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Transverse magneto-optical Kerr effect enhanced at the bound states in the continuum
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We calculate theoretically the transverse magneto-optical Kerr effect (TMOKE) in the periodically patterned
waveguide made from a diluted magnetic semiconductor. It is demonstrated that the TMOKE is resonantly
enhanced when the incident wave is in resonance with the bound state in continuum, arising when the quality
factor of the leaky waveguide mode increases due to far-field interference. Our results uncover the potential of
all-dielectric and semiconductor nanostructures for resonant magneto-optics.
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I. INTRODUCTION

Magneto-optical effects, such as the Faraday and the Kerr
effect, play a decisive role in the control of light propagation
[1]. In particular, the transverse magneto-optical Kerr effect
(TMOKE) can be used to tune the reflected light intensity [2].
The effect is observed for transverse magnetic (TM)-polarized
light that is incident on a medium magnetized in the direction
transverse to the light incidence plane (see Fig. 1). However,
in traditional bulk metals, magneto-optical effects are weak,
and the reflectivity modulation is on the order of 10−2–10−4

[2–4]. A promising alternative is to exploit the plasmonic
resonances of the structure [5–13]. For instance, a TMOKE
strength up to 1.5% has been demonstrated in hybrid nanos-
tructures where the magnetic material is placed near a metallic
layer, supporting the surface plasmon resonance [7]. However,
the inherent drawback of the plasmonic resonances is the
presence of significant Ohmic losses. A possible solution is
to replace metallic structures by all-dielectric resonant meta-
surfaces [14,15] that possess only radiative losses [16,17].

Here, we propose to resonantly enhance the transverse
magneto-optical Kerr effect at the so-called optical bound
states in continuum (BIC), that have recently attracted a lot of
attention [18–22]. These states arise when the quality factor of
the leaky eigenmodes of the periodically patterned dielectric
waveguides is boosted due to the destructive interference of
the radiation channels, and the leakage is strongly suppressed.
Application of the magnetic field shifts the narrow BIC res-
onance and thus leads to a strong relative modulation of the
reflection spectrum.

The paper is organized as follows. In Sec. II we outline
the model and the calculation technique. Numerical results are
presented in Sec. III. In Sec. IV we develop an approximate
analytical model that describes (i) the formation of the BIC
state and its manifestation in the reflection spectrum and
(ii) its modification by the magnetic field. The model enables
us to interpret the numerical results for the dependence of the
linewidth and spectral position of the reflection resonance on
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the incidence angle and applied magnetic field. Our results are
summarized in Sec. V.

II. MODEL AND NUMERICAL APPROACH

The structure under consideration is schematically shown
in Fig. 1. It consists of a periodic grating made of a magnetic
semiconductor deposited on the substrate. The grating layer
has thickness h, the grating period is d , and the width of the
slits in the grating is w. The light is obliquely incident under
the angle θ in transverse magnetic (TM) polarization and the
incident plane is perpendicular to the grating. An external
magnetic field is applied along the surface of the sample,
perpendicular to the incidence plane. The essence of the
TMOKE effect is the dependence of the absolute value of the
light reflection coefficient on the incidence angle, R(θ, B) ≡
|r(θ, B)|2 �= R(−θ, B) = R(θ,−B), where r is the ratio of
the amplitudes of the reflected and incident electromagnetic
waves. The TMOKE manifests itself in transmission as well as
in reflection, and our results are applicable to both geometries.

In order to obtain the reflection coefficient we expand the
electromagnetic field in different layers of the structure over
the plane waves, solve the Maxwell equations for each layer,
and then apply the boundary conditions at every boundary.
The Li factorization technique is used to improve convergence
[23–25]. This computational scheme is extensively used for
various multilayered structures due to its high numerical
efficiency and relative simplicity [16,26–29]. It is also termed
in the literature as a scattering matrix method [27,28] and
can viewed as a specific variant of a coupled-mode theory
[30]. The details of the approach are briefly described below.
We start by obtaining a basis set of eigenfunctions of the
electromagnetic field propagating inside the magnetic layer,
−h/2 < z < h/2: Namely, we look for the solutions to the
Maxwell equations for the magnetic field H and electric field
E in the case of TM polarization in the form

H = exeikmed
z z

∞∑
n=−∞

Hnei( 2πn
d +ky )y, (1)

E = eikmed
z z

∞∑
n=−∞

(eyEy,n + ezEz,n)ei( 2πn
d +ky )y. (2)
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FIG. 1. Illustration of the setup to observe the transverse
magneto-optical Kerr effect (TMOKE). The structure consists of a
semiconductor grating on top of a nonmagnetic substrate with an
external magnetic field being parallel to the surface and perpendic-
ular to the incidence plane. The incident light is TM polarized and
the incident plane is perpendicular to the grating. The point z = 0
corresponds to the middle of the magnetic layer.

The permittivity tensor in the magnetic grating reads

ε̂(y,−h/2 < z < h/2) =
⎛
⎝ε 0 0

0 ε igB

0 −igB ε

⎞
⎠, (3)

where ε = 1 and g = 0 between the magnetic rods, when
md < y < s + md, m ∈ Z. Next, we substitute the electro-
magnetic field (1) and (2) into the Maxwell equations ∇ ×
E = iω

c H, ∇ × H = − iω
c ε̂E. Taking into account the proper

convolution rules for the Fourier series [24], the Maxwell
equations assume the form(

ky + 2πn

d

)
Ez,n − kmed

z Ey,n = ω

c
Hn,

kmed
z Hn = −ω

c

([[
1

ε22

]]−1
)

nl

(
Ey,l +

[[
ε23

ε22

]]
lm

Ez,m

)
,

(
ky + 2πn

d

)
Hn = kmed

z

[[
ε23

ε22

]]
nl

Hl + ω

c

[[
ε22 + ε2

23

ε22

]]
nl

Ez,l .

(4)

Here, the notation

�ε�lm ≡ 1

d

∫ d

0
dy f (y)ei 2π

d (m−l )y (5)

is used for the matrix of the Fourier components of the given
combination of the components of the dielectric tensor ε̂(y).
The key ingredient of the approach, ensuring fast numerical
convergence, is the judicious order of the Fourier integra-
tion and matrix inversion. While the series with the factor
([[ 1

ε22
]]
−1

)
nl

replaced by �ε22�nl is ill behaved at the disconti-
nuities of the permittivity, the form in Eq. (4) ensures much
faster convergence. The truncated system of equations (4) is
solved numerically to determine the wave-vector components
kmed

m,z ≡ kmed
m and the corresponding eigenvector components

H (m)
n . Here, the index m labels the eigensolutions.

At the next stage we write the eigenfunction expansion for
the magnetic field in the whole structure. It worth noticing that
eigenfunctions for the air and the substrate layers are ordinary

plane waves. The magnetic field is parallel to the x axis in TM
polarization,

Hx =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H0eikyy
[
e−ikair

0 (z− h
2 ) − ∑∞

n=−∞ rnei(z− h
2 )kair

n ei 2πn
d y

]
(z > h/2),

H0eikyy
∑∞

m=1

[
bmum(y)e−ikmed

m z + cmsm(y)eikmed
m z

]
(−h/2 < z < h/2),

H0eikyy
∑∞

n=−∞ tne−i(z+ h
2 )ksub

n eiy 2πn
d (z < −h/2).

(6)

Here, we have introduced the z components of the wave

vectors in air and the substrate kair
n =

√
ω2

c2 − (ky + 2πn
d )

2
,

ksub
n =

√
εsub

ω2

c2 − (ky + 2πn
d )

2
, respectively, and ω is the in-

cident light frequency. The coefficients r0 ≡ r and t0 ≡ t
characterize the specular reflection and direct transmission,
respectively, while the coefficients with n �= 0 describe the
waves diffracted on the grating. The functions um(y) and sm(y)
are given by

∑∞
n=−∞ un

mei 2π
d n,

∑∞
n=−∞ sn

mei 2π
d n, respectively,

where un
m ≡ H (m)

n , sn
m ≡ H (−m)

n have been obtained from the
system Eq. (4) for opposite kmed

z vector components. Electric
field expansion over the plane waves is obtained by applying
the Maxwell equation ∇ × H = − iω

c ε̂E to Eq. (6). Next, we
use the Maxwell boundary conditions of the continuity of the
tangential components of the electric and magnetic field,(

Hout
x

)
n

∣∣
z=± h

2
= (

Hmed
x

)
n

∣∣
z=± h

2
, (7)(

Eout
y

)
n

∣∣
z=± h

2
= (

Emed
y

)
n

∣∣
z=± h

2
, (8)

for all the Fourier components. The resulting linear system
of equations is solved to find the electromagnetic field in the
whole structure.

III. RESULTS OF CALCULATION

In our modeling we consider a grating made of a diluted
magnetic semiconductor CdxMn1−xTe on a dielectric BaF2

substrate [31]. We consider the frequency range h̄ω � 1.6 eV
that is in the transparency range. Since the frequencies are
relatively close to the band gap edge at ≈1.7 eV, the Verdet
constant, characterizing the magneto-optical response, is al-
ready relatively large, V ∼ 0.5 deg/(cm G s) for T = 77 K
[32]. The permittivity of CdxMn1−xTe, ε ∼ 9 [33], is signifi-
cantly larger than that of the BaF2 substrate, ε ∼ 2 [34], hence
the magnetic layer acts as a waveguide.

The calculated light reflection spectra and the TMOKE
coefficient are presented in Fig. 2. Figure 2(a) shows the
reflection coefficient dependence on the light energy and
incidence angle. Reflectivity demonstrates a distinct maxi-
mum, corresponding to the excitation of the leaky waveguide
mode in the magnetic layer. In the considered spectral range
the structure has no absorption. Thus, the spectral width of
the reflection maximum is determined only by the radiative
decay. The radiation of the waveguide mode out of the
magnetic layer into the far field occurs only through the
zeroth Fourier channel n = 0, and becomes possible due to
the Bragg diffraction on the grating. Importantly, the peak
width nonmonotonously depends on the incidence angle. The
radiative decay is strongly suppressed at the angle θ ∼ 40◦,
corresponding to the BIC condition. This happens because
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FIG. 2. The maps of the reflection coefficient (a) and TMOKE
(b) depending on the angle of incidence and on the photon energy.
Green arrows point to the leaky waveguide mode that has the largest
radiative lifetime (quasi-BIC). (c) shows two reflection spectra (solid
red and dashed blue curve) at a given angle of incidence θ = 38.5◦

[indicated by dashed green lines in (a) and (b)] for opposite magnetic
field directions and their difference, R(B) − R(−B), characterizing
the TMOKE strength (dashed-dotted purple curve). The parameters
of calculation are d = 280 nm, s = 80 nm, h = 560 nm, gB = 0.05.

of the destructive interference of emission of several leaky
eigenmodes of the system (4) into the far field [18,19]. As
will be discussed in more detail in Sec. IV, this interference
can be approximately described within the two-mode analyt-
ical model. Moreover, the lifetime remains finite due to the
breaking of the mirror symmetry z → −z by the presence of a
substrate with εsubs �= 1 and by the magnetic field, so that the
cancellation of the radiative decay is incomplete. However,
the width of the reflection peak still reduces to values below
1 meV [see Fig. 2(c)].

The TMOKE coefficient, R(B) − R(−B), has a resonance
and changes sign at the leaky waveguide mode [see Fig. 2(b)].
Our main result is the strong resonance increase of the
TMOKE strength at the BIC condition. The physical origin of
this TMOKE enhancement can be understood by an explicit
comparison of the reflection spectra for opposite values of the
magnetic field, shown by the red solid and blue dashed curves
in Fig. 2(c). The calculation demonstrates that there exists a
spectral shift of the leaky waveguide mode that is linear in a
magnetic field. This results in the corresponding shift of the
reflectivity peak that can be seen by comparing solid red and
dashed blue curves. When this peak shift becomes comparable
with the peak width, the difference R(B) − R(−B) is strongly
increased. Hence, the TMOKE spectrum has a characteristic
S-like shape that resembles a derivative from the reflectivity
spectrum [see the purple curve in Fig. 2(c)]. The peak shift
weakly depends on the incidence angle, while the peak width
is at minimum at the BIC condition, resulting in the sharp
maximum of the TMOKE coefficient.

IV. ANALYTICAL MODEL FOR MAGNETIC BIC

To describe spectra analytically we developed a two-mode
model. In this approximation we keep only the zero and minus
first components of the Fourier series for all the functions.
This is the minimal number of modes necessary to describe

the interference responsible for the BIC formation. We needed
a zeroth Fourier harmonic because it is the only one that
propagates outside the waveguide. The choice of the minus
first component was justified by the spectral position of the
described mode: In the limit of the continuous magnetic
layer (s → 0), this mode is described only by the minus first
component.

The first step was to describe the reflectivity and, in par-
ticular, the formation of BIC. At this stage there is no need
to consider the external magnetic field or the substrate. Their
effect on the reflectivity is relatively weak and can be taken
into account later as a perturbation. The approach to obtain
the reflection and transmission coefficients was the same as
described in Sec. II. In the absence of a substrate and magnetic
field the equations are separated into two independent parts:
even and odd with respect to the mirror symmetry z → −z.
The resulting transmission spectrum consists of the two fol-
lowing terms:

t0 =
(

1 + i�+
0 (h+)−1

−1

det h+

)
−

(
1 + i�−

0 (h−)−1
−1

det h−

)

≡ (c+)−1
−1

det c+
− (c−)−1

−1

det c−
. (9)

Here, we use the notation

A± =
(

�±
0 + i�±

0 κ±

κ± �±
−1

)
, (10)

c± = A±

[
A± ±

( i
kair

0
0

0 1
|kair

−1|

)]−1

, (11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�+
−1 = (u0

−1 )
2

kmed
−1

cot
kmed
−1 h
2 + (u−1

0 )2

kmed
0

cot kmed
0 h
2 − 1

|kair
−1| ,

�+
0 = (u0

0 )2

kmed
0

cot kmed
0 h
2 + (u−1

−1 )
2

kmed
−1

cot
kmed
−1 h
2 ,

�+
0 = −1

kair
0

,

κ+ = u−1
−1u0

−1

kmed
−1

cot
kmed
−1 h
2 + u−1

0 u0
0

kmed
0

cot kmed
0 h
2 ,

(12)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�−
−1 = (u0

−1 )
2

kmed
−1

tan
kmed
−1 h
2 + (u−1

0 )2

kmed
0

tan kmed
0 h
2 + 1

|kair
−1| ,

�−
0 = (u0

0 )2

kmed
0

tan kmed
0 h
2 + (u−1

−1 )
2

kmed
−1

tan
kmed
−1 h
2 ,

�−
0 = 1

kair
0

,

κ− = u−1
−1u0

−1

kmed
−1

tan
kmed
−1 h
2 + u−1

0 u0
0

kmed
0

tan kmed
0 h
2 ,

(13)

where the sign + corresponds to the contribution of the even
part of the field, and − to the odd part. We will later omit the
± signs when describing the features that hold for both odd
and even parts.

By construction of the effective two-mode “Hamiltonians”
A±, zeros of the �0,−1 function for a given angle of incidence
correspond to the energy of the two uncoupled eigenmodes
of the waveguide; coefficient �0 responds for the damping of
the zero mode and the nondiagonal component κ describes the
coupling of the two modes due to the Bragg diffraction on a
grating.

The condition of observing the BIC is the equality of the A
matrix determinant to zero for real frequency, ω ∈ R, which
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means that {
κ (ω) = 0,

�−1(ω) = 0.
(14)

In other words, we observed the BIC when the minus first
mode is decoupled from the zero mode. Generalization of
this rule to the multicomponent calculation with many Fourier
harmonics taken into account can be formulated as follows:
“The BIC is observed when the hybrid leaky waveguide mode,
that consists of all the localized Fourier modes, decouples
from the zero mode.” This is a specific case of a more
general rule of Friedrich-Wintgen BIC [19,35] for interfering
resonances

√
�0�−1(�−1 − �0) = κ (�0 − �−1). In our case

we have �−1 = 0 because the minus first Fourier channel of
radiation cannot propagate outside the waveguide and thus has
no damping.

The systems of Eqs. (12) and (13) can be simplified
by employing the linear approximation for �0,−1(ω, θ ) =
δ0,−1(θ )[ω − ω0,−1(θ )] and constant approximation for
the other parameters κ (ω, θ ) = κ (ω±

−1, θ ), �0(ω, θ ) =
�0(ω±

0 , θ ). This approximation well describes reflection in
the spectral range close to the resonance. It is then possible to
estimate the width of the reflection peak at half maximum as
Im ω, where ω is the root of the equation det A(ω, θ ) = 0,

W = 2κ2

δ0δ−1γ0
= 2(κ ′[ω − ωBIC])2

δ0δ−1γ0
. (15)

As the next step we have taken into account the effects of
the external magnetic field and the presence of the substrate on
the reflection spectra. It was shown numerically that the linear
in magnetic field perturbations in H (m)

n and kmed
z are absent,

and the only linear effect arises via the perturbation of the
electric field that can be obtained from the Maxwell equation
∇ × H = − iω

c ε̂E. We also do not take into consideration the
coupling of different Fourier components of the electromag-
netic wave by the external magnetic field in the medium.
This approximation is reasonable, because the key effect for
TMOKE is just the energy shift of the waveguide eigenmode.
Hence, we obtain the following formula describing the effect
of the substrate and magnetic field,

c± −→ c± − M(c∓)−1M, (16)

where the matrix M is small, Mi j 
 1,

M =

⎛
⎜⎜⎜⎜⎝

kair
0 − ksub

0
εsub

−i
[[

gB
ε2

]]
00

ky

2
(

kair
0 + ksub

0
εsub

) 0

0
kair
−1−

ksub−1
εsub

−i
[[

gB
ε2

]]
00

(ky− 2π
d )

2
(

kair
−1+

ksub−1
εsub

)

⎞
⎟⎟⎟⎟⎠. (17)

An important feature of this formula is that it is quadratic
in M. If there were no substrate, the matrix M would be
proportional to B, and hence there would be only quadratic
in magnetic field terms in Eq. (16). In that case TMOKE
could not be observed. That means that our model describes
an important condition for detecting TMOKE—the absence
of the horizontal mirror symmetry plane of the structure [1].

From Eqs. (16) and (11) it is possible to calculate the
corrections to the A matrix due to the presence of a substrate
and magnetic field and estimate the frequency shift of the peak

FIG. 3. TMOKE coefficient numerically calculated for different
angles of incident (curves from red to blue), and analytical approx-
imation of the maximum of the peaks from the two-mode model
(orange circles). The values of the angles are indicated for the
corresponding curves.

as �ω = δ(A+)−1
−1/δ−1. Then we can estimate the peak value

of the TMOKE as the ratio of the frequency shift and the width
of the peak �ω/W . Figure 3 presents a comparison of such
an analytical approximation with the numerical calculation. It
demonstrates that our simple analytical model well describes
the spectral dependence of TMOKE by the order of the
magnitude. The spectra of TMOKE become very narrow and
their amplitude increases near the BIC condition. In the case
of the incidence angle θ = 38.57◦, the maximum value of
TMOKE is equal to 0.5. This value is limited only by the
finite detuning from the resonance condition; we expect that
the TMOKE amplitude tends to unity when the angle is tuned
closer to the resonance.

There is another interesting effect of the external magnetic
field and the substrate in addition to the spectral shift of the
waveguide eigenmode. They both break the horizontal mirror
symmetry of the system. This induces the coupling between
even and odd radiation channels, as can be seen from (16).
As a result, the destructive interference condition necessary
to suppress the far-field radiation no longer holds exactly, and
the BIC is partially destroyed. Since this effect is weak, the
narrow peak in the spectrum survives, but its width does not
completely reach zero. These results were proven numerically.
Figure 4 shows the calculated width of the reflectivity peak
for three different configurations in the absence and presence
of the magnetic field or substrate, and also the analytical
approximation (15). These findings are consistent with the
general result that time-reversal symmetry is necessary for the
formation of BIC [18].

Figure 4 demonstrates that the minimal linewidth of the
BIC state is limited from below by the values ∼10 μeV
in the presence of a BaF2 substrate (green curve) and ∼10 neV
in the presence of a 1-T external magnetic field. The corre-
sponding quality factors are on the order of 105 and 108, and,
while being quite high, are in principle relevant for some state-
of-the-art experimental structures. In fact, the maximal quality
factor observed in the seminal experiment [18] was about
Q ∼ 106 and limited by the spectrometer. Since the Q factor
remains finite due to the substrate or external magnetic field,
it is more rigorous to term the considered resonant state as a
quasi-BIC state, rather than a genuine BIC. However, Fig. 4
shows that as soon as the angle is detuned from the resonant
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FIG. 4. Full width at half maximum of the reflection peak of the
Fabry-Pérot resonance depending on the angle shift from the point
with the smallest width. A calculation has been performed numeri-
cally for different configurations with and without a magnetic field
and substrate (solid curves), and using the approximate analytical
formula (15) from the two-mode model (dashed curve).

condition by a small value of �θBIC ∼ 1◦, the effects of the
substrate and external magnetic field become weaker than the
radiative losses and the distinction between quasi-BIC and
BIC is no longer important. Moreover, the fabrication quality
might strongly affect the lifetime in practice. For example, the
effect of surface roughness has been estimated in Ref. [20]
for another kind of quasi-BIC resonance that occurs at normal
incidence. The resulting maximum roughness-limited quality
factors were predicted to have the values Q ∼ 103–105 for
the effective roughness amplitude changing from 10 to 0.5
nm, respectively, which is still higher than the value Q ∼ 300
observed in the experiment of Ref. [20]. As such, we expect

that in many realistic cases the quality factor will be rather
limited by experimental imperfections, rather than symmetry
breaking due to a finite magnetic field or a substrate.

V. SUMMARY

To summarize, we studied both numerically and analyti-
cally the enhancement of the transverse magneto-optical Kerr
effect at the resonances of a periodically patterned waveguide.
We have focused on the resonance of the bound state in con-
tinuum (BIC). A numerical calculation has been carried out
for the realistic material parameters of the diluted magnetic
semiconductor CdxMn1−xTe on a dielectric BaF2 substrate.
We demonstrate that the TMOKE strength significantly in-
creases when the radiative damping of the leaky waveguide
mode is quenched due to the BIC condition. In the narrow
frequency range near the BIC resonance the TMOKE strength
can reach values up to 1. The results of the constructed two-
mode analytical model quantitatively describe the numerical
calculation. We have also analyzed the effect of a transverse
magnetic field and the substrate on the lifetime of the quasi-
bound states in the continuum.
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