Erratum: Flexible scheme for the implementation of nonadiabatic geometric quantum computation [Phys. Rev. A 101, 032322 (2020)]

Yi-Hao Kang [,](https://orcid.org/0000-0002-4973-3278) Zhi-Cheng Shi, Bi-Hua Huang, Jie Song, and Yan Xia

(Received 4 April 2020; published 23 April 2020)

DOI: [10.1103/PhysRevA.101.049902](https://doi.org/10.1103/PhysRevA.101.049902)

In Appendix D, there exist errors in the derivations of Eqs. (D9) and (D10) for the estimation of the rank of matrix $\mathcal{M}(t)$. Here, we would like to show the result that the matrix $\mathcal{M}(t)$ is still not full rank but the estimation of rank of $\mathcal{M}(t)$ is different from that given by Eq. (D10). The result only corrects the estimation of the rank of matrix $\mathcal{M}(t)$ given in Eq. (D10) and does not influence other results of the original paper.

In fact, for the dynamic invariant,

$$
I(t) = \sum_{\wp < \wp} \tilde{\xi}_{\wp,\wp}(t) \tilde{G}_{\wp,\wp},\tag{1}
$$

with $\tilde{G}_{\beta,\beta\beta} \in so(N)$, noting that *I*(*t*) is a Hermitian and antisymmetric matrix, the nonzero eigenvalues of *I*(*t*) are always pairs of positive and negative real numbers. Therefore, we can rewrite $I(t)$ as

$$
I(t) = \sum_{n} \epsilon_n [|\phi_n^+(t)\rangle \langle \phi_n^+(t)| - |\phi_n^-(t)\rangle \langle \phi_n^-(t)|]. \tag{2}
$$

Here, $|\phi_n^{\pm}(t)\rangle$ is the eigenvector of *I*(*t*) with nonzero eigenvalue $\pm \epsilon_n$, satisfying $[|\phi_n^{\pm}(t)\rangle]^{\text{T}} = \langle \phi_n^{\pm}(t)|$ because of $I^{\text{T}}(t) = -I(t)$. We assume that the rank of $I(t)$ is 2μ with μ as a positive integer and the dimension of the kernel $K = \text{ker}[I(t)]$ of $I(t)$ is $N - 2\mu$. When $\mu \geq 2$, we can easily find a Hermitian and antisymmetric matrix as

$$
X(t) = \epsilon_{n'}[|\phi_{n}^{+}(t)\rangle\langle\phi_{n}^{+}(t)| - |\phi_{n}^{-}(t)\rangle\langle\phi_{n}^{-}(t)|] - \epsilon_{n}[|\phi_{n'}^{+}(t)\rangle\langle\phi_{n'}^{+}(t)| - |\phi_{n'}^{-}(t)\rangle\langle\phi_{n'}^{-}(t)|],
$$
\n(3)

with $n \neq n'$, which satisfies $I(t)X(t) = 0$. Since any Hermitian and antisymmetric matrix can be spanned by the generators of so(*N*), we have $X(t) \in$ so(*N*), $\mathcal{M}(t)X(t) = -i[I(t), X(t)] = 0$. For the case of $\mu = 1$, we have $N - 2\mu \ge 2$ when $N \ge 4$, and we can derive the projection operator P_K from subspace K as

$$
P_{\mathcal{K}} = \mathbb{1}_N - P_I, \quad P_I = \sum_n [|\phi_n^+(t)\rangle \langle \phi_n^+(t)| + |\phi_n^-(t)\rangle \langle \phi_n^-(t)|], \tag{4}
$$

which is a real symmetric matrix since $P_I^T = P_I = P_I^{\dagger}$. Therefore, P_K has eigenvectors $\{|\phi^n_0(t)\rangle\}$ with all real components. We select two eigenvectors $\{|\phi_0^1(t)\rangle, |\phi_0^2(t)\rangle\}$ and construct a matrix $X(t)$ as

$$
X(t) = |\phi_0^+(t)\rangle\langle\phi_0^+(t)| - |\phi_0^-(t)\rangle\langle\phi_0^-(t)|,\tag{5}
$$

with $|\phi_0^{\pm}(t)\rangle = [|\phi_0^1(t)\rangle \pm i|\phi_0^2(t)\rangle]/\sqrt{2}$. *X*(*t*) is a Hermitian and antisymmetric matrix, thus, *X*(*t*) \in so(*N*). Moreover, we have *I*(*t*)*X*(*t*) = 0 due to *X*(*t*) ∈ K. Consequently, $M(t)X(t) = -i[I(t), X(t)] = 0$ can be also obtained. Therefore, when $N \ge 4$, we can always find two nonzero operators $I(t)$ and $X(t)$ satisfying $\mathcal{M}(t)I(t) = \mathcal{M}(t)X(t) = 0$, and the rank of $\mathcal{M}(t)$ should be less or equal to $[N(N-1)]/2 - 2$. Noting that $M(t)$ is also an antisymmetric matrix, its rank should be even. When $[N(N-1)]/2 - 2$ is odd, we have rank $[\mathcal{M}(t)] \leq [N(N-1)]/2 - 3$. For example, for $I(t) \in$ so(4), rank $[\mathcal{M}(t)] \leq 4$, for $I(t) \in$ so(5), rank $[\mathcal{M}(t)] \leq 8$, and for $I(t) \in$ so(6), rank $[\mathcal{M}(t)] \leq 12$. The results given above all accord with the numerical results. For $N = 3$, we have $\mu = 1$ and $N - 2\mu = 1$; only $\mathcal{M}(t)I(t) = 0$ can be found, accordingly, rank $[\mathcal{M}(t)] \leq (3 \times 2)/2 - 1 = 2$.