Erratum: Flexible scheme for the implementation of nonadiabatic geometric quantum computation [Phys. Rev. A 101, 032322 (2020)]

Yi-Hao Kang , Zhi-Cheng Shi, Bi-Hua Huang, Jie Song, and Yan Xia

(Received 4 April 2020; published 23 April 2020)

DOI: 10.1103/PhysRevA.101.049902

In Appendix D, there exist errors in the derivations of Eqs. (D9) and (D10) for the estimation of the rank of matrix $\mathcal{M}(t)$. Here, we would like to show the result that the matrix $\mathcal{M}(t)$ is still not full rank but the estimation of rank of $\mathcal{M}(t)$ is different from that given by Eq. (D10). The result only corrects the estimation of the rank of matrix $\mathcal{M}(t)$ given in Eq. (D10) and does not influence other results of the original paper.

In fact, for the dynamic invariant,

$$I(t) = \sum_{\wp < \wp} \tilde{\xi}_{\wp,\wp}(t) \tilde{G}_{\wp,\wp}, \qquad (1)$$

with $\tilde{G}_{gags} \in so(N)$, noting that I(t) is a Hermitian and antisymmetric matrix, the nonzero eigenvalues of I(t) are always pairs of positive and negative real numbers. Therefore, we can rewrite I(t) as

$$I(t) = \sum_{n} \epsilon_n [|\phi_n^+(t)\rangle \langle \phi_n^+(t)| - |\phi_n^-(t)\rangle \langle \phi_n^-(t)|].$$
⁽²⁾

Here, $|\phi_n^{\pm}(t)\rangle$ is the eigenvector of I(t) with nonzero eigenvalue $\pm \epsilon_n$, satisfying $[|\phi_n^{\pm}(t)\rangle]^{\mathrm{T}} = \langle \phi_n^{\mp}(t)|$ because of $I^{\mathrm{T}}(t) = -I(t)$. We assume that the rank of I(t) is 2μ with μ as a positive integer and the dimension of the kernel $\mathcal{K} = \ker[I(t)]$ of I(t) is $N - 2\mu$. When $\mu \ge 2$, we can easily find a Hermitian and antisymmetric matrix as

$$X(t) = \epsilon_{n'}[|\phi_n^+(t)\rangle\langle\phi_n^+(t)| - |\phi_n^-(t)\rangle\langle\phi_n^-(t)|] - \epsilon_n[|\phi_{n'}^+(t)\rangle\langle\phi_{n'}^+(t)| - |\phi_{n'}^-(t)\rangle\langle\phi_{n'}^-(t)|],$$
(3)

with $n \neq n'$, which satisfies I(t)X(t) = 0. Since any Hermitian and antisymmetric matrix can be spanned by the generators of so(*N*), we have $X(t) \in so(N)$, $\mathcal{M}(t)X(t) = -i[I(t), X(t)] = 0$. For the case of $\mu = 1$, we have $N - 2\mu \ge 2$ when $N \ge 4$, and we can derive the projection operator $P_{\mathcal{K}}$ from subspace \mathcal{K} as

$$P_{\mathcal{K}} = \mathbb{1}_{N} - P_{I}, \quad P_{I} = \sum_{n} [|\phi_{n}^{+}(t)\rangle \langle \phi_{n}^{+}(t)| + |\phi_{n}^{-}(t)\rangle \langle \phi_{n}^{-}(t)|], \tag{4}$$

which is a real symmetric matrix since $P_I^{\rm T} = P_I = P_I^{\dagger}$. Therefore, $P_{\mathcal{K}}$ has eigenvectors $\{|\phi_0^n(t)\rangle\}$ with all real components. We select two eigenvectors $\{|\phi_0^n(t)\rangle, |\phi_0^2(t)\rangle\}$ and construct a matrix X(t) as

$$X(t) = |\phi_0^+(t)\rangle \langle \phi_0^+(t)| - |\phi_0^-(t)\rangle \langle \phi_0^-(t)|,$$
(5)

with $|\phi_0^{\pm}(t)\rangle = [|\phi_0^1(t)\rangle \pm i|\phi_0^2(t)\rangle]/\sqrt{2}$. X(t) is a Hermitian and antisymmetric matrix, thus, $X(t) \in \text{so}(N)$. Moreover, we have I(t)X(t) = 0 due to $X(t) \in \mathcal{K}$. Consequently, $\mathcal{M}(t)X(t) = -i[I(t), X(t)] = 0$ can be also obtained. Therefore, when $N \ge 4$, we can always find two nonzero operators I(t) and X(t) satisfying $\mathcal{M}(t)I(t) = \mathcal{M}(t)X(t) = 0$, and the rank of $\mathcal{M}(t)$ should be less or equal to [N(N-1)]/2 - 2. Noting that $\mathcal{M}(t)$ is also an antisymmetric matrix, its rank should be even. When [N(N-1)]/2 - 2 is odd, we have rank $[\mathcal{M}(t)] \le [N(N-1)]/2 - 3$. For example, for $I(t) \in \text{so}(4)$, rank $[\mathcal{M}(t)] \le 4$, for $I(t) \in \text{so}(5)$, rank $[\mathcal{M}(t)] \le 8$, and for $I(t) \in \text{so}(6)$, rank $[\mathcal{M}(t)] \le 12$. The results given above all accord with the numerical results. For N = 3, we have $\mu = 1$ and $N - 2\mu = 1$; only $\mathcal{M}(t)I(t) = 0$ can be found, accordingly, rank $[\mathcal{M}(t)] \le (3 \times 2)/2 - 1 = 2$.