero as in Fig. 4(a). Even then, it is suitable for practical
calculations. There is also good agreement with closed-system
MPSs at T = 0 [14], with the latter being within the error
estimate, confirming that our protocol is reliable. To fully
approach the thermodynamic limit, N should be enlarged and
γ should be diminished. Nonetheless, these data indicate that
our open-system method may be applied across a broad range
of parameters with no modification.

While MPS approaches have previously been employed to
study transport in real time for spatially 1D models [47,62,72–
79], with a numerical renormalization group approach to the
reservoirs [80], and in linear response [81,82], our mixed-
basis approach eliminates constraints on accessible time and
spatial scales while also not requiring a one-dimensional or
quasi-one-dimensional lattice for the noninteracting reser-
voirs [14]. The open system method here enables the direct
computation of steady-state currents, making their determi-
nation comparable to finding ground states (i.e., finding a
stationary state). Our approach will also be useful for find-

ing Floquet states and studying the effect of artificial gauge
fields, examining time-dependent processes that perturb the
system around its stationary state, handling transport when
long timescales appear (e.g., due to many-body interactions),
and giving the right framework for coarse-graining reservoir
modes [83], all at a finite temperature that will help in the
study of thermoelectrics and determining many-body tem-
perature scales. It may also help in solving other boundary-
driven problems (e.g., 1D lattices driven by Markovian pro-
cesses only at the ends). Overall, this scheme will permit
the accurate simulation of challenging many-body systems,
where larger and more complex impurity physics gives rise to
intricate behavior.

Note added. Recently, related work appeared that imple-
mented the extended reservoir approach with MPS simula-
tions but with different underlying machinery [84,85].
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