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We study the preparation of coherent quantum states in a two-photon micromaser for applications in quantum
metrology. While this setting can be in principle realized in a host of physical systems, we consider atoms
interacting with the field of a cavity. We focus on the case of the interaction described by the Jaynes-Cummings
Hamiltonian, which cannot be achieved by the conventional approach with three-level atoms coupled to the
cavity field at two-photon resonance. We find that additional levels are required in order to cancel Stark shifts
emerging in the leading order. Once this is accomplished, the dynamics of the cavity features a degenerate
stationary state manifold of pure states. We derive the analytic form of these states and show that they include
Schrödinger cat states with a tunable mean photon number. We also confirm these states can be useful in phase
estimation protocols with their quantum Fisher information exceeding the standard limit. To account for realistic
imperfections, we consider single-photon losses from the cavity, finite lifetime of atom levels, and higher order
corrections in the far-detuned limit, which result in metastability of formerly stationary cavity states and long-
time dynamics with a unique mixed stationary state. Despite being mixed, this stationary state can still feature
quantum Fisher information above the standard limit. Our work delivers a comprehensive overview of the two-
photon micromaser dynamics with particular focus on application in phase estimation and, while we consider
the setup with atoms coupled to a cavity, the results can be directly translated to optomechanical systems.

DOI: 10.1103/PhysRevA.101.043847

I. INTRODUCTION

There is currently an intense effort to engineer quantum
states in a number of platforms ranging from atomic ensem-
bles to nanomechanical, cavity, and circuit QED systems.
The impressive experimental progress is documented by the
creation of Schrödinger cat states with more than 100 photons,
together with the so-called compass states [1], in circuit QED
[2], generation of squeezed coherent states in mechanical
oscillators [3–6] and squeezed cat states using light at optical
wavelengths [7–9], traveling (itinerant) squeezed coherent
states in the microwave domain [10–12], and spin-squeezed
states in atomic ensembles [13]. There are also experimental
developments and theoretical proposals for interfacing differ-
ent platforms in hybrid setups such as coupling a mechanical
oscillator with passing Rydberg atoms via electric charge [14]
or with Nitrogen-Vacancy (NV) center via magnetic field [15].

Nowadays, the generation of quantum states goes beyond
the well-established paradigm of squeezed coherent and cat
states. A general paradigm of dissipative quantum state prepa-
ration was developed in Refs. [16,17] and encompasses the
so-called grid states [18–20] as well as squeezed and displaced
superpositions of a finite number of phonons [21,22]. The pro-
duced quantum states find applications to quantum informa-
tion processing and quantum enhanced sensing [23–25], rang-
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ing from ultrasensitive force measurements in optomechanical
systems [26,27] to probes of macroscopic-scale decoherence
[28,29] or dark matter detection [30].

Among possible approaches to the robust quantum state
engineering are those based on two-photon processes. In
the seminal work on two-photon micromasers by Haroche
and coworkers [31,32], a stream of three-level atoms passed
through a microwave cavity, allowing for photon exchange
between the cavity field and the atoms. For the energy gap
between the ground and the excited (top) atom levels equal
to double the frequency of the cavity and the middle level
being far detuned, the resulting dynamics corresponded to a
simultaneous exchange of two photons between the atom and
the cavity [31,33–35]. Following this work, the two-photon
resonance is now exploited in stabilization of Schrödinger cat
states [36], in ultrasensitive electro-measurements based on
Rydberg atoms interacting with a microwave cavity [37], in
two-photon lasing by a superconducting qubit [38], and in dy-
namical protection and reservoir engineering in circuit QED
[39–41]. Despite the importance of the two-photon interac-
tions in generation, manipulation, and exploitation of quantum
information, it has been shown that the two-photon micro-
masers based on three-level systems feature only squeezed
vacuum (squeezed single photon) or a Fock state as their
stationary states [42].

In this work, we demonstrate that the limited set of two-
photon micromaser stationary states is due to the Stark shifts
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FIG. 1. (a) Atomic level structure: the transitions | j − 1〉 ↔ | j〉, j = 1, .., 4 are coupled to the cavity field with the strengths gj and
detunings � j . The transition |3〉 ↔ |a〉 is driven by a classical field with Rabi frequency G and detuning δ (see Sec. II A). (b) Micromaser:
atoms are passing through a lossy cavity one at a time, interacting with a single-mode quantized cavity field of frequency ω (orange) and
a classical Rabi field G of frequency ωcl (green). (c) Effective dynamics: at the two-photon resonance �2 = −�3, the (5 + 1)-level model
reduces to an effective two-photon Jaynes-Cummings interaction with the coupling strength λ between the cavity field (depicted as a quantum
harmonic oscillator) and the effective two-level atom with ground and exited states |1〉 and |3〉 (see Sec. II B). (d) Micromaser dynamics in
weak-coupling regime: the Wigner function (15) for the cavity state is shown. The initial coherent state |α〉 with α = 0.6 evolves first into a
DFS spanned by the odd and even cat states (time t1), which would be stationary if not for single-photon losses from the cavity that renders it
metastable. After the first metastable regime, the macroscopic coherence dephases (time t2), leading to metastable mixture of coherent states.
This mixture then finally relaxes into a unique stationary state (time t = ∞) via mixing dynamics. In the second metastable regime (t � t2),
the system state features a single reflection symmetry, while the final parity-symmetric stationary state features two reflection symmetries (see
Sec. II C). The parameters are as in Fig. 6(b); see Sec. IV B for discussion.

present in the effective two-photon dynamics [31,33–35]. We
show that the Stark shifts can be removed by considering a
scheme with (5 + 1)-level atoms, where four single-photon
transitions are driven by the cavity field and one transition
is driven by a classical Rabi field (see Fig. 1). This leads
to the atom-cavity interaction given by a two-photon Jaynes-
Cummings Hamiltonian [43] without the spurious Stark shifts
and opens doors to the dissipative generation of novel pure
quantum states.

For a pure state of incoming atoms, we derive the result-
ing pure stationary states, which depend both on the initial
atomic state and the time integral of the atom-cavity coupling
strength, in contrast with the three-level setup where the
stationary states depend only on the atomic state [42,44,45].
We investigate the usefulness of the generated state in phase
estimation by means of the quantum Fisher information (QFI)
[46–48] and find that a number of states yield the QFI ex-
ceeding not only the standard quantum limit, but also the
performance of the squeezed coherent, cat, and squeezed
cat states generated by the micromaser in the weak-coupling
limit. Some of the generated states with a high QFI display a
delocalized Wigner function [49] and bear resemblance to the
so-called grid states [18–20].

To account for cavity imperfections and finite detuning
of the cavity fields from the atomic transitions, we consider
single-photon losses from the cavity and higher order cor-
rections to the effective two-photon atom-cavity interaction.
In the limit of a small loss rate and large detunings, we
discuss the resulting metastability of the pure states and their
long-time dynamics, leading to a unique mixed stationary
state of the cavity field [50]. In the weak-coupling regime,
our results are consistent with the recent findings for the
harmonic oscillator with two-photon driving and two-photon

losses, which features Schrödinger cat states as pure stationary
states [39,51], but in the presence of single-photon losses, dis-
plays mixing dynamics and a unique stationary state [52–54].
Importantly, we find that, although the stationary states of
the cavity are no longer pure, their QFI can still feature
enhancement beyond the standard quantum limit.

The article is structured as follows. In Sec. II, we discuss
the dynamics of micromaser with (5 + 1)-level atoms lead-
ing to the effective two-photon dynamics in the far-detuned
regime. In Sec. III, we investigate the resulting pure stationary
states of the cavity field, while in Sec. IV we include the
effects of higher order corrections, single-photon losses, atom
decay, and distribution of atom velocities. Motivated by the
application in quantum metrology, in Sec. V we characterize
the dissipatively generated states by the QFI. Finally, in
Sec. VI we discuss possible experimental platforms, and we
conclude in Sec. VII.

II. TWO-PHOTON MICROMASER WITH
(5 + 1)-LEVEL ATOMS

In this section, we introduce the (5 + 1)-level model of the
atom-cavity interaction and, in the far-detuned limit, derive
the effective two-photon dynamics with tunable Stark shifts.
We further focus on the case when the Stark shifts are can-
celed and discuss the corresponding micromaser dynamics.
This condition will prove to be crucial for dissipative gener-
ation of novel pure quantum states of the cavity presented in
Sec. III.

A. Atom-cavity interaction

We consider (5 + 1)-level atoms with the levels | j〉 and
the energies Ej , j = 0, 1, ..., 4, a, and the cavity field with
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the frequency ω. The transitions | j − 1〉 ↔ | j〉 are coupled
to the cavity field with the strengths g j , j = 1, . . . , 4, and the
transition |3〉 ↔ |a〉 to the auxiliary level |a〉 is driven by a
classical field of frequency ωcl and Rabi frequency G [see
Fig. 1(a)].

We assume that the detunings � j , j = 1, . . . , 4, and δ,
defined as

(Ej − E0) = jω +
j∑

i=1

�i, j = 1, . . . , 4, (1a)

(Ea − E0) = 3ω +
3∑

i=1

�i + ωcl + δ (1b)

are much smaller than the corresponding energy gaps, |� j | �
ω for j = 1, . . . , 4, and |δ| � ωcl, cf. Fig. 1(a), which leads to
Jaynes-Cummings Hamiltonian via the rotating wave approx-
imation,

H0 =
4∑

j=1

σ j j

j∑
i=1

�i + σaa

⎛⎝δ +
3∑

j=1

� j

⎞⎠, (2a)

Hint = a
4∑

j=1

g j σ j( j−1) + Gσa3 + H.c., (2b)

where σi j = |i〉〈 j|, a and a† denote the cavity annihilation and
creation operators, h̄ = 1, and we consider the frame rotating
with ωclσaa + ωN , where N = a†a + ∑4

j=1 jσ j j + 3σaa (see
Appendix A 1). Since the total number of excitations N is
conserved by H = H0 + Hint, the dynamics can in principle
be solved by diagonalizing H in six-dimensional eigenspaces
of N .

B. Effective two-photon interaction

In order to obtain two-photon dynamics of the atom and
the cavity, we assume two-photon resonance

�2 = −�3 ≡ �, (3)

which leads to degeneracy of |1〉 and |3〉 in H0, and consider
the levels |0〉, |2〉, |4〉, and |a〉 to be far detuned from the
one-photon transitions, i.e., |gj/� j | � 1, j = 1, . . . , 4 and
|G/δ| � 1. In this case, Hint in Eq. (2b) can be treated as a
perturbation of H0 in Eq. (2a) by means of adiabatic elimina-
tion [55–57]. In Appendix A 2, we show that up to the second
order the dynamics couples only the levels |1〉 and |3〉 via the
effective Hamiltonian

Heff = −g2g3

�
a2 σ31 − g∗

2g∗
3

�
a†2 σ13

+
[ |g1|2

�1
− a†a

( |g2|2
�

− |g1|2
�1

)]
σ11

−
[( |G|2

δ
+ |g3|2

�

)
+ a†a

( |g4|2
�4

+ |g3|2
�

)]
σ33, (4)

where we omitted �1(σ11 + σ33) (constant in the subspace
of |1〉 and |3〉). As Heff conserves the number of excitations

Neff = a†a + σ11 + 3σ33, the corresponding atom-cavity dy-
namics can be solved exactly by diagonalizing Heff restricted
to two-dimensional Neff eigenspaces (see Appendix C).

The second and third lines in Eq. (4) correspond to the
Stark shifts, which crucially influence the dynamics of cavity
coherences in the Fock basis (cf. Refs. [34,58–60]). In partic-
ular, the Stark shifts are canceled when

|g1|2
�1

= |g2|2
�

, (5a)

|g4|2
�4

= −|g3|2
�

, (5b)

|G|2
δ

= −|g3|2 + |g2|2
�

, (5c)

in which case the Hamiltonian (4) reduces to the two-photon
Jaynes-Cummings Hamiltonian [43]

Heff = λ a2 σ31 + λ∗a†2 σ13, (6)

where λ = −g2g3/� is the effective two-photon coupling
strength [see Fig. 1(c)] and we omitted |g2|2

�
(σ11 + σ33) (con-

stant in the considered subspace of |1〉 and |3〉).
We emphasize that (5 + 1)-level scheme in Fig. 1 is a

minimal model to cancel the Stark shifts [cf. Eq. (5)]. This is
the case on which we focus on in this work, motivated by the
dissipative generation of a plethora of distinct pure quantum
states in Sec. III. Actually, in Appendix C we show that only in
this case does the adiabatic two-photon dynamics between the
cavity and the atoms generate stationary states of the cavity
which are pure and dependent on both the atom state and
the atom-cavity coupling. For any other setup, including the
three-level scheme [34,35,42,44,61]

H3−level
eff = −g2g3

�
a2 σ31 − g∗

2g∗
3

�
a†2 σ13

− |g2|2
�

a†aσ11 − |g3|2
�

(a†a + 1)σ33. (7)

(obtained with |�1|, |�4|, |δ| → ∞ or equivalently g1 =
g4 = G = 0), pure stationary states, if generated, always cor-
respond to the squeezed vacuum state and squeezed single-
photon state, independently from the atom state. Furthermore,
this means that our study, together with the earlier work
[42,44,61], provides the complete analysis of dissipative gen-
eration of pure states in two-photon micromasers based on
single-photon Jaynes-Cummings interaction [62].

C. Two-photon micromaser

The micromaser is a setup in which atoms pass through the
cavity, one at a time, and interact with its field [see Fig. 1(b)
and Appendix B 1]. We consider atoms of the same velocity
(a monochromatic beam) and initially in a pure state (|cg|2 +
|ce|2 = 1)

|ψat〉 = cg|1〉 + ce|3〉, (8)

where the amplitudes ce and cg will enable us to control the
coherence of the generated cavity states. Since the effective
dynamics couples only |1〉 and |3〉 levels, they can be viewed

043847-3



ANDREAS KOUZELIS et al. PHYSICAL REVIEW A 101, 043847 (2020)

as the ground state and the excited state of the effective two-
level atom interacting with the cavity.

1. Micromaser dynamics

In the frame rotating with the free Hamiltonian, the cavity
state changes only when an atom is passing through. For an
atom in a pure superposition, Eq. (8), interacting with the
cavity for time τ , the state of the cavity after passage of k
atoms is

ρ (k) =
∑
j=g,e

Mj ρ
(k−1)M†

j ≡ M0 [ρ (k−1)], (9)

where the Kraus operators [cf. Eq. (6)]

Mg = 〈1|T e−i
∫ τ

0 dt Heff (t )|ψat〉

= cg cos(φ
√

a†2 a2) − ice a†2 sin(φ
√

a2 a†2)√
a2 a†2

, (10a)

Me = 〈3|T e−i
∫ τ

0 dt Heff (t )|ψat〉

= −icg a2 sin(φ
√

a†2 a2)√
a†2 a2

+ ce cos(φ
√

a2 a†2), (10b)

with T denoting time ordering and the integrated coupling
strength φ = ∫ τ

0 dt λ(t ) [63]; see Appendix B 1 for derivation.
For atoms arriving to the cavity at the rate ν [31,64,65],

the average micromaser dynamics is governed by the master
equation [66,67]

d

dt
ρ(t ) = ν M0[ρ(t )] − ν ρ(t ) ≡ L0 [ρ(t )]. (11)

In this work, we mostly consider the continuous dynamics
(11). The comparison of the results to the case of discrete
dynamics (9) can be found in Appendix I.

The subscript 0 in Eqs. (9) and (11) indicates the far-
detuned limit in which two-photon dynamics in Eq. (6) is
achieved. We consider the effect of the higher order cor-
rections to this limit, as well as single-photon losses, later
in Sec. IV, while the influence of approximately fulfilled
conditions of Eqs. (3) and (5), a mixed atom state, and a
nonmonochromatic atom beam, is discussed in Appendix G.

2. Properties

The micromaser dynamics generated by (10) features only
two-photon transitions, so that the parity

P = (−1)a†a (12)

commutes with the Kraus operators,

[Mg,e, P] = 0, (13)

and is conserved during the evolution,

d

dt
Tr[Pρ(t )] = Tr{PL0[ρ(t )]} = Tr[L†

0(P)ρ(t )] = 0, (14)

as we have M†
0(P) = P and thus L†

0(P) = 0. In particular,
a cavity state initially supported in the even (odd) subspace,
remains there at all times, which implies the existence of even
and odd stationary states. We will show in Sec. III these
stationary states are generally pure.

The Kraus operators (10) become real upon the transforma-
tion a �→ e−i(ϕ/2−π/4)a, where cg/ce = eiϕ |cg/ce|. Therefore,
an initial state of the cavity with real-valued coefficients in
the transformed basis remains real at all times, and so the odd
and even stationary states must be real valued in this basis.

Conservation of the parity and real-valued dynamics are
reflected in the reflection symmetries of the Wigner function
[49,68] for the stationary states,

W (α) = 2

π
Tr[ρD(α)PD(−α)], (15)

where D(α) = exp (αa† − α∗a) is the displacement operator
[see Figs. 2(a) and 3]. First, for an even or odd ρ, we have
PρP = ρ, while P2 = 1 and PD(α)P = D(−α), and thus
W (α) = 2

π
Tr{ρ[PD(α)P]P[PD(−α)P]} = W (−α), which is

the inversion symmetry. Second, for a real-valued cavity
state in the transformed basis a �→ e−i(ϕ/2−π/4)a, we have
W (α) = W ∗(α) = 2

π
Tr[ρ∗D(α∗)PD(−α∗)] = W (α∗), which

is the reflection symmetry with respect to the real axis [cf.
the system state for t � t2 in Fig. 1(d)]. Therefore, together
with the inversion symmetry, we also obtain the reflection
symmetry with respect to the imaginary axis.

III. PURE STATIONARY STATES OF TWO-PHOTON
MICROMASER AND RELAXATION TIMESCALES

We now show that the two-photon micromaser introduced
in Sec. II features pure stationary states of odd and even
parities. The coherences between the states are also stationary,
forming a decoherence-free subspace [69–71]. In particular, in
the weak-coupling limit, the stationary states become odd and
even Schrödinger cat states [72,73] with a tunable mean pho-
ton number. We also discuss the possibility of trapping states
[42], which, in turn, provides an insight into emergent slow
timescales during the relaxation toward the pure stationary
states.

A. Pure stationary states

The stationary states of the cavity satisfy d
dt ρss =

L0(ρss) = 0, which is equivalent to M0(ρss) = ρss. When the
stationary state is pure, ρss = |�ss〉〈�ss|, it is necessarily an
eigenstate of all Kraus operators,

Mg|�ss〉 = α|�ss〉, (16a)

Me|�ss〉 = β|�ss〉. (16b)

Indeed, in order to maintain its purity, the cavity state
must be uncorrelated from the outgoing atom state,
e−i

∫ τ

0 dt Heff (t )(|ψat〉 ⊗ |�ss〉) = (α|1〉 + β|3〉) ⊗ |�ss〉 [cf.
Eq. (10)] and we have |α|2 + |β|2 = 1 from the state
normalization.

1. Recurrence relation

For the pure stationary state |�ss〉 = ∑∞
n=0 cn|n〉, Eq. (16)

corresponds to
α cn+2 = cg cosn(φ) cn+2 − ice sinn(φ) cn, (17a)

β cn = −icg sinn(φ) cn+2 + ce cosn(φ) cn, (17b)

where we defined cosn(φ) = cos[φ
√

(n + 1)(n + 2)] and
sinn(φ) = sin[φ

√
(n + 1)(n + 2)]. The solutions exist when
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FIG. 2. Pure stationary states of cavity dynamics: (a) Wigner function [Eq. (15)] for even cavity stationary states corresponding to the
parameters in panel (c) [and indicated in Fig. 8(d)]. The two reflection symmetries (along diagonal gray lines) are due to the stationary states
being parity symmetric and real valued (after adding the phase π/4) (see Sec. II C). (b) The photon-number distribution of the states (blue
bars, only even photon numbers) is compared to that of the coherent states with the same average photon number 〈n〉 (red dashed lines). Blue
dashed lines show cot2

2n(φ/2)/10, which diverges as 4/ sin2
2n(φ) [gray dashed lines] for soft walls concurring with the boundary condition

for stationary states (see Sec. III E). (c) Properties of stationary states (i)–(ix): the parameters (K, ce ) [which determine φ by Eq. (35), where
the hard wall is at m = 20; for φ see also the last panel in Fig. 8, while cg = √

1 − c2
e , the mean photon number 〈n〉, the variance �n2, the

enhancement (79) in phase estimation, the maximal rate related to even soft wall max0�2n�m 1/ sin2n(φ), and the estimated number of atoms kss

for which the stationary states are reached, as characterized by the fidelity F [ρss; ρ(k)] = Tr
√√

ρss ρ(k)
√

ρss � 0.99, for the cavity initially
in the vacuum state |0〉.

the determinant of Eq. (17), αβ + cecg − cosn(φ)(αce + βcg)
is 0, and thus

α = ±cg, β = ∓ ce, (18)

leading to recurrence relation for coefficients of the stationary
states,

cn+2 = ∓i
ce

cg

sinn(φ)

1 ∓ cosn(φ)
cn = ∓i

ce

cg

[
cotn

(
φ

2

)]±
cn. (19)

We note that the odd and even stationary states are determined
independently by Eq. (19), which a consequence of the parity
conservation (cf. Sec. II C). Here we assumed that cg �= 0 and
1 ∓ cosn(φ) �= 0; we revisit these assumptions in Sec. III D.

2. Boundary conditions

Since a2|0〉 = 0 = a2|1〉, from Eqs. (10) and (16) we also
obtain the boundary conditions

α c0 = cg c0, α c1 = cg c1, (20)

which determine the outgoing atom state as

α = cg and β = −ce, (21)

independently of φ [42,44]. Therefore, the recurrence relation
(19) leads to the existence of odd and even pure stationary
states,

|�+〉 = c0|0〉 + c0

∞∑
n=1

(
−i

ce

cg

)n n−1∏
k=0

cot2k

(
φ

2

)
|2n〉, (22a)

|�−〉 = c1|1〉 + c1

∞∑
n=1

(
−i

ce

cg

)n n−1∏
k=0

cot2k+1

(
φ

2

)
|2n + 1〉,

(22b)

where c0 and c1 are determined, up to a phase, by the
state normalization. In contrast to the case of the three-level
micromaser [42,44], here the stationary states are dependent
not only on the incoming atom state, (8), but also on the
integrated coupling φ, which allows for dissipative generation
of plethora of distinct stationary states; in Fig. 2 we show a
few examples.

B. Stationary decoherence free subspace

Since the eigenvalues α and β of the Kraus operators
Mg and Me [cf. Eqs. (16) and (18)], are the same for the
odd and even pure stationary states, the even-odd coherences,
|�+〉〈�−| and |�−〉〈�+|, are also stationary, i.e.,

L0(|�+〉〈�−|) = ν(α+α∗
− + β+β∗

− − 1)|�+〉〈�−| = 0. (23)
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Therefore, any superposition of |�+〉 and |�−〉 is station-
ary, forming a decoherence-free subspace (DFS) of a qubit
[69–71]. The existence of the DFS can be made apparent by
choosing the shifted Kraus operators

M̃g = Mg − cg1, (24a)

M̃e = Me + ce1, (24b)

as jump operators in the master equation (11), in which case
from c∗

gMg − cgM†
g − c∗

e Me + ceM†
e = 0 [cf. Eq. (10)]

d

dt
ρ(t ) = ν

2

∑
j=g,e

[2M̃ jρ(t )M̃†
j − M̃†

j M̃ j ρ(t ) − ρ(t ) M̃†
j M̃ j],

(25)

The pure stationary states |�+〉 and |�−〉 are both dark, i.e.,
M̃g,e|�±〉 = 0, and thus their coherences do not decay.

In general, the asymptotic state of the cavity is

lim
t→∞ etL0ρ ≡ �0 (ρ)

= |�+〉〈�+| Tr(1+ρ) + |�−〉〈�−| Tr(1−ρ)

+ |�+〉〈�−| Tr(L+−ρ) + |�−〉〈�+| Tr(L−+ρ),

(26)

where the superoperator �0 projects the initial cavity state ρ

on the stationary DFS with 1+ = (1 + P)/2 and 1− = (1 −
P)/2 being the projections on the odd and even subspaces,
and L+− = L†

−+ with Tr(L+−|�+〉〈�−|) = 1 supported in the
even-odd coherences, in which the structure reflects the parity
conservation [39,74,75]. Furthermore, dynamics conserves
1+, 1−, L+−, L−+, and thus L+−, L−+ can be obtained
numerically as

L+− = lim
t→∞ etL†

0 (|�−〉〈�+|). (27)

C. Schrödinger cat states in weak-coupling limit

We show that in the limit of the weak coupling,
Schrödinger cat states are recovered as stationary states of the
cavity and its dynamics corresponds to two-photon drive and
two-photon losses [39,52–54,76,77] [see Fig. 1(d) and state
(i) in Fig. 2].

1. Steady states

In the limit of the weak coupling, |φ| � 1, the recurrence
relation (19) with the boundary condition (21) can be approx-
imated as

cn+2

cn
= −i

ce

cg

2

φ
√

(n+1)(n+2)
+ O

[
ce

cg
φ
√

(n+1)(n+2)

]
,

(28)

identifying the stationary states as the odd and even
Schrödinger cat states [72,73] [see the state (i) in Fig. 2]

|�±〉 ≈ |α〉 ± | − α〉√
2 ± 2e−2|α|2

, α = e−i π
4

√
2ce

cgφ
, (29)

with the coherent state |α〉 ≡ e−|α|2/2 ∑∞
n=0 αn/

√
n! |n〉. For

validity of the approximation (28), we require that the ne-

glected terms are small, e.g., the first-order corrections to the
fidelity,

∞∑
n=0

1

3
|cn|2

∣∣∣∣ ce

cg

∣∣∣∣2 = 1

3

∣∣∣∣ ce

cg

∣∣∣∣2 � 1. (30)

Therefore, the conditions for obtaining Schrödinger cat states
are

|φ| � 1 and |ce| � 1. (31)

We emphasize that the conditions on the parameters ce and
φ are independent, and thus their ratio, as well as the value
of α, do not need to be small [cf. the state (i) in Fig. 2].
Indeed, for large |α| we have that the photon distribution
is centered around 2|ce/(cgφ)|, since 〈n〉 ≈ |α|2 ≈ �2n, and
thus the approximation in Eq. (28) is still valid when |ce| � 1
[cf. Eq. (31)].

2. Dynamics

The Kraus operators in Eq. (24) can be expanded in φ up
to the quadratic terms in φ and ce [cf. Eq. (31)] as

M̃g ≈ −iceφ a†2 − cg
φ2

2
a†2a2 ≈ 0, (32a)

M̃e ≈ 2ce1 − icgφ a2, (32b)

where in the first line we further neglected the terms which
will contribute only in the fourth order to Eq. (25). Therefore,
we arrive at the cavity dynamics

d

dt
ρ ≈ −i[g∗

2pha2 + g2pha†2, ρ] + κ2ph a2ρa†2

− κ2ph

2
(a2†a2 ρ + ρ a2†a2) (33)

with

g2ph = νc∗
gce φ and κ2ph = ν|cg|2φ2, (34)

which are of the second order [cf. Eq. (31)]. Equation (33)
describes an extensively studied model of two-photon drive
and two-photon losses [39,52–54,76–79], leading to α =
e−iπ/4

√
2g2ph/κ2ph in Eq. (29). In particular, the conserved

quantities L+− and L−+ in Eq. (27) are known exactly [39] and
thus so are the asymptotic states in Eq. (26). In Appendixes
G 3 d–G 3 f, we show that the two-photon cavity dynamics in
Eq. (33) is robust to both nonmonochromaticity of the atom
beam and decay of the atom state toward levels uncoupled
from the cavity field, but it is modified by two-photon injec-
tions when the atom state entering the cavity is mixed rather
than pure [cf. Eq. (8)].

D. Trapping states

Here we characterize the atom-cavity coupling strengths
leading to the disconnected cavity dynamics. Among others,
this situation allow for the preparation of the cavity in fixed
photon number states, so-called trapping states [42]. We also
discuss the purity of the resulting coherent stationary states.

1. Hard walls

The terms in the Kraus operators, Eq. (10), that connect the
cavity states |m〉 and |m + 2〉 are proportional to sinm(φ).
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Therefore, when the integrated interaction strength φ gives
sinm(φ) = 0 for some m, that is

φ = Kπ√
(m + 1)(m + 2)

with K = ±1,±2, ..., (35)

so that cosm(φ) = (−1)K , the Kraus operators become block
diagonal in the Fock space, with the dynamics on the left
(photon numbers n � m) and on the right (n > m) being
independent. As the initial cavity state supported below m
and of the same parity as m, remains supported below m at
all times, we refer to this case as a hard wall at m. This
provides natural truncation points for the cavity Hilbert space
in numerical simulations, which we exploit in Figs. 2–10.

2. Trapping states

For the cavity pumped by the excited atoms (|ce| = 1, cg =
0), a hard wall at at m corresponds to a trapping state |m〉, and
thus can be used to obtain a fixed photon number. Indeed, for a
first hard wall at m1, when the initial cavity state is of the same
parity as m1 and is supported below m1, the asymptotic state is
the pure trapping state |�ss〉 = |m1〉. A general initial state of
the cavity evolves into a mixed state supported on all trapping
states |mn〉, and the asymptotic distribution, pn = 〈mn|ρss|mn〉,
is given by the initial supports between subsequent walls of
the same parity. It is also possible for coherences between
the trapping states |mn〉 to be stationary, which takes place
when cosmn (φ) = (−1)Kn [cf. Eq. (35)] are of the same sign
[cf. Eq. (23)]. In contrast, in the absence of even (odd) hard
walls of a given parity, the cavity energy increases without a
bound and there is no even (odd) stationary state.

We now show that the cavity dynamics features either no
trapping states, or infinitely many (see Appendix D). This is
due to the fact that, for a given coupling strength φ and the
parameters m1 and K1 of the first wall, Eq. (35) for mn and Kn

of another wall corresponds to the Pell equation [80,81],

x2 − Dy2 = 1, (36)

where the arguments x = 2mn + 3 and y = 2Kn/K1 and the
parameter D = (m1 + 1)(m1 + 2). As D is not a square of
an integer, the hyperbolic equation (36) is known to feature
infinitely many integer solutions [82], which translate into the
recurrence relation

mn = mn−1(2m1 + 3) + 3(m1 + 1)

+ 2(m1 + 1)(m1 + 2) Kn−1/K1, (37a)

Kn = Kn−1(2m1 + 3) + K1(2mn−1 + 3). (37b)

Therefore, the position mn of hard walls grows exponentially
with n,

mn = (2m1 + 3 + 2
√

D)n+(2m1 + 3 − 2
√

D)n

4
− 3, (38)

while the parity of mn and Kn is determined as in Table I. For
m1 odd, only odd trapping states exist, with all coherences
stationary for K1 even, while for K1 odd, only coherences
between every second trapping state do not decay. For m2

even, the coherences between all (even and odd) trapping
states are stationary when K1 is even, while for K1 odd, only

TABLE I. Parity of hard walls located at mn from Eq. (37) [cf.
Eq. (35)]. The gray shaded case is the only situation leading to pure
coherent states between the hard walls [cf. Eqs. (39) and (40)].

cosm1 (φ) = 1 cosm1 (φ) = −1

m1 even m2n odd, m2n+1 even m2n odd, m2n+1 even
cosmn (φ) = 1 cosmn (φ) = (−1)n

m1 odd mn odd mn odd
cosmn (φ) = 1 cosmn (φ) = (−1)n

the coherences between the trapping states of the same parity
remain.

3. Coherent stationary states between hard walls

For atoms prepared in the superposition (8), a hard wall
at m implies boundary conditions for pure stationary states.
Namely, for sinm(φ) = 0 and cosm(φ) = (−1)K , Eq. (17)
gives

β cm = (−1)K ce cm, (39)

for the coefficient cm of the pure stationary state before the
wall, and

α cm+2 = (−1)K cg cm+2, (40)

for the coefficient cm+2 of the pure stationary state after
the wall. Therefore, for a pure stationary state to exist
between subsequent walls of the same parity, at mn and mn′ ,
cosmn (φ) = − cosmn′ (φ), and, thus, odd Kn′ − Kn is required
[see Eq. (35)]; otherwise, a stationary state between mn and

FIG. 3. Steady states in the presence of hard walls. The photon-
number distribution P(n) and the Wigner function [Eq. (15)] for
(a) the equal mixture of the odd pure stationary states obtained
from the initial superposition of odd Fock states (|1〉 + |15〉)/

√
2

for ce = 0.3 and the hard wall (dashed gray) at m = 11 with K = 1
(φ ≈ 0.252) and (b) the approximately pure stationary state obtained
from the initial vacuum state |0〉 for ce = 0.4 and the hard wall at
m = 12 with K = 8 (φ ≈ 0.593).
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mn′ is mixed, but still coherent in the photon number basis
[cf. Appendix G 3 d].

In general, from Table I, the stationary states between the
walls are pure only when both m1 and K1 are odd; i.e., there
are only odd hard walls. Otherwise, the stationary states must
be mixed, except for the stationary state before the first wall
for odd K1 [cf. Eq. (20)]. They can be approximately pure if
the support of the state vanishes at one of the hard walls [83];
see Fig. 3(b).

All coherences between pure and mixed stationary states
decay [84], and only the coherences between the pure station-
ary states with the same boundary condition are stationary
(every second state for m1 and K1 odd), as the boundary
conditions in Eqs. (39) and (40) determine the eigenvalues of
the Kraus operators [cf. Eqs. (23)]. The latter is a consequence
of the hard wall imprinting, with every passing atom, the op-
posite phases on the two stationary states before and after the
wall, so that on average the coherence undergoes dephasing
and decays at the rate 2ν [85] [see Fig. 3(a)].

E. Relaxation timescales

We now discuss how slow timescales arise in the relaxation
toward pure stationary states as a result of approximately dis-
connected cavity dynamics. Furthermore, such structure of the
dynamics facilitates multimodal photon number distributions
in the stationary states. Derivations and further discussion can
be found in Appendix E.

1. Soft walls

We now consider the case when the terms in the Kraus
operators of Eq. (10) that connect the cavity states |m〉 and
|m + 2〉 are close to 0, i.e., sinm(φ) ≈ 0, but not equal 0,
so that the Kraus operators are only approximately block
diagonal. We refer to this situation as a soft wall at m.

We confirm that the effects from soft walls indeed play an
important role in the cavity dynamics, as for any integrated
coupling strength φ such that φ/π is irrational or φ/π = p/q
is rational with the even irreducible numerator p, there exists
infinitely many soft walls (see Fig. 4). Indeed, from Taylor
series

φ
√

(n + 1)(n + 2) = φ

(
n + 3

2

)
+ O

(
φ

n

)
, (41)

so that for n large, sinn(φ) ≈ sin[φ(n + 3/2)] corresponds to
n rotations of a unit circle by φ with the initial phase 3φ/2. For
an irrational φ/π , values eiφn for all n are dense in the circle,
so that they pass within an arbitrary proximity by any point
on the circle, and this takes place infinitely many times by
Poincaré recurrence theorem. Therefore, the cavity dynamics
features infinitely many soft walls with sinn(φ) arbitrarily
close to 0, for both parities [87] (see φ3 in Fig. 4). In contrast,
for a rational φ/π = p/q, values of eiφn are periodic with
the period q for even p, and 2q for odd p. Therefore, from
Eq. (41), the values of sinn(φ) become approximately periodic
for large n, but with a shift in phase by 3φ/2 [see φ1 and
φ2 in Fig. 4(b)]. Nevertheless, soft walls appear periodically
when sin[φ(m + 3/2)] = 0 = sin(kπ ), which requires (2m +
3)p = 2kq, i.e., p to be even. In this case, soft walls appear
at m of both parities (q is odd) with cosm(φ) ≈ cos[φ(m +

FIG. 4. Soft walls. (a) The function sin−2
n (φ) for rational φ1/π =

5/7 (blue dots), φ2/π = 6/7 (red circles), and irrational φ3/π =
7/

√
210 (gray diamonds), with the hard walls (gray lines) at m1 = 13

and m2 = 839. For φ1, the walls remain finite, in contrast to φ2,
where sin−2

n (φ) diverges as n−2 [cf. Eq. (41)] and φ3, where soft walls
appear due to recurrence of the irrational rotation. (b) The orbits for
both φ1 and φ2 are approximately periodic (with periods 14 and 7),
while for φ3 the orbit is dense.

3/2)] = (−1)p/2 and sin−2
m (φ) ≈ (8m + 12)2/φ2 [see φ2 in

Fig. 4(a)].

2. Slow relaxation

The cavity dynamics with soft walls, sinm(φ) ≈ 0, can be
considered as a local perturbation of the dynamics where
the soft walls are replaced by hard walls, sinm(φ) = 0. As
discussed in Sec. III D, this auxiliary dynamics features sta-
tionary states supported between the introduced hard walls.
As in reality the walls are soft, those states are not stationary,
but become metastable [50,86] and at long times undergo the
effective dynamics at rates proportional to the perturbation
size, i.e., ν sin2

m(φ). Since the perturbation is local, the effec-
tive dynamics connects only states across a single soft wall or
introduces coherences between states separated by two walls.
Furthermore, the dynamics rates are proportional to the state
amplitude directly next to the soft wall, so that for the small
amplitude the timescales of the dynamics are further extended
[cf. the last two columns in Fig. 2(c)].

3. Multimodal pure stationary states

It follows from Eq. (22) that the stationary state of long-
time dynamics across soft walls of a given parity must be
pure. It is, however, approximately composed only from
the metastable states supported between the walls, which can
be pure or mixed depending on the wall boundary conditions
(see Sec. III D). Therefore, the stationary state is approxi-
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mately supported only on the pure metastable states, which,
furthermore, obey the same boundary conditions as in Eq. (20)
to ensure metastable coherences between them [in Fig. 2(b)
the states after blue and before gray soft walls]. As a result,
the photon number distribution in the stationary state is mul-
timodal, as the pure states with the same boundary conditions
are separated at least by two walls [cf. Eqs. (39) and (40),
and see Fig. 2(b)]. Although, in general long experimental
timescales are needed to prepare such multimodal pure states,
they can be highly useful for quantum metrology applications,
which we will discuss in Sec. V.

IV. NOISE AND HIGHER ORDER EFFECTS
IN MICROMASER DYNAMICS

In Secs. II and III, we considered the cavity dynamics in the
far-detuned limit, where the interaction with atoms was given
by the two-photon Jaynes-Cummings Hamiltonian in Eq. (6).
The parity of photon number in the cavity was conserved
leading to existence of even and odd stationary states, which
were in general pure and with coherences between them also
stationary.

Here we discuss how the dynamics and the stationary states
of the cavity are modified because of imperfections of the
two-photon setup and the presence of noise affecting atoms
or the cavity. That is, we consider higher order corrections to
the two-photon approximation of Eq. (6) and approximately
fulfilled conditions in (5) (Sec. IV A), nonmonochromaticity
of atom beam and decay of atom levels (Sec. IV C), and
single-photon losses from the cavity (Sec. IV B).

In order to understand how robust the results of Sec. III
are, we consider weak noise and small higher order effects.
The distinct parameter scales lead to a clear separation of
timescales in the dynamics, known as metastability [50].
This, together with weak or strong parity symmetries [74,75],
enables us to obtain the analytic insight both into long-time
dynamics and stationary states in a realistic micromaser.
Furthermore, we revisit this assumption in Sec. IV D, where
we consider the noise faster than the longest timescales of the
dynamics set by the relaxation across soft walls (cf. Sec. III E).
The derivations can be found in Appendix G, while a short
review of metastability theory for open quantum systems is
provided in Appendix F.

A. Higher order corrections in the far-detuned limit

The two-photon micromaser investigated in Secs. II B and
III relies on the assumption of the far-detuned limit, i.e.,
|g j/� j |, |G/δ| � 1, j = 0, ..., 4 (cf. Fig. 1). Now, we discuss
how the micromaser dynamics is changed by the higher order
corrections to the atom-cavity interaction.

1. Weak parity symmetry and breaking of parity conservation

Recall that beyond the far-detuned limit, (6), the atom-
cavity interaction, (2b), couples all atom levels. This cor-
responds to six, rather than only two, Kraus operators [cf.
Eqs. (B7) and (10)]

Mj = 〈 j|U (τ )|ψat〉, j = 0, . . . , 4, a, (42)

where U (τ ) describes the atom-cavity interaction during time
τ when the atom, initially in |ψat〉, passes through the cavity.
These Kraus operators either conserve or swap the cavity
parity P [cf. Eq. (12)] depending on j,

Mj P = 〈 j|U (τ )P|ψat〉 = −〈 j|U (τ )(−1)N |ψat〉
= −〈 j|(−1)NU (τ )|ψat〉 = (−1) j+1 P Mj, (43)

where we used the fact that the dynamics conserves the
total number of excitations N = a†a + ∑4

j=1 j σ j j + 3σaa,
i.e., [U (τ ), N] = 0, while (−1)N | j〉 = (−1) jP| j〉 and thus
(−1)N |ψat〉 = −P|ψat〉 for the initial atom state as in Eq. (8).
For j = 0, 2, 4, the Kraus operator swaps the parity, Mj P +
P Mj = 0, while for j = 1, 3, a, the Kraus operator con-
serves the parity, Mj P − P Mj = 0. Therefore, beyond the
far-detuned limit, although the cavity dynamics in Eqs. (B8)
and (B9) does no longer conserve the parity, (14), it still
features weak parity symmetry [74,75],

[P,L] = 0 = [P,M], (44)

where the parity superoperator P (ρ) = PρP (cf. Sec. II C).
From the weak parity symmetry, it follows that L is block
diagonal in the eigenspaces of P; i.e., odd-even and even-odd
coherences evolve independently from the mixtures of even
and odd states. In particular, if L features a unique stationary
state, it must be a mixture of odd and even states without
coherences between them.

2. Higher order corrections to cavity dynamics

The approximation of far-detuned regime yields two-
photon interaction of the cavity with only two atomic levels
|1〉 and |3〉, Eq. (6), and thus two parity-conserving Kraus
operators M1 and M3 [denoted as Mg and Me in Eq. (10)].
Beyond this approximation, the remaining Kraus operators,
M0, M2, M4, Ma, also contribute to the cavity dynamics and
enter as the first-order corrections in |g j/� j |, |G/δ| � 1, j =
1, . . . , 4, while M1 and M3 are altered only in the second
order as a consequence of the parity conservation (see Ap-
pendix B2).

3. Metastability and perturbation theory

In Fig. 5, we compare the dynamics of the (5 + 1) mi-
cromaser, Eq. (B9), with the two-photon dynamics, Eq. (11),
obtained in the far-detuned limit. We observe that the (5 +
1) micromaser features the initial relaxation to the DFS
of even and odd pure stationary states of the two-photon
dynamics [Eq. (22)]. This is followed by the regime of ap-
parent stationarity, i.e., the metastable regime, before the final
relaxation toward the true stationary state at much longer
times. Furthermore, the metastable regime becomes more pro-
nounced with the increasing detuning, as the far-detuned limit
is approached, but the asymptotic stationary state remains
manifestly different from the metastable one. This indicates
that higher order corrections to the atom-cavity dynamics
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FIG. 5. Dynamics of (5 + 1)-level micromaser vs effective 2-photon micromaser. The fidelities F [ρss; ρ(t )] = Tr
√√

ρss ρ(t )
√

ρss of the
stationary state ρss in the two-photon micromaser with respect to its evolving state ρ(t ) (blue solid line), Eq. (11), and to the evolving state ρ(t )
of (5 + 1)-micromaser, Eq. (B9), for increasing values of detuning (orange, green, red solid lines), while keeping the integrated coupling φ

constant. Excellent agreement is observed during the metastable regime, whose length increases with the square of the detuning and coupling
strength ratio, and is followed by the long-time dynamics well approximated by the effective dynamics in the DFS (black dotted lines), Eq. (45).
These results are observed for different atom states, coupling strengths, and initial cavity states: ce = 0.3, φ = 1.0, |ψin〉 = |0〉 (the vacuum),
(b) ce = 0.2, φ = 0.3, |ψin〉 = |1〉 (the single-photon state), and (c) ce = 0.1, φ = 0.1, |ψin〉 = |α〉, α = 1 (a coherent state). The coupling
strengths and the detunings in the (5 + 1)-level model are chosen uniformly as g1 = g2 = g3 = g4 = g and �1 = �2 = −�3 = −�4 = �,
together with G = 2g and δ = 2�, and thus satisfy Eq. (5).

affect the micromaser dynamics in a perturbative way, and,
due to parity breaking, lift the degeneracy of the (formerly)
stationary states. We therefore adapt it as the working as-
sumption, which will enable us to analytically derive and
investigate the long-time dynamics of the micromaser. We
note, however, that the numerical simulations in this work are
performed for truncated cavity space, which is infinite (see
also Sec. III D). Although for finitely dimensional systems
the perturbative approach we utilize here is known to be
convergent [88], the cavity is an infinitely dimensional system
and its unperturbed dynamics in principle features infinitely

many timescales. Therefore, in principle, a formal analysis as
in Ref. [54] should be performed.

The DFS of pure stationary states of the cavity (see
Sec. III B) correspond to the eigenmodes with eigenvalue
0 of the master dynamics L0 in Eq. (11). To investigate
the full dynamics L of the cavity in Eq. (B9), we consider
it as the perturbation of L0. In this case, the higher order
corrections in the far-detuned limit of the cavity and atom
interactions lift the degeneracy of zero eigenmodes, thus
introducing their long-time dynamics (see Appendix G2 for
derivation):

d

dt
ρ(t ) = ν

⎡⎢⎢⎢⎢⎣
−〈X 〉+ 〈X 〉− 0 0

〈X 〉+ −〈X 〉− 0 0

0 0 −i� − 1
2 (〈X 〉+ + 〈X 〉−) η

√〈X 〉+〈X 〉−
0 0 η∗√〈X 〉+〈X 〉− i� − 1

2 (〈X 〉+ + 〈X 〉−)

⎤⎥⎥⎥⎥⎦ρ(t ), (45)

where ρ(t ) belongs to the DFS spanned by |�+〉 and
|�−〉 (we assumed there is a unique stationary state of
even and odd parity, i.e., there are no hard walls of
L0). The long-time dynamics is expressed in the DFS ba-
sis |�+〉〈�+|, |�−〉〈�−|, |�+〉〈�−|, |�−〉〈�+|. The nontrivial
long-time dynamics of the pure states of the cavity means that
they are metastable and at long times relax to a unique sta-
tionary state approximated by the stationary state of Eq. (45)
(cf. Fig. 5):

ρss ≈ 〈X 〉−
〈X 〉− + 〈X 〉+ |�+〉〈�+| + 〈X 〉+

〈X 〉− + 〈X 〉+ |�−〉〈�−|.
(46)

The block-diagonal structure of the effective dynam-
ics generator in Eq. (45), with the coherences |�+〉〈�−|,
|�−〉〈�+|, evolving independently from |�+〉〈�+|, |�−〉〈�−|,

reflects the weak parity symmetry of dynamics, Eq. (44),
which further manifests in diagonal structure of the stationary
state in Eq. (46). The dynamics features the Hamiltonian
part [89,90] from the second-order corrections in the parity-
conserving Kraus operators M1 and M3, with the frequency

� ≡ Im〈cg(M1 − Mg)† − ce(M3 − Me )†〉+
− Im〈cg(M1 − Mg)† − ce(M3 − Me )†〉−, (47)

and the dissipative counterpart [91] induced by the (first-
order) corrections in the parity swapping operators, where

X ≡ M†
0 M0 + M†

2 M2 + M†
4 M4, (48)
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so that 〈X 〉± is positive and of the second order,

〈X 〉± = 2|cg|2 |g2|2
��1

〈
(n + 1) − (n + 1) cos

[
τ�1 + τ

|g2|2
�

(n + 2)

]〉
±

+ 2|cg|2 |g2|2
�2

〈
n − n cos

[
τ� + τ

|g2|2 + |g3|2
�

(n − 1)

]〉
±

+ 2|ce|2 |g3|2
�2

〈
(n + 1) + (n + 1) cos

[
τ�+ τ

|g2|2 + |g3|2
�

(n + 1)

]〉
±
− 2|ce|2 |g3|2

��4

〈
n + n cos

[
τ

(
�4 − |g2|2

�
− |g3|2

�
n

)]〉
±

+ 2

〈
−i

g∗
2g3

�2
(a†)2 sin

[
τ� + τ (n + 1)

|g2|2 + |g3|2
�

]
+ i

g2g∗
3

�2
sin

[
τ� + τ (n + 1)

|g2|2 + |g3|2
�

]
a2

〉
±
, (49)

with 〈 · 〉± = 〈�±| · |�±〉 and n = a†a. We note that the
parity-conserving Ma does not contribute to the second-order
dynamics [cf. Eqs. (48) and (50)], as the pure stationary states
are eigenstates of Ma in the first order (see Appendix G 3 ).
Furthermore, the dynamics of coherences depends on

η = Tr
(
L+−

∑
j=0,2,4 Mj |�−〉〈�+|M†

j

)
√〈X 〉+〈X 〉−

, (50)

where L+− is a conserved quantity in the far-detuned limit cor-
responding to the coherence |�+〉〈�−|, and η can be obtained
numerically without diagonalizing L0 from Eq. (27). From
the complete positivity of the perturbative long-time dynamics
[50], we have |η| � 1. We note that the effective dynamics
in Eq. (45) depends via � and 〈X 〉± on the second order of
the corrections to the far-detuned limit, |gj/� j |, |G/δ| � 1,
j = 1, . . . , 4, as well as the interaction time τ , rather than only
the integrated coupling φ.

In Fig. 5, we compare the dynamics of the cavity in
(5 + 1) model (solid lines), Eq. (B9), to the effective long-
time dynamics within the DFS (dotted lines), Eq. (45), and
observe a very good agreement in the relaxation after the
metastable regime toward the stationary state, Eq. (46). There-
fore, Eq. (45) determines the final relaxation timescales to-
ward the unique stationary state. These timescales are in-
versely proportional to the second order of the corrections
to the far-detuned limit [cf. Eqs. (47), (48), and (50)], and
thus the free parameters g2, g3, �, �1/� > 0, �4/� < 0, and
δ/� < 0 in Eq. (5) can be further optimized in order to extend
the length of metastability regime, while keeping φ constant.

4. Approximate cancellation of Stark shifts

Finally, we note that relaxing of the conditions of Eq. (5),
which we have chosen to obtain the two-photon Jaynes-
Cummings Hamiltonian in Eq. (6), will lead to a perturba-
tion of this Hamiltonian [cf. Eq. (4)] and thus corrections
to parity-conserving Kraus operators Mg and Me. Therefore,
analogously to Eq. (47), in the lowest order only a unitary
dynamics will be induced in DFS, with dephasing possibly
entering in higher orders (see Sec. IV C and Appendix G 3 c
for further discussion). We can conclude that the (5 + 1)
design is stable, which is necessary to achieve any experimen-
tal implementation of the desired two-photon dynamics.

B. Single-photon losses

We now turn to investigate a realistic cavity undergoing
single-photon losses [64], typically due to imperfect mirrors,

L1ph[ρ(t )] = κ a ρ(t ) a† − κ

2
[a†a ρ(t ) + ρ(t ) a†a], (51)

where κ is the single-photon loss rate. Provided that losses
of photons can be assumed to take place when no atom is
found within the cavity, i.e., the atom passage time τ is
such that κ τ � 1, the single-photon losses can be considered
independent of the atom-cavity dynamics [31,64], so that the
cavity state evolves as

d

dt
ρ(t ) = (L0 + L1ph )[ρ(t )]. (52)

In Eq. (52), we assumed the far-detuned limit of Eq. (11).

1. Weak parity symmetry

The single-photon loss swaps the parity, similarly to the
case of higher order corrections in the far-detuned limit [cf.
Eq. (43)],

a P = −P a. (53)

This leads to the weak parity symmetry of the dynamics [cf.
Eq. (44)],

[P,L0 + L1ph] = 0. (54)

2. Metastability and perturbation theory

In Fig. 6, we show the cavity dynamics in the presence of
small losses (blue solid lines), Eq. (52) with κ � ν, and ob-
serve a plateau in the relaxation towards the unique stationary
state of the dynamics. This manifests a metastable regime in
the dynamics when cavity states appear stationary for different
initial conditions, although the true stationary state has not
been achieved [see also Fig 1(d)].

If the losses are treated as a perturbation of the cavity
dynamics L0, the formerly stationary states in the DFS of
|�+〉 and |�−〉, Eq. (22), undergo the following dynamics [cf.
Eq. (45)]

d

dt
ρ(t ) = κ

⎡⎢⎢⎢⎢⎣
−〈n〉+ 〈n〉− 0 0

〈n〉+ −〈n〉− 0 0

0 0 − 1
2 (〈n〉+ + 〈n〉−) ηloss

√〈n〉+〈n〉−
0 0 ηloss

√〈n〉+〈n〉− − 1
2 (〈n〉+ + 〈n〉−)

⎤⎥⎥⎥⎥⎦ρ(t ), (55)
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FIG. 6. Dynamics of micromaser with single-photon losses. The
fidelity [cf. Fig. 5] between the cavity state ρ(t ) and the stationary
state (57) is compared for the dynamics of two-photon micromaser
with single-photon losses (blue solid line), (52), and the effective
dynamics in the DFS (black dashed line), (55). The effective dy-
namics approximates well the long-time dynamics of the cavity for
the initial states |0〉 [(a), (c)] and |α〉, α = 0.6 [(b), (d)], both in the
weak-coupling limit [ce = 0.1, φ = 0.1 in panels (a) and (b)], where
additional metastable regime (second plateau) is observed (b), and
at the finite coupling [ce = 0.2, φ = 1.0 in panels (c) and (d)]. The
loss rate was chosen as κ/ν = 10−6, and the vertical lines indicate
the timescales of the dynamics determined by the eigenvalues of
Eq. (52), (−Reλk )−1 for k = 5, 4, 2 (black, purple, red), which are
ordered in decreasing real value [see also Eqs. (58) and (59) and cf.
Appendix F].

where we expressed the dynamics in the basis
{|�+〉〈�+|break|�−〉〈�−|, |�+〉〈�−|, |�−〉〈�+|} and denoted
the average loss rate as κ〈n〉± = κ〈�±|a†a|�±〉. The
dynamics is block diagonal, with the densities and the
coherences evolving independently, due to the weak parity
symmetry, Eq. (54). The dynamics of coherences further
depends on the real coefficient [cf. Eq. (50)]

ηloss = Tr(L+− a|�−〉〈�+|a†)√〈n〉+〈n〉−
, |ηloss| � 1, (56)

that can be determined numerically from Eq. (27). In particu-
lar, in the weak-coupling regime, where the DFS corresponds
to Schrödinger-cat states, we have ηloss = 1, as the photon loss
preserves the DFS (see Sec. III C and Ref. [39]).

In Fig. 6, the effective dynamics of Eq. (55) (black dashed
line) indeed approximates well the long-time dynamics of the
cavity. This confirms that the initial relaxation of the cavity
state takes the system into the DFS spanned by |�+〉 and
|�−〉 [cf. Eq. (26)]. The DFS then remains metastable until
timescales inversely proportional to the average loss rates.
Then, the final relaxation takes place into a unique stationary
state, well approximated by the stationary state of Eq. (55),

ρss ≈ 〈n〉−
〈n〉− + 〈n〉+ |�+〉〈�+| + 〈n〉+

〈n〉− + 〈n〉+ |�−〉〈�−|;

(57)

(a) (b) |Ψ+

|Ψ−

|Ψ1

|Ψ2

|Ψ+

|Ψ−
|Ψ1

|Ψ2

ρss

ρss

FIG. 7. Effective long-time dynamics due to single-photon
losses. The DFS of the odd and even states (22) (the Bloch sphere
in light gray) is shown under the effective dynamics in Eq. (55),
for times t = (−λ4)−1, (−λ3)−1, and (−λ2)−1 (gray, purple, red)
[see Eq. (58) and vertical lines in Fig. 6]. Because of the weak
parity symmetry, the stationary state (black dot), Eq. (57), is found
on the vertical axis (black line) representing mixtures of even and
odd states, while when the initial state is odd or even, its dynamics
remains confined to the vertical axis at all times (cf. purple dashed
trajectory). As the effective dynamics is also real, the coherence
eigenmodes correspond to the axis between the states in Eq. (62)
(dashed gray) and the axis perpendicular to it that also crosses the
equator. The trajectories for two initial states are also shown: |�+〉
(dashed purple) and cos(π/6)|�+〉 + eiπ/4 sin(π/6)|�−〉 (dashed
black). In panel (a), due to separation of the characteristic timescales
of the dynamics as given by Eq. (59), classical metastable manifold
emerges [blue; the image of DFS under the dynamics of at t =
(−λ2)−1/100], well approximated by mixtures of the states |�1〉 and
|�2〉 in Eq. (62) (dashed gray axis). Here an initial state first relaxes
onto the manifold (black arrow along black dashed trajectory) and
only at later times relaxes toward the stationary state (blue arrow)
[see also Fig. 6(b)]. Parameters: (a) as in Figs. 6(a) and 6(b) leading
to ηloss ≈ 1.00, 〈n〉+ ≈ 1.92 and 〈n〉− ≈ 2.07; (b) as in Figs. 6(c) and
6(d) leading to ηloss ≈ 0.99, 〈n〉+ ≈ 0.11, and 〈n〉− ≈ 1.01.

cf. Refs. [52,53]. The stationary state does not feature odd-
even coherences because of the weak parity symmetry in
Eq. (54) (see Fig. 7). Finally, we note that the rates of the
effective dynamics are proportional to the average photon
number, so that, as expected, the states with more photons are
more sensitive to losses. In particular, in the stationary state
(57) the state with the lower average photon number has larger
weight.

An analogous result to Eq. (55) can be obtained for a cavity
in a thermal environment. In this case, photons are lost from
the cavity at the rate κ (nth + 1), but they are also injected to
the cavity [which process is described as by replacing a by
a† in Eq. (51)] at the rate κ nth, and nth is a average photon
number of the environment.

3. Emergent classical metastability in weak coupling limit

The timescales of the long-time dynamics are determined
by the eigenvalues of Eq. (55) (see also Appendix F). The
stationary state in Eq. (57) necessarily corresponds to the
eigenvalue λ1 = 0, while

λ2 = −κ

2
(〈n〉+ + 〈n〉− − 2|ηloss|

√
〈n〉+〈n〉−), (58a)
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λ3 = −κ

2
(〈n〉+ + 〈n〉− + 2|ηloss|

√
〈n〉+〈n〉−), (58b)

λ4 = −κ (〈n〉+ + 〈n〉−), (58c)

ordered in decreasing real part.
For small interactions, |φ| � 1, where the stationary states

of the lossless cavity are approximated by Schrödinger-cat
states [77,78] the dynamics in Fig. 6(b) features two
plateaus corresponding to two metastability regimes [see
also Fig. 1(d)]. Indeed, in this case, ηloss = 1 in Eq. (56), so
that λ2,3 = −κ (

√〈n〉+ ∓ √〈n〉−)2/2. Therefore, when the
average photon numbers in the even and odd Schrödinger-
cat states are similar [〈n〉+ = |α|2 tanh(|α|2), 〈n〉− =
|α|2 coth(|α|2) with |α|2 = 2|ce/cgφ| � 1; cf. Eq. (31)],
a separation in the spectrum of the long time-dynamics
emerges:

−λ2 ≈ κ

4

(〈n〉+ − 〈n〉−)2

〈n〉+ + 〈n〉− � −λ3 ≈ κ (〈n〉+ + 〈n〉−) = λ4.

(59)
This separation is responsible for the second plateau in
Fig. 6(b), as it leads to metastability regime for times
(−λ3)−1 � t � (−λ2)−1 when the faster eigenmodes of the
long-time dynamics corresponding to λ3 and λ4 have decayed,
while the decay of the slow mode corresponding to λ2 is
negligible (see Appendix F). Only the stationary state and the
slow eigenmode then contribute to the cavity state [50,86,92],

ρ(t ) ≈ ρss + cRe(|�+〉〈�−| + |�−〉〈�+|), (60)

where cRe = Re[Tr(L+−ρ)] [cf. Eq. (26)] and ρss ≈
(|�+〉〈�+| + |�−〉〈�−|)/2 [cf. Eq. (57)]. Therefore, the sec-
ond metastable regime is observed only for initial states
with feature odd-even coherences [cf. Figs. 6(a) and 6(b)].
Furthermore, during the metastable regime the cavity state
can be also be regarded as a classical mixture [86], with the
probability p = 1/2 + cRe,

ρ(t ) ≈ p |�1〉〈�1| + (1 − p)|�2〉〈�2| (61)

of the coherent states [cf. Fig. 1(d) and see Fig. 7(a)]:

|�1,2〉 = 1√
2

(|�+〉 ± |�−〉) ≈ | ± α〉. (62)

Note that classical metastability can occur also beyond weak-
coupling limit if both |ηloss| ≈ 1 and 〈n〉+ ≈ 〈n〉−.

The origin of the classical metastability can be understood
by representing Eq. (55) in terms of the master equation
within the DFS [66,67] (here ηloss = 1; for a general case, see
Appendix G 2),

d

dt
ρ(t ) = γloss Jρ(t )J† − γloss

2
[J†J ρ(t ) + ρ(t ) J†J], (63)

where the dissipation rate is given by the average photon loss

γloss = κ
〈n〉+ + 〈n〉−

2
, (64)

and the jump operator J describes the effect of a single-photon
loss on the DFS by flipping the parity (cf. Refs. [52,54])

J = 1

N
[(〈n〉+ +

√
〈n〉+〈n〉−)|�+〉〈�−|

+ (〈n〉− +
√

〈n〉+〈n〉−)|�−〉〈�+|], (65)

with the normalization factor N = √〈n〉+ + 〈n〉− (
√〈n〉+ +√〈n〉−). When the average photon number in the even and odd

states is similar, 〈n〉+ ≈ 〈n〉−, as takes place for large enough
|α| of Schrödinger cat states in Eq. (29), the jump operator in
Eq. (65) can be approximated as the spin flip

J ≈ 1√
2

(|�+〉〈�−| + |�−〉〈�+|)

= 1√
2

(|�1〉〈�1| − |�2〉〈�2|), (66)

which causes dephasing of coherences between the states in
Eq. (62) [see Figs. 1(d) and 7] at the rate γloss. The states
|�1〉 and |�2〉 are metastable, as they are unchanged by
the dephasing, and only the higher corrections in Eq. (66)
ultimately lead to their mixing toward the stationary state in
Eq. (57) approximated by (|�+〉〈�+| + |�−〉〈�−|)/2.

C. Decay of atom levels and nonmonochromatic atom beam

In Sec. III, we considered micromaser dynamics arising
from interaction of the cavity with atoms prepared in a pure
state in Eq. (8), lasting time τ leading to integrated coupling φ

[cf. Eq. (10)], which results in pure stationary states dependent
both on φ and atom amplitudes [cf. Eq. (22)].

In a realistic setup, the lifetime of atom levels is finite,
leading to dissipative decay of atom state, which modifies
the dynamics in two ways. First, due to the decay during
time T between the atom preparation and entering the cavity,
atoms arrive at the cavity in a mixed state (see Appendix
G 3 d), and at a reduced rate if decay takes place toward levels
not coupled to the cavity field. Second, possible atom decay
during time τ of the interaction with the cavity introduces
modified Kraus operators determined by times of decay events
(see Appendix G 3 e). On the other hand, the velocity of the
atoms is usually described by a distribution rather than a
single value, which we refer to as nonmonochromatic atom
beam, leading to fluctuating interaction time τ and thus the
fluctuating integrated coupling φ in Eq. (10) (see Appendix
G 3 f). Nevertheless, in the far detuned limit, the parity of
photon number is conserved in the presence of such noise,
so that there still exist (at least) two stationary states of odd
and even parities (see Sec. II C).

1. Parity conservation and metastability

We now consider a limit of weak atom decay with respect
to time T and τ , and a narrow distribution of velocities. From
the perturbation theory, the first-order dynamics in the DFS
basis |�+〉〈�+|, |�−〉〈�−|, |�+〉〈�−|, |�−〉〈�+| is diagonal
as a consequence of parity conservation [cf. Eq. (14)],

d

dt
ρ(t ) =

⎡⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 −i� − γdeph 0

0 0 0 i� − γdeph

⎤⎥⎥⎥⎦ρ(t ). (67)

For the discrete dynamics described by M rather than M0

in Eq. (9), we have −i� − γdeph = Tr[L+−δM(|�+〉〈�−|)],
where the perturbation δM ≡ M − M0, in which the value
can be found numerically from Eq. (27). The effective dynam-
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ics in Eq. (67) describes dephasing between |�+〉 and |�−〉 at
the rate γdeph and unitary dynamics at the frequency �,

ρ(t ) = p |�+〉〈�+| + (1 − p) |�−〉〈�−|,
+ e−i�t−γdepht c |�+〉〈�−| + ei�t−γdepht c∗|�+〉〈�−|,

(68)

where p = Tr(1+ρ), c = Tr(L+−ρ) [cf. Eq. (26)].
The asymptotic state of the dynamics in Eq. (67) is not

unique. Therefore, when γdeph > 0, the asymptotic state of the
micromaser dynamics is approximated by a mixture of the odd
and even pure states

ρss ≈ p |�+〉〈�+| + (1 − p) |�−〉〈�−|. (69)

with p determined by the initial support in the even subspace,
which reflects the conservation of the odd and even subspaces
of the parity by the dynamics. Furthermore, dephasing in
Eq. (67) manifests the fact that the odd and even stationary
states of the cavity are actually no longer pure, but mixed (for
further discussion, see Appendixes G 3 d–G 3 f).

2. Atom decay

The rate of dephasing dynamics caused by atom decay can
be bounded by (cf. Appendix G 3 e)

γdeph

ν
� 2[(�1 − γ1)|cg|2 + 2(�3 − γ3 − γ13|cg|2)|ce|2]T

+ 2 max (�1, �3)τ, (70)

while the frequency

|�|
ν

� [γ01|cg|2 + (γ03 + γ23)|ce|2]T

+ (γ01 + γ03 + γ23)τ, (71)

where γ jk denotes the decay rate from the atom level |k〉 to
| j〉 (where Ej < Ek), γk is the decay rate from |k〉 to the levels
not coupled to the cavity, and �k = ∑

j:Ej<Ek
γ jk + γk is the

overall decay rate, so that the average lifetime of the level |k〉
is �−1

k . The atom rate is, in turn, reduced to

ν

ν
= 1 − (γ1|cg|2 + γ3|ce|2)T . (72)

From Eq. (70), we observe that there is no contribution to
the dephasing from time T in the case of the decay to only
uncoupled levels, � j = γ j for j = 1, 3. Indeed, in this case,
effectively, the atom arriving to the cavity is pure for all T ,
but the atom rate is still reduced [cf. Eq. (72)]. Furthermore,
for no decay to levels |0〉 and |2〉, we obtain � = 0, which
reflects that in that case dynamics is real valued (cf. Sec. II C).

3. Nonmonochromatic atom beam

For the small fluctuations of the integrated coupling,
δφ n � 1 for n within the support of stationary states with
φ = φ + δφ, the nonmonochromatic beam effectively leads to
two-photon decay and two-photon injections at the respective
rates νδφ2|cg|2/2 and νδφ2|ce|2/2 (see Appendix G 3 f). Here
φ is the average and δφ2 is the standard deviation of the
resulting distribution of integrated coupling φ. The rate of

dephasing due to nonmonochromatic beam can, in turn, be
bounded as

γdeph

ν
� δφ2

2
[|cg|2(

√
〈a†2 a2〉+ +

√
〈a†2 a2〉−)2

+ |ce|2(
√

〈a2 a†2〉+ +
√

〈a2 a†2〉−)2], (73)

Furthermore, due to the real-valued dynamics, there is no
unitary dynamics,

�

ν
= 0. (74)

D. Metastable dynamics of realistic micromaser

In Secs. IV A–IV C, we have considered perturbative con-
tributions from noise or higher order corrections to the long-
time dynamics of the cavity. In general, the micromaser
dynamics is described by the sum of all the contributions, i.e.,
the sum of Eqs. (45), (55), and (67), and features the unique
stationary state

ρss ≈ p |�+〉〈�+| + (1 − p)|�−〉〈�−|,
p = κ〈n〉− + ν〈X 〉−

κ (〈n〉− + 〈n〉+) + ν(〈X 〉− + 〈X 〉+)
. (75)

Note that dephasing or unitary dynamics of odd-even coher-
ences do not determine the approximation [cf. Eq. (69)].

E. Beyond weak noise and small corrections

In Secs. IV A–IV C, we assumed that noise and imper-
fections in the (5 + 1) micromaser setup contribute to the
slowest timescales in the cavity dynamics, that is the inverse
of the gap in the effective dynamics of Eqs. (45), (55), and
(67), [e.g., given by −λ2 in Eq. (58)] is much larger than
the relaxation to the DFS of the pure stationary states |�+〉
and |�−〉. These results provide insight in the robustness of
the dissipative preparation by indicating timescales on which
the noise becomes relevant; i.e., the effective dynamics is no
longer negligible. In particular, we find that the effective rate
for single-photon losses, higher order corrections, and non-
monochromatic beam depends on the average photon number,
and thus the states with higher photon numbers are less robust
to such noise.

However, as we discussed in Sec. III E, the relaxation
timescales may be significantly extended due to low ampli-
tudes of connecting certain photon numbers, e.g., |m〉 and
|m + 2〉 due to sinm ≈ 0 in Eq. (10), that is as a soft wall at
m. Thus, when the noise is comparable with such timescales,
we can no longer approximate the dynamics as taking place
inside the DFS. Nevertheless, we can instead consider the
effective dynamics among states which would be stationary in
the approximation sinm = 0, i.e., the states supported between
soft walls. Such dynamics features two contributions: transi-
tions across soft walls (considered in Sec. III E) and dynamics
due to noise and imperfections of the micromaser, which we
discuss now.

As a wall affects only the neighboring states of the same
parity, any perturbations in the dynamics that swap the parity
allow for circumventing walls by connecting the states of
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opposite parity, with rates simply proportional to the support
of the perturbed state between walls of the opposite parity.
This is the case for the higher order corrections in the far-
detuned limit and single-photon losses from the cavity leading
to the decay at the rate κ〈n〉±k + ν〈X 〉±k of the kth state of
the even (odd) parity ρ±

k . Furthermore, as they change the
photon number in the cavity only by one, they enable local
transitions, that is for the state ρ±

k between walls at m±
k and

m±
k+1 only to the states ρ∓

k′ such that m±
k � m∓

k′ � m±
k+1 or

m±
k � m∓

k′+1 � m±
k+1. Additionally, coherences between such

states of the same parity, ρ∓
k′ , can be created if they are

pure and obey the same boundary conditions (cf. Secs. III D
and III E). In turn, such coherences only get connected to
coherences of the opposite parity. On the other hand, the
atom decay or nonmonochromatic atom beam effectively
lead to a random distribution of interaction times between
atoms and the cavity, which results in fluctuations of the
integrated coupling φ, and thus also changing positions of
walls. In turn, the states between walls again undergo lo-
cal transitions to the preceding and following states of the
same parity, i.e., ρ±

k to ρ±
k−1 and ρ±

k+1 at the respective rates

ν|ce|2[�1τ/2 + (m±
k + 1)(m±

k + 2)δφ2] and ν|cg|2[(4�3 −
3γ3)τ/8 + (m±

k+1 + 1)(m±
k+1 + 2)δφ2]. Here no coherences

are created and, moreover, the effective dynamics obeys
detailed balance. Therefore, overall, we obtain a unique
stationary state without even-odd coherences, which is
consistent with the weak parity symmetry [cf. Eqs. (44)
and (54)].

In particular, in the case when the dynamics induced by
noise is even faster than the timescales of relaxation across
soft walls, we can neglect the latter by means of the almost
degenerate perturbation theory. The resulting stationary state
describes the state prepared in the cavity beyond the non-
degenerate perturbative approximation of Secs. IV A–IV C,
and allows us to understand the change in the usefulness
of generated states for potential applications, e.g., for phase
estimation (see Sec. V B). In general, the dynamics needs to
be calculated individually for each value φ as positions of soft
walls strongly depend on the integrated coupling, but for hard
walls, with known positions given in Sec. III D, we derive
the analytic description of the effective dynamics and find the
resulting stationary states in Appendix G 4. In particular, for
the cavity being pumped by the excited atoms, |ce| = 1, we
find that the long-time dynamics due to noise or imperfec-
tions leads to local transitions between trapping states that
always increase the photon number with the lifetime of a
trapping state |m〉 given by [κ m + ν〈m|X |m〉 + ν �1τ/2 +
ν(m + 1)(m + 2)δφ2]−1. Therefore, in a realistic micromaser
there are no trapping states.

V. APPLICATION IN PHASE ESTIMATION

In Secs. II B and III, we discussed the dynamics of two-
photon micromaser with atom-cavity interactions described
by Jaynes-Cunnings Hamiltonian, Eq. (6). This dynamics lead
to pure stationary state of the cavity dependent on both the ini-
tial atom state and the integrated coupling strength, Eq. (22).
Below we investigate the usefulness of the generated states
for applications in phase estimation setups. We find that weak

coupling does not yield a quantum enhancement in estimation
precision, but strong coupling creates states which lead to an
enhanced sensitivity. Although experimental imperfections,
such as single-photon losses, lead to mixed states, we find that
they can still enable enhancement in phase estimation.

A. Quantum Fisher information

We consider a phase ϕ which is to be estimated as unitarily
encoded in a cavity state ρ by the photon number operator
n = a†a,

ρϕ = e−iϕ n ρ eiϕ n. (76)

This corresponds to the situation when, after dissipatively
preparing the cavity in the state ρ by atom passages, the phase
is subsequently encoded in the cavity state, e.g., by changing
the cavity frequency by δω to induce the phase ϕ = δω t over
time t [24]. The errors in the unbiased estimation of ϕ are
then bounded, �2ϕ � FQ(ρ)−1, by the inverse of the quantum
Fisher information [46–48,93],

FQ(ρ) = 2
∑
j, j′

(p j − p j′ )2

p j + p j′

∣∣〈Ej |n|Ej′ 〉
∣∣2, (77)

where Eq. (77) is expressed in the orthonormal eigenbasis
of the state ρ = ∑

j p j |Ej〉〈Ej |. In particular, for pure states,
ρ = |�〉〈�|, the QFI is simply proportional to the the photon
number variance,

FQ(|�〉) = 4(〈�|n2|�〉 − 〈�|n|�〉2). (78)

For example, for the coherent state |α〉, the photon distribu-
tion is Poissonian, and thus FQ(|α〉) = 4〈n〉 = 4|α|2, which is
referred to as standard quantum limit. Therefore, the phase
estimation with ρ features the quantum enhancement over
the classical strategy using the same amount of resources,
i.e., the coherent state with the same average photon number,
whenever [94–96]

FQ(ρ)

4〈n〉 > 1. (79)

Considering this figure of merit is motivated by experimental
limitations on the allowed energy, h̄ω〈n〉, of the probe photon
field. In such a case, further increase in the phase estimation
precision can be achieved only by nonclassical distribution of
the field, e.g., squeezing.

B. QFI for micromaser in far-detuned limit

In Fig. 8, we consider the QFI for an evolving cavity
state and for the asymptotic stationary state. The QFI varies
significantly across the parameter space of the atom state and
integrated coupling strength. Importantly, multiple distinct
stationary states achieve high enhancement over the classical
limit.

1. Wigner function and QFI

The QFI, (77), which quantifies how sensitive is a state ρ

to phase rotations, is directly related to the Wigner function,
Eq. (15). The QFI equals the speed of change in the overlap
between the Wigner functions for ρ and ρϕ [Eq. (76)] [25].
Furthermore, the Wigner function for ρϕ is simply the Wigner
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FIG. 8. Phase estimation with dissipatively generated cavity
states. The four panels show the ratio of the QFI to the perfor-
mace of the corresponding coherent state, FQ(ρ )/4〈n〉 for the cavity
initially in the vacuum |0〉 after the passage of k = 100, 103, 104

atoms and for the stationary state [Eq. (22)]. The enhancement
is shown as a function of the atom state [Eq. (8)] and integrated
coupling φ. We sample the φ axis for φ20,K , Eq. (35), with odd
K = 1, 3, ..., 43, which gives the hard wall at m = 20 and allows
convergence to stationary state also for ce > 1/

√
2 (note that a larger

m would generally allow higher 〈n〉 and could also enable a higher
enhancement in precision). The purple shading shows regions with
reduced purity Tr(ρ2) < 0.99, whereas the green shading excludes
low average photon number, 〈n〉 < 1. The red dots in the steady-state
panel mark the stationary states (i)–(ix) analyzed in Fig. 2. The
states (iii)–(ix) correspond to the states at the local maxima of the
precision enhancement, while (i) and (ii) correspond to the standard
and squeezed Schrödinger cat states. A complex phase of ce does not
change the results, but the stationary states are not periodic in φ, and
thus here we show only a part of the parameter space.

function for ρ but rotated by ϕ. Therefore, for the states
(iii)–(ix) with high values of the QFI the sign of the Wigner
function highly oscillates [see Fig. 2(a)], thus ensuring a high
QFI.

2. Enhancement in precision due to soft walls

We now argue that the enhancement above the classical
limit, Eq. (79), is facilitated by the presence of soft walls in
the dynamics.

The stationary states, Eq. (22), are dependent on the initial
atom state and the integrated coupling strength, but the atom
parameters alone imply the exponential decay in the photon
number distribution for |ce| � 1/

√
2. The integrated cou-

pling can instead facilitate a sharp revival in the occupation
probability via a soft wall; for the wall at m, sinm(φ) ≈
0 with cosm(φ) ≈ 1, we have cm+2/cm ≈ −i2 sin−1

m (φ) ce/cg

(see Appendix E for further discussion). The revivals corre-
spond directly to multimodal photon number distribution [see
Fig. 2(b)]. Since the considered stationary states are pure, their
QFI is simply proportional to the photon number variance (78)

FIG. 9. Effect of single-photon losses on phase estimation preci-
sion. (a) The enhancement (79) in the phase estimation is shown as
a function of the integrated coupling φ [ce = 0.65 corresponding to
dashed red line in Fig. 8]. The enhancement in the stationary state of
lossy dynamics (black) [Eq. (85)] is shown against the enhancement
in the even (blue) and odd (green) states that are stationary for
lossless cavity. For the majority of parameter space, we observe the
enhancement in phase estimation, i.e., FQ(ρ )/4〈n〉 > 1 (values above
the horizontal dashed gray line). Here the lossy stationary state is
given by perturbative Eq. (57). (b) Average photon number in even
and odd stationary states. We observe the correlation of high photon
number to when the QFI of a lossy stationary state differs from
Eq. (85) in panel (a), as it determines the size of the correction from
the single-photon losses (together with the relaxation timescales in
the lossless case [cf. Fig. 8].

and features the square of distance between modes averages

FQ(|�〉) =
∑

k

pk FQ(|�k〉) + 4
∑

k

∑
k′>k

pk pk′ (〈n〉k − 〈n〉k′ )2,

(80)

where |�〉 = ∑
k
√

pk|�k〉 and |�k〉 represents the orthonor-
mal kth mode. Thus, the QFI features quadratic rather than lin-
ear scaling with the average, which may lead to the precision
enhancement, Eq. (79). Multiple soft walls in close proximity
can also lead to a unimodal distribution, but with a spread
significantly wider than for the corresponding coherent states
[see state (iv) in Fig. 2(b)]. The same mechanism is present
for the stationary states of both parities [cf. Fig. 9].

The revivals in photon probability distribution are highly
sensitive to the coupling φ value, with their derivative propor-
tional to m and sin−1

m (φ). Therefore, the structure of the cavity
states varies significantly with φ, allowing for preparations
of distinct states (see Fig. 2) and is the reason for strong
variations of the QFI in Fig. 8 [97].

The presence of soft walls introduces, however, long
timescales of reaching pure stationary states, with cavity states
being mixed at earlier times (purple shading in Fig. 8), even
when the initial parity is fixed [see Sec. III E and Fig. 2(c)].
The mixedness of the cavity state in general lowers the esti-
mation precision, which is captured by convexity of the QFI.
Nevertheless, in Fig. 8 we observe that the local maxima in
the enhancement (iii)–(ix) are already present after passage

043847-16



DISSIPATIVE QUANTUM STATE PREPARATION AND … PHYSICAL REVIEW A 101, 043847 (2020)

of 100 atoms, and their value increases with time as the
corresponding pure stationary states are approached (cf. the
scale bars).

3. Absence of enhancement in weak coupling limit

In the weak-coupling limit, the cat and squeezed-cat states
are generated, examples of which are marked as states (i) and
(ii) in Figs. 2 and 8. These states, although nonclassical, do
not feature the enhancement in the phase estimation preci-
sion. The parity symmetry allows for a superposition of the
coherent states with the opposite phase, ±α, but with the same
average photon number, |α|2. Therefore, the photon number
distribution remains unimodal with the spread of the coherent
state [cf. Fig. 2(b)]. We note, however, that the enhancement
proportional to |α|2 can be achieved via the linear operation of
displacing the cat state in Eq. (29) by ±α, which would give
a bimodal photon distribution with the modes centered at 0
and |α|2.

4. Coherence in DFS and QFI

In general, an initial cavity state evolves into a mixed state
inside the stationary DFS, but this cannot significantly reduce
the enhancement present in the pure stationary states of fixed
parity.

From the conservation of the parity by the phase generator,
[n, P] = 0, we have that 〈�+|n|�−〉 = 0. This simplifies the
QFI for any state within the DFS,

ρ = p |�+〉〈�+| + (1 − p)|�−〉〈�−|
+ c |�+〉〈�−| + c∗|�−〉〈�+|, (81)

where |c|2 � p(1 − p), to [98]

FQ(ρ) = p FQ(|�+〉) + (1 − p) FQ(|�−〉)

+ 4 |c|2(〈n〉+ − 〈n〉−)2. (82)

Therefore, the QFI increases with coherence |c|. It is max-
imal for the pure state

√
p|�+〉 + √

1 − p|�−〉 [here c =√
p(1 − p)], and minimal for the mixed state p |�+〉〈�+| +

(1 − p)|�−〉〈�−| [99]. Moreover, the precision enhancement,
Eq. (79), behaves as the QFI, since for all c the average photon
number remains constant, 〈n〉 = p 〈n〉+ + (1 − p)〈n〉−.

If the average photon number is similar in the odd and
even states, the lack of coherence does not significantly affect
the precision. More generally, if the odd and even stationary
states feature the enhancement, FQ(|�±〉)/4〈n〉± � 1, this is
the case for any ρ, as

FQ(ρ)

4〈n〉 = p̄
FQ(|�+〉)

4〈n〉+
+ (1 − p̄)

FQ(|�−〉)

4〈n〉−

+ |c|2 (〈n〉+ − 〈n〉−)2

〈n〉 , (83)

where

0 � p̄ = p〈n〉+
p〈n〉+ + (1 − p)〈n〉−

� 1. (84)

Furthermore, even if only the even (or the odd) stationary state
features the enhancement, the precision of a mixed state in
Eq. (81) still beats the standard quantum limit provided the

probability p of the even [(1 − p) of the odd] stationary state
is sufficiently large [100]; cf. Eq. (83).

5. Cavity coherence from atom coherence

The high QFI in Fig. 8 relies on the existence of pure co-
herent even and odd stationary states of the cavity. This crucial
coherence of the stationary states of fixed parity is created by
the passage of pure coherent states of atoms, Eq. (8), which
establish a phase reference for the cavity phase, Eq. (22).
Indeed, whenever the atom state is mixed but nondiagonal in
the atom level basis, the even and odd stationary states of the
cavity are nondiagonal in the photon number basis, and thus
feature nonzero QFI (see Appendix G 3 d). In contrast, for
diagonal states of atoms, the phase reference is absent, and
the resulting cavity state is diagonal in photon number basis
(with the zero QFI), as the cavity achieves equilibrium with
the effective atom temperature given by the relative population
of the two atomic levels (see Appendix H).

Mixed, but coherent atom states can be a consequence of
finite lifetime of atom levels, discussed in Sec. IV C. Further-
more, this additionally lowers the purity of cavity states by
possible decay events during the atom interaction with the
cavity (see also Appendix G 3 e).

C. QFI for micromaser with single-photon losses

In Secs. IV A and IV B, we have shown that due to the finite
detunings or the presence of single-photon losses, the pure
stationary states |�+〉 and |�−〉 of two-photon micromaser,
Eq. (22), are rendered metastable, and the cavity dynamics
leads instead to a unique stationary state approximated by
their classical mixture [see Eqs. (46), (57), and (75)]. Below
we argue that in this limit the introduced mixedness does not
significantly reduce the enhancement in the phase estimation
precision. Therefore, the dissipatively generated cavity states
can still be used quantum enhanced phase estimation.

1. Enhancement in precision for lossy cavity

The stationary state of a lossy cavity, Eq. (57), is approx-
imated by a mixture of the even and odd states, ρss ≈ ρ with
p = 〈n〉−/(〈n〉+ + 〈n〉−). In this case [cf. Eq. (82)],

FQ(ρ)

4〈n〉 = 1

2

[
FQ(|�+〉)

4〈n〉+
+ FQ(|�−〉)

4〈n〉−

]
, (85)

so that the enhancement higher than 2 present in the even
or the odd state implies FQ (ρ)

4〈n〉 > 1 [cf. Fig. 9]. Note that we
assume losses to take place only during the generation of the
cavity state, but not during the phase encoding [cf. Eq. (76)].

It is important to comment here on corrections to Eq. (57)
and thus to Eq. (85). In derivation of the effective dynam-
ics induced by single-photon losses, Eq. (57), we assumed
that the losses act as a perturbation of the cavity dynamics;
i.e., timescales of lossy dynamics are much longer than the
timescale τ of the relaxation into the pure stationary states
(22). In this case, the corrections to the stationary state in
Eq. (57) are proportional to κτ [50,88]. Note that this per-
turbative approximation is limited by two factors.

First, the influence of the single-photon losses is pro-
portional to the average-photon number [cf. Eq. (57)] as
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losses affects each photon independently. Therefore, states
with higher photon number are more fragile to losses. This is
also the reason why losses present during the phase encoding
(i.e., for fixed strength of noise, κt for ϕ = δωt) lead to
the enhancement in phase estimation limited to a constant
[(eκt − 1)] above the standard scaling [101–103].

Second, the soft walls which facilitate multimodal distribu-
tion, and thus the enhancement in precision, imply long relax-
ation time τ . The relaxation timescales due to soft walls are,
however, not directly related to the average photon number
(cf. Sec. III E).

Beyond the perturbative approximation, i.e., when losses
take place at earlier timescales than τ , they instead lead to
the mixing dynamics of the metastable states between soft
walls, as discussed in Sec. IV D. This dynamics results in
the stationary state being a mixture of pure and mixed states
between soft walls, with possible coherences between pure
states with the same boundary conditions, ρss ≈ ∑

l pss
l ρl +∑

k pss
k |�k〉〈�k| + ∑

k,k′ (css
k,k′ |�k〉〈�k′ | + H.c.), where we ex-

plicitly distinguish between pure and mixed states and
|css

k,k′ |2 � pss
k pss

k′ (see also Appendix G 4). Thus, the QFI be-
comes (cf. Eqs. (80) and (82) and see Ref. [104])

FQ(ρss) �
∑

l

pss
l FQ(ρl ) +

∑
k

pss
k FQ(|�k〉) (86)

+4
∑

k

∑
k′>k

|css
k,k′ |2(〈n〉k − 〈n〉k′ )2,

where the (approximate) inequality is saturated for css
k,k′ → 0

and in the lowest order of corrections |css
k,k′ |2 is replaced

by |css
k,k′ |2/(pss

k + pss
k′ ). Therefore, the precision enhancement

is significantly reduced if the coherences are negligible,
|css

k,k′ | � |pss
k − pss

k′ |, in which case it is crucial to reduce noise
in an experiment to remain within the perturbative approxi-
mation of Eq. (82). For this, it is necessarythat κτ decreases
inversely with the average photon number of the even and
odd stationary states of the lossless cavity. Importantly, this
requirement can be achieved by increasing the rate ν of atom
passages, since τ ∝ ν−1 [cf. Eq. (B9)].

2. Other noise

Similarly to single-photon losses, the higher order cor-
rections in the far-detuned limit will lead to the mixed sta-
tionary state approximated by Eq. (46), and thus Eq. (83)
with p = 〈X 〉−/(〈X 〉+ + 〈X 〉−) and c = 0. Here, however, the
corrections cannot be minimized by increasing the rate ν, but
only by increasing atom detunings [see Fig. 1(a)].

The nonmonochromatic atom beam also influences the
precision enhancement, as in the lowest order it leads to
dephasing of odd-even coherences leading to c = 0 in Eq. (81)
[cf. Eq. (69)]. Although p = 0 is not fixed, we find that the
QFI is still reduced (see Fig. 10), as a result of the lowered
purity of odd and even stationary states, and only small
deviations in atom velocity are permitted if the purity of the
produced states is to be maintained. Indeed, as discussed in
Sec. IV D, for slow relaxation across soft walls, the stationary
state features no coherences, css

k,k′ = 0, and thus the quadratic
scaling is lost in Eq. (86). Furthermore, this will also be the

FIG. 10. Effects of the nonmonochromaticity of atomic beam.
Dynamics of the purity (a), Tr(ρ2), and the QFI (b) [Eq. (77),
normalized by the maximum value FQ(ρ )/4〈n〉 = 7.39 in dynamics
with the monochromatic beam], with the number of atoms k passing
the cavity, is shown for different widths σ of the integrated cou-
pling distribution, which for simplicity is assumed normal, g(φ) =
exp[−(φ − 〈φ〉)2/2σ 2]/

√
2πσ 2. The initial state is the vacuum |0〉,

the atom state is ce = 0.65, and the coupling φ = φ20, 5 ≈ 0.73707
[equal to the parameters of the stationary state (iii) in Figs. 2 and 8].
Dynamics was averaged over 100 random trajectories [cf. Eq. (G66)].
Note the control of the order of 0.1% in the velocity spread is
required in order to achieve Tr(ρ2) > 0.9 and >90% of the QFI that
was obtained with a monochromatic beam.

case for micromaser with atom levels of finite lifetime (cf.
Appendix G 4).

VI. EXPERIMENTAL CONSIDERATIONS

Finally, we briefly review possible platforms to implement
the Hamiltonian in Eq. (6).

1. Rydberg atoms

Atoms excited to their higher principal quantum number
states, so-called Rydberg atoms, interacting with a microwave
cavity are the setup where two-photon micromasers were
originally developed [31,32]. The interaction time is given
by τ = w/v, where w is the cavity of mode waist and v is
the speed of atoms passing through the cavity. For w ≈ 2 ×
10−3 m and v ≈ 102 m s−1 [105], we have τ ≈ 2 × 10−5 s.
Therefore, a finite integrated coupling strength φ ≈ 1 requires
the coupling strength λ ≈ 10 kHz, already achievable in three-
level micromasers [32]. We note, however, that currently
typical single-photon loss rate κ ≈ 100 Hz [36], while in order
for the loss to be treated as the perturbation in the cavity
dynamics the relaxation timescale must be much shorter than
κ−1 [see Fig. 2(c) and cf. Sec. IV B], and thus loss rate κ

would need to be significantly lower (or τ shorter to allow
for higher atom rate ν).

Nevertheless, in order to consider effective two-photon
coupling λ in a (5 + 1) model realized with Rydberg atoms,
we aimed to identify five Rydberg levels fulfilling the condi-
tions in Eqs. (5a) and (5b) [the condition in (5c) can be sat-
isfied by appropriate choice of the Rabi frequency G and the
detuning δ of the classical field]. We performed a preliminary
search using the Alkali.ne Rydberg Calculator (ARC) package
[106,107] among 30 basis states close to the levels realiz-
ing two-photon micromaser in Ref. [32], 39S 1

2
↔ 39P 3

2
↔

40S 1
2
. We identified the transitions 37S 1

2
↔ 37P3

2
↔ 38S 1

2
↔

38P3
2

↔ 39S 1
2

with ω ≈ 500 GHz, |� j | ≈ 21 GHz, and g j ≈
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0.3 MHz leading to |g1|2/�1 = 0.95|g2|2/�, |g4|2/�4 =
−1.02|g3|2/� [cf. Eq. (5)]. The effective coupling strength
|λ| ≈ 5 Hz leads only to the weak-coupling regime with φ ≈
10−4, where the Schrödinger cat states could be generated
(see Sec. III C). Considering larger set of basis states and an
external electric field enabling tunable detunings � j through
the static Stark effect, could, however, yield transitions with
stronger effective interaction. See Appendix J for further
discussion.

2. Circuit QED

Circuit QED represents a versatile platform to realize
Hamiltonians with strong higher order photon processes
[39–41,108]. In particular, a scheme studied in Ref. [109]
realized a system with a tunable coupling between a
transmon qubit and a microwave resonator with the ef-
fective single-photon Jaynes-Cummings Hamiltonian, H =
λ(t )ã†σ̃− + λ(t )∗ãσ̃+, where ã, σ̃ are the effective photonic
and atomic operators dressed by the anharmonic Jaynes-
Cummings Hamiltonian of the qubit-cavity system. It remains
an open question whether the two-photon Jaynes-Cummings
Hamiltonian in Eq. (6) can also be achieved.

VII. CONCLUSIONS

We have proposed a scheme to realize two-photon micro-
masers exploiting a (5 + 1)-level structure of atoms passing
through a cavity. We have shown that the atom parameters
can be tuned to achieve an effective two-photon interaction
Hamiltonian without the Stark shifts, unlike in the three-level
micromasers. We have found this enables dissipative genera-
tion of pure states with high quantum Fisher information for
phase estimation. Furthermore, we have found that the pure
odd- and even-parity stationary states span a decoherence-free
subspace. Thus, in addition to phase estimation, the discussed
scheme could be exploited in quantum information process-
ing (cf. Ref. [39]), as a quantum memory or as a quantum
processor with unitary operations implemented by perturbing
the micromaser dynamics [89,90,110].

To account for realistic imperfections, we have considered
effects of higher order corrections in the far-detuned limit,
single-photon losses from the cavity, finite lifetime of atom
levels, and nonmonochromatic atom beam. For small enough
imperfections, there exists a pronounced metastable regime
with metastable states corresponding to the formerly station-
ary states. After the metastable regime, the relaxation to a
unique stationary state takes place. Importantly, we found
that even after the metastable regime, the generated stationary
states, although mixed, can still feature a significant enhance-
ment in phase estimation precision.

Future research directions include identifying experimental
schemes to implement the (5 + 1)-level model and construct-
ing feedback schemes to counteract the mixing dynamics of
metastable states due to single-photon losses.
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APPENDIX A: ATOM-CAVITY INTERACTION

1. (5 + 1) Jaynes-Cummings Hamiltonian

Here we present the details of the transformations leading
to Eq. (2).

We consider (5 + 1)-level atoms the cavity field of fre-
quency ω with the free Hamiltonian [see Fig. 1(a)]

H ′
0 = ω

(
a†a + 1

2

)
+

∑
j=0,...,4,a

Ej σ j j, (A1)

where σi j = |i〉〈 j|, a and a† denote the cavity annihilation
and creation operators, and h̄ = 1. The atom is coupled to the
cavity field and a classical field of frequency ωcl and Rabi
frequency G [112]

H ′
int (t ) = (a + a†)

4∑
j=1

g j σ j( j−1)

+ (Ge−iωclt + G∗eiωclt )σa3 + H.c. (A2)

In the frame rotating with the free Hamiltonian H ′
0,

Eq. (A1), the interaction Hamiltonian (A2) becomes

eitH ′
0 H ′

inte
−itH ′

0 = (a + ei2ωt a†)
4∑

j=1

g j ei� j t σ j( j−1)

+ (G + G∗ei2ωclt )eiδtσa3 + H.c. (A3)

Since the detunings are assumed much smaller than the
corresponding energy gaps, |� j |, |δ| � ω,ωcl are assumed,
we can perform the rotating-wave approximation by neglect-
ing the counter-rotating terms in (A3) (see, e.g., Ref. [113,
ch. 5.2.2]). This leads to the atom-cavity interaction described
by multilevel Jaynes-Cummings Hamiltonian [62]

H ′′
int (t ) = a

4∑
j=1

g j ei� j t σ j( j−1) + Geiδtσa3 + H.c. (A4)

while in the initial frame we have

HJC(t ) = e−itH ′
0 H ′′

int (t )eitH ′
0

= a
4∑

j=1

g j σ j( j−1) + Ge−iωclt σa3 + H.c. (A5)

It is important to note that the new dynamics, H ′
0 + HJC(t ),

conserves the number of excitations N = n + ∑4
j=1 jσ j j +

3σaa, where n = a†a is the cavity photon number operator, i.e.,
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[N, H ′
0 + HJC(t )] = 0. Moreover, it is possible and relevant

(see Appendix B 1) to remove time dependence from the
dynamics (A5), by considering the frame rotating with (ωN +
ωclσaa ), which leads to the dynamics governed by Eq. (2).

2. Effective two-photon interaction

Here we consider adiabatic elimination [56,57] for atom-
cavity dynamics described by H0 + Hint of (2a) and (2b) at the
resonance (3). We derive the effective two-photon Hamilto-
nian of Eqs. (4) and (6), which arise in the second-order of
couplings g1, g2, g3, g4, and G [see Fig. 1(a)].

Adiabatic elimination can be viewed as formally diago-
nalizing H = H0 + Hint, (2a) and (2b), by perturbation theory
with respect to Hint. The Hamiltonian H is diagonalized by a
unitary transformation eS , where the anti-Hermitian operator
S is assumed to be expanded in the coupling strength, S =
S1 + S2 + · · · . Therefore,

Hdiag = eS (H0 + Hint )e
−S

= H0 + Hint + [S, H0 + Hint]

+ 1

2!
[S, [S, H0 + Hint] + · · ·

= H0 + (Hint + [S1, H0]) +
(

[S2, H0] + [S1, Hint]

+ 1

2!
[S1, [S1, H0]]

)
+ · · · , (A6)

where we ordered the second line of (A6) in increasing power
of the interaction strength. Note that Hdiag is assumed diagonal
up to initial degeneracy in H0 of the atomic levels |1〉 and |3〉,
which is due to the resonance (3). Therefore, from (A6), S is
perturbatively determined [114] as [cf. Ref. [57]]

−[S1, H0] = Hint,

−[S2, H0] =
(

[S1, Hint] + 1

2!
[S1, [S1, H0]]

)′
, . . . , (A7)

where (X )′ denotes the off-diagonal elements of X in the
eigenbasis of H0. The first condition simplifies Eq. (A6) to
only even-number corrections,

Hdiag = H0 +
(

[S2, H0] + 1

2
[S1, Hint]

)
+ · · · , (A8)

which is a consequence of the assumed two-photon resonance
in H0 and single-photon interactions in Hint. Substituting (A7)
to (A8), we obtain

Hdiag = H0 +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−a†a |g1|2
�1

0 0 0 0 0

0 a a† |g1|2
�1

− a†a g2
2

�2
0 a†2 g∗

2g∗
3(�2−�3 )
2�2�3

0 0

0 0 a a† |g2|2
�2

− a†a |g3|2
�3

0 0 0

0 a2 g2g3(�2−�3 )
2�2�3

0 a a† |g3|2
�3

− a†a |g4|2
�4

− |G|2
δ

0 0

0 0 0 0 a a† |g4|2
�4

0

0 0 0 0 0 |G|2
δ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ · · ·

(A9)
for the operators

S1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −a† g∗
1

�1
0 0 0 0

a g1

�1
0 −a† g∗

2
�2

0 0 0

0 a g2

�2
0 −a† g∗

3
�3

0 0

0 0 a g3

�3
0 −a† g∗

4
�4

−G∗
δ

0 0 0 a g4

�4
0 0

0 0 0 G
δ

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A10)

S2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 −a†2 g∗
1g∗

2(�1−�2 )
2�1�2(�1+�2 ) 0 0 0

0 0 0 0 0 0

a2 g1g2(�1−�2 )
2�1�2(�1+�2 ) 0 0 0 −a†2 g∗

3g∗
4(�3−�4 )

2�3�4(�3+�4 ) −a† g∗
3G∗(�3−δ)

2�3δ(δ+�3 )

0 0 0 0 0 0

0 0 a2 g3g4(�3−�4 )
2�3�4(�3+�4 ) 0 0 −a g4G∗(�4+δ)

2�4δ(−�4+δ)

0 0 a g3G(�3−δ)
2�3δ(δ+�3 ) 0 a† g∗

4G(�4+δ)
2δ�4(−�4+δ) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A11)

It should be emphasised that atom-cavity interaction,
Eq. (A9), takes place in the diagonalising basis [cf.

Eq. (A6)] given by eS (| j〉 ⊗ |n〉) = | j〉 ⊗ |n〉 + S1(| j〉 ⊗
|n〉) + · · · , where the atom levels are labeled by j =
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0, . . . , 4, a, while n = 0, 1, 2... denotes a photon number in
the cavity. In the far-detuned limit of |gj/� j | � 1 for j =
1, .., 4, a and |G/δ| � 1, the lowest order corrections, the
diagonalizing basis corresponds to the original atomic levels
|0〉,..., |4〉 and |a〉, in tensor product with the photon number
basis of the cavity states. In particular, in Sec. II B, Hdiag

restricted to the levels |1〉 and |3〉 is considered [cf. Eqs. (2a)
and (2b)]. In Appendix B 2, we consider corrections to the
dynamics beyond this approximation.

We note that the results in Eqs. (A9)–(A11) do not require
the resonance condition in Eq. (3). When this condition is
not fulfilled, H0 contributes a static Stark shift (�2 + �3)σ33

to the effective Hamiltonian in Eq. (4). This effect can be
eliminated by adjusting ωcl (and thus δ) or G of the classical
field [cf. Eq. (5)].

Due to conservation of the number of excitations, N =
a†a + ∑4

j=1 j σ j j + 3σaa, although the cavity space di-
mension is infinite, the perturbation theory above is ef-
fectively performed on (at most) six-dimensional sub-
spaces spanned by |0〉 ⊗ |n〉, |1〉 ⊗ |n − 1〉, |2〉 ⊗ |n − 2〉,
|3〉 ⊗ |n − 3〉, |4〉 ⊗ |n − 4〉, and |a〉 ⊗ |n − 3〉, for n =
0, 1, ..., denoting the photon number in the cavity. For
given N , the effective perturbation size can be approx-
imated as ‖Hint‖‖(H0 − �1)+‖ = O[max(N max j |g j |, G)/
min(|�1|, |�2|, |�4|, δ)], where (H0 − �1)+ denotes the
pseudoinverse [88–91]. This defines the far-detuned limit for
a given N . When the dynamics in the two-level approximation
(10) features well-defined stationary states and the initial cav-
ity state is bounded, i.e., it has a finite support below nin, we
expect the stationary state to be achieved at a finite-relaxation
time τrelax exploring effectively a finite cavity space; cf., e.g.,
Ref. [54]. If the perturbation size is small for N � ντrelax, for
full atom-cavity dynamics given by H0 + Hint there exists a
metastable regime where two-level approximation holds and
a metastable state is given by the former stationary state. At
longer times, the effective dynamics resulting from the higher
order corrections takes place and leads to a unique stationary
state (see also Sec. IV A). In the next section, we consider
these higher order corrections to dynamics.

APPENDIX B: MICROMASER

Here we discuss general dynamics of a micromaser and
the assumptions leading to the Markovian time-homogeneous
dynamics of the cavity, the case of which is discussed for
the far-detuned limit in Sec. II C. In Appendix B 2, we de-
rive the higher order corrections to the two-photon dynam-
ics described by the Kraus operators (10), which lead to
metastability and mixing long-time dynamics discussed in
Sec. IV A.

1. General dynamics

A micromaser is a setup in which atoms pass through the
cavity, one at a time, and interact with its field [see Fig. 1(b)].

a. Assumptions for Markovian time-homogenous micromaser

We now discuss three assumptions leading to Markovian
time-homogenous dynamics of the micromaser (cavity) [64].

Assumption 1. Atoms are prepared identically and in a
product state with respect to one another and the cavity.

Let ρ (k) be the state of the cavity after the interaction with
k atoms. In the frame rotating with the free Hamiltonian (A1),
the cavity state changes only when an atom is passing through.
For an initial state of the cavity and the atoms given by tensor
product ρ (0) ⊗ (ρat ⊗ · · · ⊗ ρat ⊗ · · · ), the state ρ (k) of the
cavity depends only on its state ρ (k−1) before the interaction
with kth atom,

ρ (k) = Trat{U (tk, τk )[ρat ⊗ ρ (k−1)]U †(tk, τk )}, (B1)

where tk and τk denote the arrival time of the kth atom and the
duration of its interaction with the cavity field, respectively,
while

U (t, τ ) = T exp

{
−i

∫ t+τ

t
dt ′H ′′

int (t
′)
}

(B2)

is the time-ordered evolution operator for the interaction (A4).
Equation (B1) represents Markovianity of the cavity dynam-
ics.

Assumption 2. The atomic beam is monochromatic, i.e.,
velocity of all atoms is the same.

In this case, the interaction time with the cavity is the
same for all atoms, τk ≡ τ . Note that the atomic state ρat

is typically not initialized for all atoms at t = 0 as written
formally in Assumption 1. In practice, a state in Eq. (8) can
be prepared by atoms passing on their way to the cavity
through a laser resonant with the transition |1〉 ↔ |3〉, which,
for atoms with the same velocity, leads to the identical state
(as the laser phase is constant in the frame rotating with H ′

0).
For discussion of changes in micromaser dynamics due to
nonmonochromatic atomic beam, see Appendix G 3 f.

Assumption 3. The atom state is invariant under the dy-
namics (2a), e−itH0ρateitH0 = ρat.

With Assumption 2, the cavity dynamics (B1) depends
on time only via the time-dependent interaction Hamilto-
nian (A4). The interaction Hamiltonian is, however, time
independent in the frame of (ωN + ωclσaa ) [cf. Eq. (2b)],
which differs from the frame of H ′

0 by the Hamiltonian −H0

[Eq. (2a)]

U (t, τ ) = e−itH0
{
T e−i

∫ τ

0 dt ′[Hint (t ′ )+H0]}ei(t+τ )H0 . (B3)

Since H0 acts only on the atom state, we have

ρ (k) = Trat{U (τ )[ei(tk+τ )H0ρate
−i(tk+τ )H0 ⊗ ρ (k−1)]U †(τ )},

(B4)

where we introduced

U (τ ) = T e−i
∫ τ

0 dt[Hint (t )+H0], (B5)

so that for the invariant atom state the cavity dynamics sim-
plifies to

ρ (k) = Trat
{
U (τ )

[
ρat ⊗ ρ (k−1)

]
U †(τ )

}
. (B6)

The time dependence of the interaction on t in Eq. (B5) is due
to the coupling strengths gj (t ), j = 1, . . . , 4, and G(t ) being
in general dependent on the atom position within the cavity,
which changes in time t [cf. Eqs. (2a) and (2b)].
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In order for an atom state to be invariant, it cannot feature
coherences between H0 eigenstates of different energy; e.g.,
for a nondegenerate H0 it must be diagonal. In order for the
pure coherent state in Eq. (8) to be invariant, we require the
two-photon resonance in Eq. (3), which leads to degeneracy
of |1〉 and |3〉 in H0.

We note, however, that when the resonance condition can-
not be met, time-homogeneous cavity dynamics can be, in
principle, achieved by preparing the atoms in states with a
phase dependent on arrival time, e.g., for the state in Eq. (8) by
preparing the state with an off-resonant Rabi driving detuned
by −(�2 + �3) [cf. Eq. (2a)] (cf. discussion of Assump-
tion 2.).

b. Discrete dynamics of micromaser

For a pure invariant atom state, ρat = |ψat〉〈ψat| [e.g.,
Eq. (8)], the dynamics in Eq. (B6) can be expressed with the
Kraus operators

Mj = 〈 j|U (τ )|ψat〉 (B7)

as

ρ (k) =
∑

j=0,...,4,a

Mj ρ
(k−1) M†

j ≡ M[ρ (k−1)], (B8)

where M denotes the corresponding superoperator. We have∑
j=0,...,4,a M†

j Mj = 1, which guarantees the trace-preserving
dynamics M†(1) = 1. The general case of the dynamics with
a mixed state instead of the pure state in Eq. (8) is discussed
in Appendix G 3 d.

c. Continuous dynamics of micromaser

Assuming that time at which atoms arrive to the cavity
is exponentially distributed at the rate ν (see below and
Refs. [31,64,65]), the average dynamics of the cavity, coarse-
grained in time over intervals τ , is governed by the time-
homogeneous master equation [66,67]

d

dt
ρ(t ) = ν M[ρ(t )] − ν ρ(t ) ≡ L[ρ(t )]. (B9)

The dynamics is trace preserving, L†(1) = 0, which follows
from the properties of the Kraus operators.

Note that in the micromaser setup, it is assumed that at
most one atom is found in the cavity at a time [see Fig. 1(b)].

A possible approach used to obtain this is for the levels | j〉,
j = 0, 1, ..., 4, c in Fig. 1(a) to be a subset of highly excited
levels (e.g., Rydberg levels) in a multilevel atom [64,65].
The initial state of the atoms is then prepared by passing a
stream of atoms, initially in a low-energy state, through the
excitation region where the states | j〉, j = 0, 1, . . . , 4, c, can
be excited. If the probability of excitation from the low-energy
state is small, due to the law of rare events, the number of
atoms that arrive to the cavity prepared in the relevant states
| j〉, j = 0, 1, . . . , 4, c, up to times t is approximated by a
Poisson distribution with the average νt , while the waiting
time between the arrival of the consecutive excited atoms is
given by the exponential distribution with the rate ν.

2. Higher order corrections to cavity dynamics

The cavity dynamics generated by the effective Hamilto-
nian in Eq. (6) corresponds to the adiabatic elimination carried
out to the lowest nontrivial order in g j/� j , j = 1, 2, 3, 4 and
G/δ. We now discuss how the effective micromaser dynam-
ics in Eq. (B4), which is parity preserving, is modified by
higher order corrections to the far-detuned limit. The analysis
below is for a general setup of Fig. 1(a), with two photon
resonance in Eq. (3) and the effective Hamiltonian in Eq. (4).
Therefore, the results apply both to three-level model [31,33–
35,42,44,61] and (5 + 1) model in Sec. II C, where the Stark
shifts can be removed in the far-detuned limit [cf. Eq. (6)].
We discuss the influence of the higher order corrections on
the latter case in Sec. IV A.

a. Kraus operators

The Kraus operators, which describe the change in the
cavity state due to passage of a single atom, are given by [cf.
Eq. (42)]

Mj = 〈 j|U (τ )|ψat〉
= 〈 j|e−SUdiag(τ )eS|ψat〉 j = 0, . . . , 4, a, (B10)

where U (τ ) = e−iτ [Hint+H0], Udiag(τ ) = e−iτHdiag , e−S diagonal-
izes Hint + H0, and |ψat〉 is the pure state of the atom entering
the cavity. We have assumed for simplicity that the field-atom
coupling strength is constant, Hint(t ) = Hint. Considering |ψat〉
to be given by (8), i.e., a superposition between |1〉 and |3〉,
the Kraus operators (derived below) M0, M2, and M4 swap the
parity, while the Kraus operators M1, M3, and Ma, conserve
the parity [cf. Eq. (43)].

b. Time-independent corrections

As in Appendix A 2, we now consider the expansion of (B10) with respect to S = S1 + S2 + . . ., where j in S j denotes the
power of the coupling strength g, G (the time-dependent perturbative corrections in Udiag(τ ) will be discussed later). We have

Mj = 〈 j|Udiag(τ )|ψat〉 + (−〈 j|S1Udiag(τ )|ψat〉 + 〈 j|Udiag(τ )S1|ψat〉)

+
[
−〈 j|S1Udiag(τ )S1|ψat〉 + 〈 j|

(
S2

1

2
− S2

)
Udiag(τ )|ψat〉 + 〈 j|Udiag(τ )

(
S2

1

2
+ S2

)
|ψat〉

]
+ . . . , (B11)
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where the last two terms in the first line and the second line correspond to the first- and second-order corrections. The operators
S1 and S2 are given by Eqs. (A10) and (A11), which leads to the parity-conserving Kraus operators given by

M1 = U 11
diag(τ )cg + U 13

diag(τ )ce + 1

2

(
−aa† |g1|2

�2
1

− a†a
|g2|2
�2

2

)[
U 11

diag(τ )cg + U 13
diag(τ )ce

] + a†2 g∗
2g∗

3

2�2�3

[
U 31

diag(τ ) cg + U 33
diag(τ ) ce

]
+ 1

2
U 11

diag(τ )

[(
−aa† |g1|2

�2
1

− a†a
|g2|2
�2

2

)
cg + (a†)2 g∗

2g∗
3

�2�3
ce

]
+ 1

2
U 13

diag(τ )

[(
−aa† |g3|2

�2
3

− a†a
|g4|2
�2

4

− |G|2
δ2

)
ce

+ a2 g2g3

�2�3
cg

]
+ aU 00

diag(τ ) a† |g1|2
�2

1

cg + a† g∗
2

�2
U 22

diag(τ )

(
a

g2

�2
cg − a† g∗

3

�3
ce

)
+ · · · , (B12)

M3 = U 31
diag(τ )cg + U 33

diag(τ )ce + 1

2

(
−aa† |g3|2

�2
3

− a†a
|g4|2
�2

4

− |G|2
δ2

)[
U 31

diag(τ )cg + U 33
diag(τ )ce

]
+ a2 g2g3

2�2�3

[
U 11

diag(τ ) cg + U 13
diag(τ ) ce

] + 1

2
U 31

diag(τ )

[(
−aa† |g1|2

�2
1

− a†a
|g2|2
�2

2

)
cg + (a†)2 g∗

2g∗
3

�2�3
ce

]
+ 1

2
U 33

diag(τ )

[(
−aa† |g3|2

�2
3

− a†a
|g4|2
�2

4

− |G|2
δ2

)
ce + a2 g2g3

�2�3
cg

]
− a

g3

�3
U 22

diag(τ )

(
a

g2

�2
cg − a† g∗

3

�3
ce

)
+ a†U 44

diag(τ ) a
|g4|2
�2

4

ce + U aa
diag(τ )

|G|2
δ2

ce + · · · , (B13)

and

Ma = −G

δ

[
U 31

diag(τ ) cg + U 33
diag(τ ) ce − U aa

diag(τ ) ce
] + · · · , (B14)

where U jk
diag(τ ) ≡ 〈 j|Udiag(τ )|k〉 for j, k = 0, ..., 4, a [cf. Eq. (10)]. Note that M1 and M3 do not feature first-order corrections

[the second and third terms in (B11)], due to their parity conservation, as S1 swaps the cavity parity, except for the atom in levels
|3〉 and |a〉, so that Ma is of the first order. For this reason, the parity-swapping Kraus operators are of the first order,

M0 = a† g∗
1

�1

[
U 11

diag(τ ) cg + U 13
diag(τ ) ce

] − U 00
diag(τ ) a† g∗

1

�1
cg + · · · , (B15)

M2 = −a
g2

�2

[
U 11

diag(τ ) cg + U 13
diag(τ ) ce

] + a† g∗
3

�3

[
U 31

diag(τ ) cg + U 33
diag(τ ) ce

] + U 22
diag(τ )

(
a

g2

�2
cg − a† g∗

3

�3
ce

)
+ · · · , (B16)

M4 = −a
g4

�4

[
U 31

diag(τ ) cg + U 33
diag(τ ) ce

] + U 44
diag(τ ) a

g4

�4
ce + · · · . (B17)

c. Time-dependent corrections

We now discuss time-dependent corrections to Udiag(τ ) = e−iτHdiag from the diagonal Hamiltonian Hdiag = H0 + Hdiag
2 +

Hdiag
4 + · · · , (A9), where Hdiag

k denotes kth-order corrections. As H0 commutes by definition with Hdiag, we have

Udiag(τ ) = e−iτH0 e−iτ (Hdiag
2 +Hdiag

4 +··· ) = e−iτ (H0+Hdiag
2 )

(
1 − i

∫ τ

0
dt eitHdiag

2 Hdiag
4 e−itHdiag

2 + · · ·
)

, (B18)

where in the last equality we used the Dyson series. The correction∫ τ

0
dt eitHdiag

2 Hdiag
4 e−itHdiag

2 ≡ τ δHeff(τ ) (B19)

can be considered as the contribution from the time-averaged Hdiag
4 in the rotating frame of Hdiag

2 . For the interaction time τ

chosen so that the second-order dynamics in the two-level approximation [Eqs. (6) and (10)] is finite, the correction τ δHeff(τ )
contributes as the second order to Udiag(τ ). We thus have [cf. Eq. (B18) and (10)]

U 11
diag(τ ) cg + U 13

diag(τ ) ce ≡ e−iτ�1 [Mg + δMg] + · · ·
= e−iτ�1 〈1|e−itHdiag

2 |ψat〉 − iτe−iτ�1

×
[

cos(φ
√

a†2a2) 〈1|δHeff(τ )|ψat〉 − ia†2 sin(φ
√

a2a†2)√
a2a†2

〈3|δHeff(τ )|ψat〉
]

+ · · · , (B20a)
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U 31
diag(τ ) cg + U 33

diag(τ ) ce ≡ e−iτ�1 [Me + δMe] + · · ·
= e−iτ�1 〈3|e−itHdiag

2 |ψat〉 − iτe−iτ�1

×
[
−ia2 sin(φ

√
a†2a2)√

a†2a2
〈1|δHeff(τ )|ψat〉 + cos(φ

√
a†2a2) 〈3|δHeff(τ )|ψat〉

]
+ · · · , (B20b)

where we defined the zeroth-order Kraus operators Mg and Me, cf. Eq. (10) [note that the Kraus operators in (10) differ by the

global phase eiτ |g2 |2
� , which was additionally neglected in (6)]. For the Kraus operators in other micromaser setups, including the

three-level model, see Appendix C.
Therefore, up to the second order in the coupling strength, the cavity dynamics (B9) is determined by the first-order Kraus

operators,

eiτ�1 M0 = a† g∗
1

�1
Mg − eiτ (�1+ |g1 |

�1
a†a) a† g∗

1

�1
cg + · · · , (B21)

eiτ�1 M2 = −a
g2

�2
Mg + a† g∗

3

�3
Me + e−iτ (�2+a a† |g2 |2

�2
−a†a |g3 |2

�3
)
(

a
g2

�2
cg − a† g∗

3

�3
ce

)
+ · · · , (B22)

eiτ�1 M4 = −a
g4

�4
Me + e−iτ (

∑4
k=2 �k+a a† |g4 |2

�4
) a

g4

�4
ce + · · · , (B23)

eiτ�1 Ma = −G

δ

[
Me − e

−iτ
(∑3

k=2 �k+δ+ |G|2
δ

)
ce

]
+ · · · , (B24)

where fourth-order corrections to Hdiag in (A9) are neglected. Similarly,

eiτ�1 M1 = Mg + 1

2

(
−aa† |g1|2

�2
1

− a†a
|g2|2
�2

2

)
Mg + a†2 g∗

2g∗
3

2�2�3
Me + 1

2
Mgg

[(
−aa† |g1|2

�2
1

− a†a
|g2|2
�2

2

)
cg + (a†)2 g∗

2g∗
3

�2�3
ce

]

+1

2
Mge

[(
−aa† |g3|2

�2
3

− a†a
|g4|2
�2

4

− |G|2
δ2

)
ce + a2 g2g3

�2�3
cg

]

+ a eiτ (�1+ |g1 |2
�1

a†a) a† |g1|2
�2

1

cg + a† g∗
2

�2
e−iτ (�2+a a† |g2 |2

�2
−a†a |g3 |2

�3
)
(

a
g2

�2
cg − a† g∗

3

�3
ce

)
− iτ 〈1|δHeff(τ )|ψat〉 + · · · ,

(B25)

eiτ�1 M3 = Me + 1

2

(
−aa† |g3|2

�2
3

− a†a
|g4|2
�2

4

− |G|2
δ2

)
Me + a2 g2g3

2�2�3
Mg + 1

2
Meg

[(
−aa† |g1|2

�2
1

− a†a
|g2|2
�2

2

)
cg + (a†)2 g∗

2g∗
3

�2�3
ce

]
+ 1

2
Mee

[(
−aa† |g3|2

�2
3

− a†a
|g4|2
�2

4

− |G|2
δ2

)
ce + a2 g2g3

�2�3
cg

]
− a

g3

�3
e−iτ (�2+a a† |g2 |2

�2
−a†a |g3 |2

�3
)
(

a
g2

�2
cg − a† g∗

3

�3
ce

)
+ a† e−iτ (

∑4
k=2 �k+a a† |g4 |2

�4
) a

|g4|2
�2

4

ce

+ e−iτ (
∑3

k=2 �k+δ+ |G|2
δ

) |G|2
δ2

ce − iτ 〈3|δHeff(τ )|ψat〉 + · · · , (B26)

and we defined Mμν ≡ Mμ with cν = 1, where μ, ν = g, e. The global phase factor eiτ�1 in Eqs. (B21)–(B26) corresponds to a
global phase neglected in (4). Furthermore, for the (5 + 1) model, the conditions in Eq. (5) leading to cancellation of the Stark
shifts establish dependent variables: g∗

1/�1 = g2/
√

�1�, −g4/�4 = g3/
√

�4�, and −G/δ =
√

|g2|2 + |g3|2/
√

�δ.
For completeness, we now provide fourth-order corrections to (A9), which contribute to Eq. (B19), for the case g1 = g2 =

g3 = g4 = g, �1 = �2 = −�3 = −�4 = �, and G2/δ = −2g2/�,

Hdiag
4 =

[
4g4[ a†a(a†a−3)−1]

3�3 a† 8g4(g2+G2a†a)
3G2�3 a†

a 8g4(g2+G2a†a)
3G2�3 a − 4g4[4g2−G2(a†aaa†+1)]

3G2�3

]
, (B27)

which are expressed for eS (|1〉 ⊗ |n〉) and eS (|3〉 ⊗ |n〉), i.e., the diagonal basis of the atom-cavity Hamiltonian [cf. Eq. (A6)].
Here (B27) was obtained from (A6) by considering the expansion of S up to the fourth order, i.e., S = S1 + S2 + S3 + S4 + · · · .
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d. Higher order corrections in the three-level model

In the three-level model [see Eq. (6) with g1 = 0, g4 =
0, G = 0] at resonance (3), the stationary state is known to
be pure for all detunings and given by the squeezed vacuum
[42,44]. We will now recover this result by showing that this
state is not affected by the parity swapping Kraus operator
M2 [cf. Eq. (42)]. Indeed, beyond adiabatic limit we have [cf.
Eq. (B22)]

M2 = −a
g2

�
Mg − a† g∗

3

�
Me

+ e−iτ (�+a a† |g2 |2
�

+a†a |g3 |2
�

)

(
a

g2

�
cg + a† g∗

3

�
ce

)
+ · · · ,

(B28)

where Mg and Me correspond to three-level dynamics. The
M2 operator, however, is 0 in the first order on the squeezed
vacuum state |�+〉, as(
−a

g2

�
Mg − a† g∗

3

�
Me

)
|�+〉

= −
(

a
g2

�
cg + a† g∗

3

�
ce

)
|�+〉

=
∞∑

n=0

(√
2n + 2

g2

�
cg c2n+2 + √

2n + 1
g∗

3

�
ce c2n

)
|2n + 1〉

= 0, (B29)

where in the first equality we used that in three-level model we
have Me|ψ±〉 = ce and Mg|ψ±〉 = cg (up to a global phase)
(see Appendix C). The last equality follows from the recur-
rence relation for the pure stationary states (cf. Appendix C)

cn+2

cn
= − ce

cg

g∗
3

g2

√
n + 1√
n + 2

. (B30)

It is worthwhile to emphasize that for the state of the negative
parity (odd n), the parity-swapping Kraus operator M2 does
not vanish on its one-photon component, thus leading to its
decay and a unique stationary state of the dynamics given by
the squeezed vacuum [42] (see also Appendix G 2).

APPENDIX C: PURE STATIONARY STATES
OF TWO-PHOTON MICROMASERS

In Appendix A 2, we derived the effective two-photon
Hamiltonian, Eq. (4), describing the far-detuned limit of the
cavity interaction with a multilevel atom in the ladder con-
figuration [see Fig. 1(a)]. Here we discuss pure stationary
states of general two-photon dynamics, with a Hamiltonian
of the same functional form as (4) but with arbitrary Stark
shifts and two-photon couplings. We show that beyond the
stationary states in Eq. (19), the only pure states correspond
to the stationary states of the three-level model [42,44,61].

1. Effective Hamiltonian

Within RWA, i.e., for dynamics-based single-photon
Jaynes-Cummings interactions, the adiabatic limit of far-
detuned levels with a two-photon resonance [Eq. (3)] leads

in the second-order to the effective Hamiltonian

Heff =
[

Aa†a + B1 C∗a†2

C a2 D a†a + E 1

]
, (C1)

where A, B, D, E ∈ R and C ∈ C and the basis is given by the
resonant levels |1〉, |3〉 [cf. Appendix A 2 and Eq. (4)]. The
constants A, B, D, and E describe the Stark shifts, while C
determines the effective two-photon coupling strength.

2. Pure stationary states

We are interested in the case when the two Kraus operators
corresponding to the Hamiltonian (C1) feature the same cavity
state |�ss〉 = ∑∞

n=0 cn|n〉 as an eigenvector. This corresponds
to the following set of equations [cf. Eqs. (10) and (17)]

α cn+2 = e−iϕn

{
cg

[
cos(φn) − iτ sz

n

sin(φn)

φn

]
cn+2

− iceτ
(
sx

n

)∗ sin(φn)

φn
cn

}
, (C2a)

β cn = e−iϕn

{
−icgτ sx

n

sin(φn)

φn
cn+2

+ ce

[
cos(φn) + iτ sz

n

sin(φn)

φn

]
cn

}
, (C2b)

where

sz
n = A(n + 2) + B − Dn − E

2
, sx

n = C
√

(n + 1)(n + 2),

(C3)

φn = τ

√
(sz

n)2 + |sx
n|2, ϕn = τ

(A + D)n + 2A + B + E

2
.

(C4)

Equations (C2) feature a nontrivial solution when the corre-
sponding determinant is 0 independently of n,

αβ + e−i2ϕn cecg − e−iϕn cos(φn)(αce + βcg)

− ie−iϕnτ sz
n

sin(φn)

φn
(αce − βcg) = 0, (C5)

where on the left-hand side we used the fact τ 2[(sz
n)2 +

|sx
n|2] = φ2

n .
Note that in the absence of coupling, C = 0, we obtain

that sx
n ≡ 0, and dynamics corresponds to the dephasing of

coherences, which is caused by the Stark shifts in (C1). This
leads to a stationary state of the cavity given by the diagonal
of an initial state (a classical state without coherences), unless
both φn and ϕn are independent of n (this takes place when
A = 0 = D, in which case the Stark shift is independent from
the cavity field, and instead of dephasing the passage of atoms
only changes the global phase).

For the case of C �= 0, the last term in Eq. (C4) with
sz

n sin(φn)/φn, is an independent function of n, from both
cos(φn) and e−iϕn , e−i2ϕn ; i.e., it cannot be canceled by the
other terms for all n. Therefore, for Eq. (C4) to hold, it
is necessary for the last term to vanish for all n, which
takes place when sz

n = 0 or αce − βcg = 0, which define two
complementary cases we now discuss.
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a. Case A

Lets first consider sz
n = 0, which from (C3) yields the

effective Hamiltonian coefficients as

A = D and B = E + 2A, (C6)

As C �= 0, φn depends on n, and furthermore cos(φn) is an
independent function from e−iϕn and e−2iϕn . Therefore, it is
required that αce + βcg = 0, so that the outgoing state of
atoms are given by [cf. Eq. (18)]

α = e−iϕcg, β = −e−iϕce. (C7)

This in turn simplifies the first two terms in (C4) as
αβ + cecge−2iϕn = −2ie−i(ϕn+ϕ)cecg sin(ϕn − ϕ), which thus
requires ϕn = ϕ + kπ , where k ∈ Z, so that

A = −D = 0 and ϕ = 2Bτ + kπ, (C8)

and there are no Stark shifts (except the global phase ϕ): A =
D = 0, B = E . This is exactly the case discussed at length in
this work, which leads to the stationary states given by the
recurrence relation (19) [by choosing k = 0, 1 in ϕ].

b. Case B

In order to remove the amplitude of the last term in
Eq. (C4), we now consider αce − βcg = 0, which determines
the outgoing state of atoms as [cf. Eq. (C7)]

α = e−iϕcg, β = e−iϕce. (C9)

In this case, we have for the remaining terms

αβ+e−2iϕn cecg−e−iϕn cos(φn)(αce+βcg) = e−i(ϕn+ϕ)cecg[cos(ϕn − ϕ) − cos(φn)]

= −2e−i(ϕn+ϕ)cecg sin

(
ϕn+φn−ϕ

2

)
sin

(
ϕn−φn−ϕ

2

)
. (C10)

Therefore, we require ϕn − ϕ + 2kπ = φn or ϕn − ϕ + 2kπ = −φn with k ∈ Z, which expressions squared (and divided by τ 2)
yield the condition

n2(AD − |C|2) + n[2AD − 3|C|2 + AE + DB − (A + D)ω] + (2A + B)E − 2|C|2 − (2A + B + E )ω + ω2 = 0, (C11)

where ω = (ϕ − 2kπ )/τ . Requiring that the above expression holds for all n, we arrive at the following conditions on the
effective Hamiltonian coefficients,

|C|2 = AD > 0, ω = A(−D + E ) + DB

A + D
, (B + D − E )(A + B + 2D − E ) = 0, (C12)

where A + D �= 0 follows from A �= −D as AD > 0. We note
that there are two solutions (from the last condition) with B =
−D + E (ϕ = τB + 2kπ ) and B + A + D = −D + E [ϕ =
τ (A + B) + 2kπ ], but yield the same stationary state given by
the recurrence relation [cf. Eq. (19)]

cn+2

cn
= − ce

cg

C∗

A

√
n + 1

n + 2
. (C13)

In the even-parity subspace, this is a squeezed vacuum state,
whose squeezing can be regulated by the ratio of the dynami-

cal shifts |C|
A =

√
A
D .

In particular, the micromaser with three-level atoms
[42,44,61] corresponds to the former solution with A =
−|g2|2

�
, B = 0, C = − g2g3

�
, and D = E = −|g3|2

�
[cf. Eq. (7)];

here the squeezing is regulated by the ratio |g3/g2|.

APPENDIX D: HARD WALLS AND PELL EQUATION

In Sec. III D of the main text, we have discussed hard
walls in the cavity dynamics, i.e., when the integrated cou-
pling strength φ leads to sinm(φ) = 0 for certain m, so that
the cavity states |m〉 and |m + 2〉 are no longer coupled.
Here we show that the condition in Eq. (35) corresponds for
the subsequent walls to Pell equation [80,81], and derive the
recurrence relation for positions of these hard walls.

1. Pell equation

For a given integrated coupling strength φ, let us assume
that m is the position of the first wall with the corresponding
K . Any other wall at m′ > m must fulfill, from (35),

(m′ + 1)(m′ + 2) =
(

K ′

K

)2

(m + 1)(m + 2). (D1)

for a certain integer K ′. By setting D := (m + 1)(m + 2), x :=
2m′ + 3 and y := 2K ′/K , we get the Pell equation [80,81]

x2 − Dy2 = 1. (D2)

We assume φ > 0 and thus K > 0 [cf. Eq. (35)] (otherwise we
equivalently consider positive integers −K and −K ′). Since D
is not a perfect square, Eq. (D2) has infinitely many positive
integer solutions (xn, yn), n � 1. If the solutions are ordered
by the magnitude of xn, the nth solution is given by the
recurrence relation [82]

xn = x1xn−1 + Dy1yn−1, (D3a)

yn = x1yn−1 + y1xn−1, (D3b)

or equivalently

xn +
√

Dyn = (x1 +
√

Dy1)n, (D4)

where (x1, y1) = (2m + 3, 2) is the first nonzero integer so-
lution, called the fundamental solution.
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2. Recurrence relation for hard walls

From Eq. (D3), we note that, since x1 is odd, xn is al-
ways odd, while yn is always even as y1 is even [this is a
consequence of D being even; cf. Eq. (D2)]. Therefore, each
solution with xn and yn corresponds directly to a hard wall in
the dynamics at mn = (xn − 3)/2, and with Kn = ynK/2 being
a multiple of K . Furthermore, Eq. (D3) yields the recurrence
relation

mn = mn−1(2m + 3) + 3(m + 1) + 2(m + 1)(m + 2) Kn−1/K,

(D5a)

Kn = Kn−1(2m + 3) + K (2mn−1 + 3), (D5b)

and we conclude there are infinitely many hard walls in the
dynamics. From Eq. (D5), we have that for the first hard wall
at even m1, the parity of the nth wall, mn, oscillates with period
2, while for odd m1, all walls are found at mn odd. Similarly,
for even K1, Kn is always even and thus cosmn (φ) = (−1)Kn =
1, while for odd K1, the Kn parity oscillates with period 2, and
so does cosmn (φ). These results are summarized in Table I.

We note, however, that we are also interested in solutions
of (D2), in which x is an (odd) integer, while y is a rational
number, i.e., when 2K ′ is not a multiple of K . As we show
below, however, the position of walls fulfils the recurrence
relation (D5) and K is always a multiplicity of K .

Proof. Suppose that there exists a hard wall at m′ with 2K ′
not divisible by K , K := gcd(K, 2K ′) < K . We have

(2m′ + 3)2 − 1 = D

(
K

K

)2(
2K ′

K

)2

. (D6)

Since the greatest common factor of the integers 2K ′/K and
K̃ := K/K is 1 by definition, it follows, from the left-hand
side of (D6) being an integer, that D must be divisible by K̃2.
Therefore, D̃ := D/K̃2 < D is an integer, and since D was not
a square of integer, neither is D̃. We thus arrive at a new Pell
equation

x̃2 − D̃ỹ2 = 1, (D7)

where the new integer variable ỹ := K̃y, while x̃ := x as
before. We will now show that, as x̃ = x remains unchanged,
the recurrence relation (D5) stays the same.

The position of the first hard wall m, together with K ,
yield an integer solution of Eq. (D7): x̃ = 2m + 3, ỹ = 2K̃ .
Therefore, it must appear in the recurrence relation in Eq. (D3)
with D replaced by D̃. If x̃1 is odd (i.e., when D̃ is even), x̃n is
also odd, and thus corresponds to a hard wall at an integer m̃n.
In particular, the fundamental solution corresponds to the first
hard wall, i.e., m = (̃x1 − 3)/2 [where x̃1 � 3 follows from
ỹ1 > 0 required by the assumed positive integrated coupling
φ > 0, cf. Eq. (35)]. Thus, we again obtain the recurrence
relation in Eq. (D5) [as in the recurrence equation for x̃n ≡ xn

we have that D̃ simplifies with ỹ1ỹn−1 to Dynyn−1 in Eq. (D3a),
while the recurrence equation for ỹn can be divided by K̃
yielding Eq. (D3b), since ỹn is divisible by K̃ so is ỹ1].

When D̃ is odd, it is possible that x1 is even (and y1

odd), in which case the parity of xn (and yn) oscillates with
period 2. In particular, the first hard wall corresponds to the
second solution, m = (̃x2 − 3)/2 = (̃x2

1 + D̃ỹ2
1 − 3)/2, while

other hard walls correspond to x2n. Nevertheless, from (D4)

we have

x̃2n +
√

D̃ ỹ2n = (̃x2 +
√

D̃ ỹ2)n, (D8)

so that the odd solutions also obey the recurrence relation
Eq. (D3), but with the fundamental solution chosen as x2 and
y2, instead of x1 and y1. Therefore, analogously as in the case
of D̃ being even, the walls are again determined by Eq. (D5).
This concludes the proof.

APPENDIX E: PURE STATIONARY STATES
AND RELAXATION TIMES WITH SOFT WALLS

In Sec. III E, we introduced the notion of a soft wall. Here
we discuss the structure of stationary states in the cavity in the
presence of soft walls and also discuss the induced long-time
dynamics leading to those stationary states.

1. Distribution of pure stationary states between soft walls

We now discuss the structure of the stationary state be-
tween soft walls and argue that they are supported only after
the walls corresponding to the boundary condition Eq. (20).
We assume coherent dynamics ce, cg �= 0.

Dynamics with soft walls features pure states given in
Eq. (22). In general, the even state can be written as a sum of
contributions with support between subsequent pairs of walls
located at m+

k and m+
k+1 as

|�+〉 =
m+

1 /2∑
n=0

c2n |2n〉 +
∞∑

k=1

m+
k+1/2∑

n=1+m+
k /2

c2n |2n〉

=
m+

1 /2∑
n=0

c2n |2n〉 +
∞∑

k=1

cm+
k

(−i)
ce

cg

sinm+
k

(φ)

1 − cosm+
k

(φ)

×
m+

k+1/2∑
n=1+m+

k /2

c2n

cm+
k +2

|2n〉

= c0

{
N+

0 |�+
0 〉 +

∞∑
k=1

[
k∏

l=1

cm+
l

cm+
l−1+2

]
(−i)k

(
ce

cg

)k

×
[

k∏
l=1

sinm+
l

(φ)

1 − cosm+
l

(φ)

]
N+

k |�+
k 〉

}
, (E1)

where m+
k labels the walls of the even parity [cf.

Eq. (19)] and we introduced normalisation (N+
k )2 =∑m+

k+1/2

n=1+m+
k /2

|c2n/cm+
k +2|2 and the state after the kth even wall

|�+
k 〉 = ∑m+

k+1/2

n=1+m+
k /2

c2n |2n〉/cm+
k +2/N+

k (where for |�+
0 〉 we

formally define m+
0 = −2). The analogous construction holds

for the odd state |�−〉 in Eq. (22).
In Eq. (E1), we can identify that cm+

k+1
/cm+

k +2 is the ratio
between the last and the first coefficients in the state after
kth wall, |�+

k 〉, and thus we expect it to be finite (as there
are no soft walls within the state). Similarly, the norm N+

k
of the kth state is finite. In contrast, the remaining terms in
Eq. (E1) can lead either to the suppression or increase of
the kth state contribution, depending whether the boundary
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TABLE II. Steady state between two soft walls vs two hard walls. The stationary state with soft walls approximately corresponds only
to the pure stationary states of hard walls that obey the same boundary conditions. For soft walls, |�+〉 from Eqs. (E1) and (E2). In case
3, β+

2 /β+
0 = −(ce/cg)2N+

2 /N+
0 [cm+

2
/cm+

1 +2][cm+
1
/c0] × 4 lim δ1/δ2. For hard walls, |�+

k 〉 refers to the kth pure stationary state with with
boundary conditions at the (k − 1)-th and kth wall which are opposite to Eq. (20). To consider a finite number of walls, we have assumed a
third even wall to be hard, with cosm+

3
(φ) = −1, so that pure stationary states before that wall exist [cf. Eqs. (20) and (39)]. The same results

hold for the odd stationary state.

Soft walls Hard walls (δ1, δ2 = 0)

Case cosm+
1

(φ) cosm+
2

(φ) |�+〉 ρ+
0 ρ+

1 ρ+
2

1. −1 + δ2
1
2 −1 + δ2

2
2 |�+

0 〉 + O(δ1) |�+
0 〉 Mixed Mixed

2. 1 − δ2
1
2 −1 + δ2

2
2 |�+

1 〉 + O(δ1, δ2) Mixed |�+
1 〉 Mixed

3. −1 + δ2
1
2 1 − δ2

2
2 β+

0 |�+
0 〉 + β+

2 |�+
2 〉 + O[min(δ1, δ2 )] |�+

0 〉 |�+
1 〉 |�+

2 〉
4. 1 − δ2

1
2 1 − δ2

2
2 |�+

2 〉 + O(δ2) Mixed Mixed |�+
2 〉

condition after kth even soft wall, Eq. (40), coincides with the
boundary condition of the state |�+〉 in Eq. (20),
when

cosm+
k

(φ) ≈ 1,
(E2a)

sinm+
k

(φ)

1 − cosm+
k

(φ)
≈ 2

sinm+
k

(φ)
−→ ±∞,

when

cosm+
k

(φ) ≈ −1,
(E2b)

sinm+
k

(φ)

1 − cosm+
k

(φ)
≈ sinm+

k
(φ)

2
−→ 0,

where the arrows correspond to the limit of soft wall being
hard. Noticing that c0 in Eq. (E1) also changes with the height
of the walls in order to keep the norm of |�+〉 equal 1, we
arrive at the following approximation:

|�+〉 ≈ α+
0 N+

0 |�+
0 〉 +

∞∑
k=1

[
k∏

l=1

cm+
l

cm+
l−1+2

]

× (−i)k

(
ce

cg

)k

α+
k N+

k |�+
k 〉

=: β+
0 |�+

0 〉 +
∞∑

k=1

β+
k |�+

k 〉, (E3)

where we defined the hard wall limit as

c0

k∏
l=1

sinm+
l

(φ)

1 − cosm+
l

(φ)
−→ α+

k , (E4)

so that we choose α+
k = 0 if cosm+

k
(φ) ≈ −1 [cf. Eq. (E2)].

In Eq. (E3), only the states after the soft walls with the
boundary condition cosm+

k
(φ) ≈ 1 can be present [cf. Fig. 2(b)

and see the example in Table II]. Therefore, the state |�+
0 〉

can be present only for the first wall with cosm+
1

(φ) ≈ −1 [cf.
Fig. 2(b) for the states (ii) and (viii)]. We further note that
several subsequent walls with cosm+

k
(φ) ≈ 1 may be needed

to counteract the suppression due to an earlier wall, in which
case only the state after the last such a wall is present; see
Fig. 2(b) for the states (iii), (vi), (vii), and (ix). The same

results follow from considering soft walls as a perturbation
away from auxiliary hard walls (see below).

Finally, we note that for finite walls, the coefficients β+
k

in Eq. (E3) depend also on the distribution of the states |�+
k 〉

between the walls, e.g., whether the state is supported only
close to one of the walls. In particular, in the case of |cg| = 1,
we simply have |�+〉 = |�0〉 = |0〉.

2. Dynamics with soft walls

Here we discuss timescales of achieving pure stationary
states, Eq. (E3), by considering dynamics in the presence of
soft walls as a perturbation of auxiliary dynamics with hard
walls.

a. Dynamics of soft walls as perturbation of hard walls

The dynamics of the cavity with soft walls can be formally
considered as a perturbation of an auxiliary dynamics M (0)

g ,
M (0)

e with hard walls replacing soft walls,

Mg − M (0)
g ≡ δMg =

∞∑
k=1

(−ice sinmk (φ)|mk + 2〉〈mk|

+ cg[cosmk (φ) ∓ 1]|mk + 2〉〈mk + 2|),
(E5a)

Me − M (0)
e ≡ δMe =

∞∑
k=1

(ce[cosmk (φ) ∓ 1]|mk〉〈mk|

− icg sinmk (φ)|mk〉〈mk + 2|), (E5b)

where we consider cosmk (φ) ≈ ±1, so that cosmk (φ) ∓ 1 ≈ 0.
In this section, we discuss the order of the perturbation in the
powers of a small parameter δk of the kth wall, where

cosmk (φ) ≈ ±
(

1 − δ2
k

2

)
, sinmk (φ) ≈ ±δk (E6)

[see Eq. (E5) and Table II].

b. Steady state with soft walls vs stationary states of hard walls

The stationary state in Eq. (22) is pure and fulfills the
boundary condition (20). In contrast, each soft wall present
in the dynamics can be approximated by a hard wall that
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determines boundary conditions for a state before and after
that wall [Eqs. (39) and (40)].

Steady states of hard walls. First, the kth stationary state
ρ±

k , between subsequent walls of the same parity at m±
k and

m±
k+1, is pure only if cosm±

k
(φ) = − cosm±

k+1
(φ). Otherwise,

that stationary state is mixed. Second, even if the stationary
state is pure, when its boundary condition differs from (20),
it does not correspond to the stationary state with soft walls
|�±〉; i.e., it differs from its projection |�±

k 〉 between the

kth and (k + 1)th walls, as |〈�±
k |�±

k 〉|2 < 1, unless m+
k+1 −

m+
k = 2 and it is a fixed photon state, |�±

k 〉 = |m+
k+1〉. In-

deed, from Eq. (19), when ce, cg �= 0, |〈�±
k |�±

k 〉|2 = 1 re-
quires cotk (φ/2) = − tank (φ/2) [for all m±

k + 2 < k � m±
k+1

such that (−1)k = ±1], which is never true. Furthermore,

the coherences between pure stationary states correspond-
ing to opposite boundary condition [i.e., opposite eigen-
values of Kraus operators, see Eq. (18)] and between the
pure and mixed stationary states are not stationary (cf.
Sec. III D).

Consequences for stationary state with soft walls. The
perturbative dynamics defined in Eq. (E5) should recover the
true stationary state in Eq. (22). In particular, in the zeroth
order, the solution is a linear combination of the stationary
states between hard walls [50,88]. Therefore, in agreement
with Eq. (E3), the stationary states in Eq. (22) can be approx-
imated only by the pure stationary states between hard walls
that are consistent with the boundary conditions (20), i.e.,
cosm±

k
(φ) = 1 = − cosm±

k+1
(φ). See Table II for the example

of two walls.

c. Perturbative dynamics

Below we derive the long-time dynamics due to the presence of the soft walls. We prove that this dynamics is second order
in sinmn (φ). Because of locality of the perturbation in Eq. (E5), only neighboring states get connected, or coherences between
states separated by two walls are created. Furthermore, the perturbation depends on the amplitude of the states directly next to
the walls. We discuss how the closed form of the long-time dynamics generator can be found using the structure of the stationary
state, Eq. (E3).

First and second-order perturbations. The difference δL between the dynamics generated by Mg, Me (10) and the modified
Kraus operators with hard walls M (0)

g and M (0)
e feature the first and second order perturbations in δMg and δMe [cf. (E5)]

ν−1L (ρ) = MgρM†
g + MgρM†

g − ρ

= M (0)
g ρ

[
M (0)

g

]† + M (0)
e ρ

[
M (0)

e

]† − ρ + {
δMgρ

[
M (0)

g

]† + δMeρ
[
M (0)

e

]† + H.c.
} + δMgρ δM†

g + δMeρ δM†
e ; (E7)

cf. Eq. (B9). The perturbations in the Kraus operators themselves, δMg and δMe in Eq. (E5), feature first- and second-order
perturbations [cf. Eq. (E6)]

δM (1)
g = −ice

∞∑
k=1

sinmk (φ)|mk + 2〉〈mk|, δM (2)
g = cg

∞∑
k=1

[cosmk (φ) ∓ 1]|mk + 2〉〈mk + 2|, (E8a)

δM (1)
e = −icg

∞∑
k=1

sinmk (φ)|mk〉〈mk + 2|, δM (2)
e = ce

∞∑
k=1

[cosmk (φ) ∓ 1]|mk〉〈mk|. (E8b)

Therefore, we can identify the first- and second-order perturbations to the master equation (E7) as

δL1 = δM (1)
g ρ

[
M (0)

g

]† + δM (1)
e ρ

[
M (0)

e

]† + H.c., (E9)

δL2 = δM (1)
g ρ

[
δM (1)

g

]† + δM (1)
e ρ

[
δM (1)

e

]† + {
δM (2)

g ρ
[
M (0)

g

]† + δM (2)
e ρ

[
M (0)

e

]† + H.c.
}
. (E10)

Below we focus on the second-order corrections to the dynamics, and thus we neglect the third- and-fourth order perturbations
in (E7).

Absence of first-order corrections. We show now that dynamics feature no contribution from L1 in (E9). We consider only
even or odd states, but we drop the superscript ± in |�±

k 〉, ρ±
k and m±

k for convenience.
Noting that for pure stationary state between the kth and (k + 1)th walls we have M (0)

g |�k〉 = ±cg and M (0)
e |�k〉 = ∓ce,

ν−1δL1(|�k〉〈�k|) = ±icgc∗
e c(k)

mk+2 sinmk (φ) |mk〉〈�k| ∓ icec∗
g c(k)

mk+1
sinmk+1 (φ) |mk+1 + 2〉〈�k| + H.c., (E11)

where c(k)
n is the amplitude (coefficient) of n photons in the pure stationary state between the kth and (k + 1)th walls.

Analogously, for the coherences between the states with the same boundary conditions,

ν−1δL1
(∣∣�k1

〉〈
�k2

∣∣) = ±icgc∗
e c(k1 )

mk1 +2 sinmk1
(φ)

∣∣mk1

〉〈
�k2

∣∣ ∓ icec∗
g c(k1 )

mk1+1
sinmk1+1 (φ)

∣∣mk1+1 + 2
〉〈
�k2

∣∣
∓ic∗

gce
(
c(k2 )

mk2 +2

)∗
sinmk2

(φ)
∣∣�k1

〉〈mk2 | ± ic∗
e cg

(
c(k2 )

mk2+1

)∗
sinmk2+1 (φ)

∣∣�k1

〉〈
mk2+1 + 2

∣∣. (E12)

Similarly, for the mixed state ρk (mixed due to different boundary conditions implied by kth and (k + 1)th walls), we have

ν−1δL1(ρk ) = −icg sinmk (φ) |mk〉 〈mk + 2|ρk[M (0)
e ]† − ice sinmk+1 (φ) |mk+1 + 2〉 〈mk+1|ρk[M (0)

g ]† + H.c.. (E13)
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As stationary coherences can only exist between pure stationary states which are separated by at least two walls [cf. Eqs. (39)
and (40)], there are no first-order corrections to the dynamics (cf. Eq. (G2) and Refs. [50,88,91]),

�0 δL1(|�k〉〈�k|) = 0, (E14)

�0 δL1(
∣∣�k1

〉〈
�k2

∣∣) = 0, (E15)

�0 δL1(ρk ) = 0, (E16)

where �0 denotes the projection onto the stationary states of dynamics L0 with hard walls.
Second-order corrections. We now derive the effective dynamics in the second order of the corrections in δMg and δMe,

Eq. (E5). We consider both the corrections from L2, as well as the contribution from L1 in Eqs. (E9) and (E10), as the second-
order corrections are given by [50,88,91]

�0L2�0 − �0L1S0L1�0, (E17)

where S0 is the resolvent for the dynamics L0 with hard walls (evaluated at 0), i.e., S0L0 = L0S0 = I − �0.
First, we consider second-order corrections �0L2�0 due to the second-order perturbation L2 (cf. Eq. (G2) and

Refs. [50,88,91]). We have

ν−1 �0δL2(|�k〉〈�k|) = |ce|2 sin2
mk+1

(φ)
∣∣c(k)

mk+1

∣∣2 ρk+1 + |cg|2 sin2
mk

(φ)
∣∣c(k)

mk+2

∣∣2 ρk−1 ± 2
{|cg|2[cosmk (φ) ∓ 1]

∣∣c(k)
mk+2

∣∣2
− |ce|2[cosmk+1 (φ) ± 1]

∣∣c(k)
mk+1

∣∣2}|�k〉〈�k|, (E18)

where ρk∓1 denotes (note necessarily mixed) (k ∓ 1)th stationary state. We used the fact that the projection �0 on the states
between the hard walls is given by the supports between the walls, so that �0(|mk+1〉〈�k|) = (c(k)

mk+1
)∗|�k〉〈�k| and �0(|mk +

2〉〈�k|) = (c(k)
mk+2)∗|�k〉〈�k|. We assumed the boundary conditions cosmk (φ) ≈ ±1 ≈ − cosmk+1 (φ), so that up to the second

order of perturbation, we have cosmk (φ) ∓ 1 = ∓ sin2
mk

(φ)/2 and cosmk+1 (φ) ± 1 = ± sin2
mk+1

(φ)/2 [cf. Eq. (E6)].
Similarly, for the coherences between states |�k1〉 and |�k2〉 with the same boundary conditions,

ν−1 �0δL2
(∣∣�k1

〉〈
�k2

∣∣) = |ce|2 sinmk1+1 (φ) sinmk2+1 (φ) c(k1 )
mk1+1

[
c(k2 )

mk2+1

]∗
η+

k1,k2

∣∣�k1+1
〉〈
�k2+1

∣∣
+ |cg|2 sinmk1

(φ) sinmk2
(φ) c(k1 )

mk1 +2

[
c(k2 )

mk2 +2

]∗
η−

k1,k2
|�k1−1〉

〈
�k2−1

∣∣
± |cg|2

{[
cosmk1

(φ) ∓ 1
]∣∣c(k1 )

mk1 +2

∣∣2 + [
cosmk2

(φ) ∓ 1
]∣∣c(k2 )

mk2 +2

∣∣2}∣∣�k1

〉〈
�k2

∣∣
∓ |ce|2

{[
cosmk1+1 (φ) ± 1

]∣∣c(k1 )
mk1+1

∣∣2 + [
cosmk2+1 (φ) ± 1

]∣∣c(k2 )
mk2+1

∣∣2}∣∣�k1

〉〈
�k2

∣∣. (E19)

where we introduced η+
k1,k2

= 〈�k1+1|�0(|mk1+1 + 2〉〈mk2+1 + 2|)|�k2+1〉 and η−
k1,k2

= 〈�k1−1|�0(|mk1〉〈mk2 |)|�k2−1〉, which are
0 if the pure stationary states |�k1+1〉, |�k2+1〉, or |�k1−1〉, |�k2−1〉, do not exist. In the derivation of Eq. (E19), we used the fact
that pure stationary states are necessarily dark in shifted dynamics [cf. Eq. (24) for the boundary conditions in Eq. (20)], and
thus the coherences to them are orthogonally projected by �0 (cf. Eq. (G12) and see Ref. [115]), e.g., �0(|mk1 + 2〉〈�k2 |) =
(c(k)

mk+2)∗|�k1〉〈�k2 |.
Finally, for the mixed stationary state ρk [due to mixed boundary conditions from after kth and before (k + 1)th wall; cf.

Eqs. (39) and (40)],

ν−1 �0δL2(ρk ) = |ce|2 sin2
mk+1

(φ) 〈mk+1|ρk|mk+1〉 ρk+1 + |cg|2 sin2
mk

(φ) 〈mk + 2|ρk|mk + 2〉 ρk−1

± 2{|cg|2[cosmk (φ) ∓ 1]〈mk + 2|ρk|mk + 2〉 − |ce|2[cosmk+1 (φ) ± 1]〈mk+1|ρk|mk+1〉}ρk, (E20)

where we again used the fact that the projection �0 on the states between the hard walls is given by the support between the walls,
and from Eq. (E5) 〈mk + 2|ρk[M (0)

g ]†|mk + 2〉 = ±cg〈mk + 2|ρk|mk + 2〉 and 〈mk+1|ρk[M (0)
e ]†|mk+1〉 = ∓c∗

e 〈mk+1|ρk|mk+1〉.
Second, we consider the second-order corrections from the first-order perturbation L1 in Eq. (E9), which contributes as

−�0L1S0L1�0 [50,88,91] [cf. Eq. (E17)].
From Eqs. (E11) and (E12), for pure stationary states and coherences between them, the first-order perturbation creates

coherences to pure stationary states. As a pure stationary state corresponds to the dark state of shifted dynamics, the coherences
to such state decay with the corresponding effective Hamiltonian [115]

H± ≡ −iν[1 ± (−c∗
gMg − cgM†

g + c∗
e Me + ceM†

e )/2], (E21)

where we assumed the state with boundary condition the same or opposite to Eq. (20) [see Eq. (24)]. In particular, the coherence
|ψ〉〈�k| between the dark state and any state between hard walls with different boundary conditions to |�k〉 decays to 0, i.e.,
�0|ψ〉〈�k| = 0. Furthermore, as S0 = − ∫ ∞

0 dt (etL0 − �0), we have that the resolvent S0 simplifies to the pseudoinverse of the
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effective Hamiltonian

S0(|ψ〉〈�k|) = −
∫ ∞

0
dt e−iH± |ψ〉〈�k| = (−iH±)−1|ψ〉〈�k|

= −ν−1

[
1 ± −c∗

gMg − cgM†
g + c∗

e Me + ceM†
e

2

]−1

|ψ〉〈�k|. (E22)

As the effective Hamiltonian (E21) does not change the support of the state between the hard walls, we have

ν−1�0δL1S0δL1(|�k〉〈�k|)
= [|cgc∗

e |2
∣∣c(k)

mk+2

∣∣2 sin2
mk

(φ) 〈mk|(−iH±)−1|mk〉 + |cgc∗
e |2

∣∣c(k)
mk+1

∣∣2 sin2
mk+1

(φ) 〈mk+1 + 2|(−iH±)−1|mk+1 + 2〉]|�k〉〈�k|
− (cgc∗

e )2| [c(n−2)
mk−1

]∗
c(k)

mk+2 sinmk−1 (φ) sinmk (φ) 〈mk−1 + 2|(−iH±)−1|mk〉|�k−2〉〈�k|
− (cec∗

g )2
[
c(k+2)

mk+2+2

]∗
c(k)

mk+1
sinmk+2 (φ) sinmk+1 (φ) 〈mk+2|(−iH±)−1|mk+1 + 2〉|�k+2〉〈�k|

− |cgc∗
e |2

∣∣c(k)
mk+2

∣∣2 sin2
mk

(φ) 〈mk|(−iH±)−1|mk〉 ρk−1 − |cec∗
g|2

∣∣c(k)
mk+1

∣∣2 sin2
mk+1

(φ) 〈mk+1 + 2|(−iH±)−1|mk+1 + 2〉 ρk+1

+ (cgc∗
e )2 c(k)

mk+2

[
c(k)

mk+1

]∗
sinmk (φ) sinmk+1 (φ) η−+

k |�k−1〉〈�k+1|
+ (cec∗

g )2 c(k)
mk+1

[
c(k)

mk+2

]∗
sinmk+1 (φ) sinmk (φ) η+−

k |�k+1〉〈�k−1| + H.c., (E23)

where we introduced η−+
k = ∓c−1

g 〈�k−1|�0[M (0)
g (−iH±)−1|mk〉〈mk+1 + 2|]|�k+1〉, η+−

k = ±c−1
e 〈�k+1|�0[M (0)

e (−iH±)−1

|mk+1 + 2〉〈mk|]|�k−1〉, and η±∓
k = 0 if the pure stationary states |�k−1〉 and |�k+1〉 do not exist. We also assumed that the

pure states |�k−2〉 and |�k+2〉 with same boundary condition as |�k〉 exist; otherwise, the terms with corresponding coherences
are absent in Eq. (E23). To derive first, fourth, and fifth lines, we used the fact that the projection �0 on the states between the
hard walls is given by the supports between the walls, and in the second and third lines, that the projection �0 of the coherence
to the dark state reduces to the orthogonal projection on dark states.

Similarly, for the coherences between states |�k1〉 and |�k2〉 with the same boundary conditions [cf. Eq. (E12)],

ν−1�0δL1S0δL1
(∣∣�k1

〉〈
�k2

∣∣) = |cgc∗
e |2

∣∣c(k1 )
mk1 +2

∣∣2 sin2
mk1

(φ)
〈
mk1

∣∣(−iH±)−1
∣∣mk1

〉∣∣�k1

〉〈
�k2

∣∣
+ |cgc∗

e |2
∣∣c(k1 )

mk1+1

∣∣2 sin2
mk1+1

(φ)
〈
mk1+1 + 2

∣∣(−iH±)−1
∣∣mk1+1 + 2

〉∣∣�k1

〉〈
�k2

∣∣
− (cgc∗

e )2| [c(k1−2)
mk1−1

]∗
c(k1 )

mk1 +2 sinmk1−1 (φ) sinmk1
(φ)

〈
mk1−1 + 2

∣∣(−iH±)−1
∣∣mk1

〉∣∣�k1−2
〉〈
�k2

∣∣
− (cec∗

g )2
[
c(k1+2)

mk1+2+2

]∗
c(k1 )

mk1+1
sinmk1+2 (φ) sinmk1+1 (φ)

〈
mk1+2

∣∣(−iH±)−1
∣∣mk1+1 + 2

〉∣∣�k1+2
〉〈
�k2

∣∣
− |cgc∗

e |2 c(k1 )
mk1 +2

[
c(k2 )

mk2 +2

]∗
sinmk1

(φ) sinmk2
(φ) η−−

k1,k2

∣∣�k1−1
〉〈
�k2−1

∣∣
− |cec∗

g|2 c(k1 )
mk1+1

[
c(k2 )

mk2+1

]∗
sinmk1+1 (φ) sinmk2+1 (φ) η++

k1,k2

∣∣�k1+1
〉〈
�k2+1

∣∣
+ (cgc∗

e )2 c(k1 )
mk1 +2

[
c(k2 )

mk2+1

]∗
sinmk1

(φ) sinmk2+1 (φ) η−+
k1,k2

∣∣�k1−1
〉〈
�k2+1

∣∣
+ (cec∗

g )2 c(k1 )
mk1+1

[
c(k2 )

mk2 +2

]∗
sinmk1+1 (φ) sinmk2

(φ) η+−
k1,k2

∣∣�k1+1
〉〈
�k2−1

∣∣ + (H.c.)k1↔ k2 . (E24)

where we introduced η++
k1,k2

= ±c−1
e 〈�k2+1|�0[M (0)

e (−iH±)−1|mk1+1 + 2〉〈mk2+1 + 2|]�k2+1〉, η−−
k1,k2

= ∓c−1
g 〈�k2−1|

�0[(−iH±)−1|mk1〉〈mk2 |]�k2−1〉, η−+
k1,k2

= ∓c−1
g 〈�k1−1|�0[M (0)

g (−iH±)−1|mk2〉〈mk1+1 + 2|]|�k2+1〉 and η+−
k1,k2

= ±c−1
e 〈�k1+1|

�0[M (0)
e (−iH±)−1|mk1+1 + 2〉〈mk2 |]|�k2−1〉, while (H.c.)k1↔ k2 denotes the Hermitian conjugate but with swapped indices k1

and k2.
Finally, for the mixed state ρk

ν−1�0δL1S0δL1(ρk ) = ∓|cg|2 ce sin2
mk

(φ) 〈mk|S0
[|mk〉〈mk + 2|ρk

[
M (0)

e

]†]|mk + 2〉 (ρk − ρk−1)

±|ce|2cg sin2
mk+1

(φ) 〈mk+1 + 2|S0
[|mk+1 + 2〉〈mk+1|ρk

[
M (0)

g

]†]|mk+1〉 (ρk − ρk+1) + H.c.. (E25)

Additional information from stationary state. Although in Eqs. (E23)–(E25) we do not give closed formulas for the terms
corresponding to the resolvent (with H± or S0) and the projection on the coherences, the knowledge of the stationary state in
Eqs. (22) and (E3) can be used to further determine the second-order corrections to the dynamics across soft walls. Namely, the
condition Leffρss = 0, gives D conditions on the effective second-order dynamics Leff, where D is the dimension of the subspace,
on which the dynamics takes place.

Example of two walls. We consider case 3 from Table II, where we have three pure stationary states among the walls |�0〉,
|�0〉, and |�2〉, and the coherences |�0〉〈�2| and |�2〉〈�0| are also stationary (D = 5) (cf. Sec. III B).
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We have [cf. Eq. (E18)] �0δL2(|�0〉〈�0|, |�1〉〈�1|, |�2〉〈�2|)

= ν

⎡⎢⎢⎣
−|ce|2 sin2

m1
(φ)

∣∣c(0)
m1

∣∣2 |cg|2 sin2
m1

(φ)
∣∣c(1)

m1+2

∣∣2 0

|ce|2 sin2
m1

(φ)
∣∣c(0)

m1

∣∣2 −|cg|2 sin2
m1

(φ)
∣∣c(1)

m1+2

∣∣2 − |ce|2 sin2
m2

(φ)
∣∣c(1)

m2

∣∣2 |cg|2 sin2
m2

(φ)
∣∣c(2)

m2+2

∣∣2
0 |ce|2 sin2

m2
(φ)

∣∣c(1)
m2

∣∣2 −|cg|2 sin2
m2

(φ)
∣∣c(2)

m2+2

∣∣2
⎤⎥⎥⎦
⎛⎜⎝|�0〉〈�0|

|�1〉〈�1|
|�2〉〈�2|

⎞⎟⎠, (E26)

and [cf. Eq. (E19)]

�0δL2(|�0〉〈�2|) = −ν

2

[|ce|2 sin2
m1

(φ)
∣∣c(0)

m1

∣∣2 + |cg|2 sin2
m2

(φ)
∣∣c(2)

m2+2

∣∣2]|�0〉〈�2|. (E27)

On the other hand [cf. Eq. (E23)]

ν−1�0δL1S0δL1(|�0〉〈�0|) = 2|cgc∗
e |2

∣∣c(0)
m1

∣∣2 sin2
m1

(φ) 〈m1 + 2|(−iH+)−1|m1 + 2〉(|�0〉〈�0| − |�1〉〈�1|)
− {

(cec∗
g )2

[
c(2)

m2+2

]∗
c(0)

m1
sinm2 (φ) sinm1 (φ) 〈m2|(−iH+)−1|m1 + 2〉|�2〉〈�0| + H.c.

}
, (E28)

ν−1�0δL1S0δL1(|�1〉〈�1|)
= 2

[|cgc∗
e |2

∣∣c(1)
m1+2

∣∣2 sin2
m1

(φ) 〈m1|(−iH−)−1|m1〉 + |cgc∗
e |2

∣∣c(1)
m2

∣∣2 sin2
m2

(φ) 〈m2 + 2|(−iH−)−1|m2 + 2〉]|�1〉〈�1|
− 2|cgc∗

e |2
∣∣c(1)

m1+2

∣∣2 sin2
m1

(φ) 〈m1|(−iH−)−1|m1〉 |�0〉〈�0| − 2|cec∗
g|2

∣∣c(1)
m2

∣∣2 sin2
m2

(φ) 〈m2 + 2|(−iH−)−1|m2 + 2〉 |�2〉〈�2|
+ 2(cgc∗

e )2 c(1)
m1+2

[
c(1)

m2

]∗
sinm1 (φ) sinm2 (φ) η−+

1 |�0〉〈�2| + 2(cec∗
g )2 c(1)

m2

[
c(1)

m1+2

]∗
sinm2 (φ) sinm1 (φ) η+−

1 |�2〉〈�0|, (E29)

and

ν−1�0δL1S0δL1(|�2〉〈�2|) = 2|cgc∗
e |2

∣∣c(2)
m2+2

∣∣2 sin2
m2

(φ) 〈m2|(−iH+)−1|m2〉(|�2〉〈�2| − |�1〉〈�1|)
− {

(cgc∗
e )2

[
c(0)

m1

]∗
c(2)

m2+2 sinm1 (φ) sinm2 (φ) 〈m1 + 2|(−iH+)−1|m2〉|�0〉〈�2| + H.c.
}
, (E30)

while

ν−1�0δL1S0δL1(|�0〉〈�2|)
= |cgc∗

e |2
[∣∣c(2)

m2+2

∣∣2 sin2
m2

(φ) 〈m2|(−iH+)−1|m2〉 + ∣∣c(0)
m1

∣∣2 sin2
m1

(φ) 〈m1 + 2|(−iH+)−1|m1 + 2〉]|�0〉〈�2|
− (cec∗

g )2 c(0)
m1

[
c(2)

m2+2

]∗
sinm1 (φ) sinm2 (φ) 〈m2|(−iH+)−1|m1 + 2〉(|�0〉〈�0| + |�2〉〈�2|)

+ 2(cec∗
g )2 c(0)

m1

[
c(2)

m2+2

]∗
sinm1 (φ) sinm2 (φ) 〈m2|(−iH+)−1|m1 + 2〉 |�1〉〈�1|; (E31)

cf. Eq. (E24). In the above expression, we used the fact that −iH± is Hermitian [cf. Eq. (E21)].
The stationary state is [cf. Table II]

ρss = |β0|2|�0〉〈�0| + |β2|2|�2〉〈�2| + β0β
∗
2 |�0〉〈�2| + β2β

∗
0 |�2〉〈�0|, (E32)

where |β0|2 + |β2|2 = 1. Therefore, from Eq. (E17), we have �0δL2(ρss) = �0δL1S0δL1(ρss), which can be written as

Y

⎡⎢⎢⎢⎣
sin2

m1
(φ)〈m1 + 2|(−iH+)−1|m1 + 2〉

sin2
m2

(φ)〈m2|(−iH+)−1|m2〉
sinm1 (φ) sinm2 (φ)〈m2|(−iH+)−1|m1 + 2〉
sinm1 (φ) sinm2 (φ)〈m1 + 2|(−iH+)−1|m2〉

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−|ce|2 sin2
m1

(φ)
∣∣c(0)

m1

∣∣2|β0|2
−[|ce|2 sin2

m1
(φ)

∣∣c(0)
m1

∣∣2 + |cg|2 sin2
m2

(φ)
∣∣c(2)

m2+2

∣∣2]β0β
∗
2 /2

|ce|2 sin2
m1

(φ)
∣∣c(0)

m1

∣∣2|β0|2 + |cg|2 sin2
m2

(φ)
∣∣c(2)

m2+2

∣∣2|β2|2
−[|ce|2 sin2

m1
(φ)

∣∣c(0)
m1

∣∣2 + |cg|2 sin2
m2

(φ)
∣∣c(2)

m2+2

∣∣2]β2β
∗
0 /2

−|cg|2 sin2
m2

(φ)
∣∣c(2)

m2+2

∣∣2|β2|2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (E33)

where

Y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2|cgc∗
e |2

∣∣c(1)
m1+2

∣∣2|β0|2 0 −(cec∗
g )2c(0)

m1

[
c(2)

m2+2

]∗
β0β

∗
2 −(c∗

e cg)2
[
c(0)

m1

]∗
c(2)

m2+2β2β
∗
0

|cgc∗
e |2

∣∣c(0)
m1

∣∣2β0β
∗
2 |cgc∗

e |2
∣∣c(2)

m2+2

∣∣2β0β
∗
2 0 −(c∗

e cg)2
[
c(0)

m1

]∗
c(2)

m2+2

−2|cgc∗
e |2

∣∣c(1)
m1+2

∣∣2|β0|2 −2|cgc∗
e |2

∣∣c(2)
m2+2

∣∣2|β2|2 2(cec∗
g )2c(0)

m1

[
c(2)

m2+2

]∗
β0β

∗
2 2(c∗

e cg)2
[
c(0)

m1

]∗
c(2)

m2+2β2β
∗
0

|cgc∗
e |2

∣∣c(0)
m1

∣∣2β2β
∗
0 |cgc∗

e |2
∣∣c(2)

m2+2

∣∣2β2β
∗
0 −(cec∗

g )2c(0)
m1

[
c(2)

m2+2

]∗
0

0 2|cgc∗
e |2

∣∣c(2)
m2+2

∣∣2|β2|2 −(cec∗
g )2c(0)

m1

[
c(2)

m2+2

]∗
β0β

∗
2 −(c∗

e cg)2
[
c(0)

m1

]∗
c(2)

m2+2β2β
∗
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (E34)

so that we can find analytically the columns of the dynamics generator that correspond to the support of the stationary state (E32)
[cf. Eqs. (E28), (E30), and (E31)].
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APPENDIX F: REVIEW OF METASTABILITY THEORY

Here we summarize the properties of Markovian dynamics
of open quantum systems which lead to metastability [50,86].

1. Markovian dynamics

We consider an open quantum system dynamics described
by a Markovian master equation [66,67],

d

dt
ρ(t ) = L[ρ(t )] = −i[H, ρ(t )] + 1

2

∑
j

[2 Jj ρ(t ) J†
j

− J†
j J j ρ(t ) − ρ(t ) J†

j J j], (F1)

where H is the system Hamiltonian and Jj denote so-called
jump operators which describe the interaction of the system
with the environment. In the case of the dynamics of micro-
masers, Eq. (B9), the system is the cavity which interacts with
the environment constituted by passing atoms. The Hamil-
tonian H = 0 (dynamics is considered in the rotating frame
with the Hamiltonian as explained in Appendix B 1), while
the jump operators are given by the Kraus operators, Eq. (42).

Timescales of the dynamics in (F1) are given by the spec-
trum of the master operator L. Although in general L is not
Hermitian, and thus not necessarily diagonalizable, in all stud-
ied cases it could be diagonalized. We label the corresponding
eigenvalues as {λk}k�1, ordered in the decreasing order of their
real part, Re λ1 � Re λ2 � · · · , and the corresponding left-
and right-eigenmodes Lk and Rk , LRk = λkRk , LkL = λkLk

[normalized as Tr(LjRk ) = δ jk]. For an initial state ρ, we have
that the system state at time t is given by

ρ(t ) = etL(ρ) = ρss +
∑
k�2

etλk Tr(Lk ρ)Rk, (F2)

where we used the fact that λ1 = 0, which corresponds to a
stationary state R1 = ρss, and L1 = 1 due to trace preserva-
tion. When the stationary state is unique, ρ(t ) relaxes to ρss

at the timescale given by the inverse of the gap to the second
eigenvalue, τ = (−Reλ2)−1.

2. Metastability

When there exists a separation between real parts of the
eigenvalues, −Reλm � −Reλm+1, there exists a time regime
(−Reλm+1)−1 � t � (−Reλm)−1, where after the initial fast
relaxation of modes k > m, the system state appears steady,
i.e., is metastable, and can be approximated as [cf. Eq. (F2)]

ρ(t ) ≈ ρss +
m∑

k=2

Tr(Lk ρ)Rk ≡ � (ρ), (F3)

where we denoted by � the projection on the low-lying eigen-
modes of the dynamics. The manifold of metastable states is
described by the coefficients {Tr(Lk ρ)}m

k=2 that depend on the
initial state ρ, and thus this manifold is (m − 1) dimensional.
Beyond the metastable regime, t � (−Reλm)−1, the decay
of low-lying eigenmodes can no longer be neglected, and
the system undergoes final relaxation inside the metastable

manifold [cf. Eq. (F2)]

ρ(t ) ≈ ρss +
m∑

k=2

etλk Tr(Lk ρ)Rk = et Leff � (ρ), (F4)

which is governed by the low-lying modes as

Leff = �L�. (F5)

We note that several metastable regimes can exist if there
are multiple separations in the spectrum of L, which leads
to hierarchy of the corresponding metastable manifolds. In
Appendix G, we consider the case in which metastability is a
consequence of perturbing dynamics which features multiple
stationary states.

APPENDIX G: DERIVATIONS OF METASTABLE
DYNAMICS

Here we consider metastability and effective long-time dy-
namics in the case of perturbing the dynamics which features
multiple stationary states. We derive the effective dynamics
due to parity-conserving and parity-swapping perturbations,
which leads to Eqs. (45) and (55). We also discuss the corre-
sponding dynamics in the presence of hard walls.

1. Metastability due to perturbations
of multiple stationary states

One class of open quantum dynamics where metastability
arises is the case when the dynamics L0, which features
multiple stationary states, is perturbed by δL, i.e., L = L0 +
δL. By means of non-Hermitian perturbation theory, it can
be shown [88] that the slow (low-lying) eigenmodes which
contribute to the metastable states, Eq. (F3), correspond to the
stationary states of L0,

� = �0 + · · · , (G1)

where �0 is the projection on the stationary states of L0.
Furthermore, the effective long-time dynamics, Eq. (F5), is
well approximated by

�L� = �0 δL�0 + · · · , (G2)

which corresponds to completely positive and trace-
preserving dynamics of the metastable states [50,90,91,116].

In this work, we consider dynamics of the cavity, L0

in (11), which conserves the parity P = (−1)a†a, Eq. (13),
and features a stationary DFS spanned by states |�+〉 and
|�−〉 of the opposite parity. In this case, the projection
on the stationary subspace also conserves the parity and is
given by

�0(ρ) = |�+〉〈�+|Tr(1+ρ) + |�−〉〈�−|Tr(1−ρ)

+ |�+〉〈�−|Tr(L+−ρ) + |�−〉〈�+|Tr(L−+ρ),

(G3)

where 1− and 1+ are identity operators on the odd and even
subspace, while L+− = L†

−+ is a conserved quantity supported
in odd-even coherences; see Sec. III B. For discussion of
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metastability in the case with hard wall in the dynamics, see
Appendix G 4.

2. Metastable dynamics with weak parity symmetry

Here we derive Eqs. (45) and (55).

a. General results

Effective dynamics with weak parity symmetry. We con-
sider a perturbation by the purely dissipative dynamics with

jumps J [cf. Eq. (F1)]

δL (ρ) = JρJ† − 1
2 J†J ρ − 1

2ρ J†J. (G4)

We furthermore assume that the action of a jump J flips
(swaps) the cavity parity P = (−1)a†a,

J P + P J = 0, (G5)

as is the case for a single-photon loss J = √
κ1pha in Eq. (51).

Therefore, L = L0 + δL features the weak-parity symmetry
[cf. Eqs. (44) and (54)].

Effective dynamics. Below we prove that the first-order dynamics due to (G4) is given by (in the basis {|�+〉〈�+|, |�−〉〈�−|,
|�+〉〈�−|, |�−〉〈�+|})

d

dt
ρ(t ) =

⎡⎢⎢⎢⎢⎢⎣
−〈J†J〉+ 〈J†J〉− 0 0

〈J†J〉+ −〈J†J〉− 0 0

0 0 − 1
2 (〈J†J〉+ + 〈J†J〉−) η(〈J†J〉+〈J†J〉−)1/2

0 0 η∗(〈J†J〉+〈J†J〉−)1/2 − 1
2 (〈J†J〉+ + 〈J†J〉−)

⎤⎥⎥⎥⎥⎥⎦ρ(t ), (G6)

where

η = Tr(L+−J|�−〉〈�+|J†)

(〈J†J〉+〈J†J〉−)1/2
and |η| � 1. (G7)

This gives Eq. (55) and the dissipative contribution in Eq. (45). Although L+− is not known in general (i.e., beyond the weak-
coupling limit [39]), η can be determined numerically for a given coupling strength φ as [cf. Eq. (G3)]

Tr(L+−J|�−〉〈�+|J†) = 〈�+|[�0(J|�−〉〈�+|J†)]|�−〉 = 〈�+|( lim
t→∞ etL0 J|�−〉〈�+|J†)|�−〉. (G8)

Effective master equation. Equation (G6) corresponds to biased bit flip noise in the DFS,

d

dt
ρ(t ) =

∑
j=1,2

γ j

(
s j ρ(t ) s†j − 1

2
[s†j s j ρ(t ) + ρ(t ) s†j s j]

)
, (G9)

s1,2 = eiϕ (ε + 2γ ±
√

ε2 + 4|γ |2)|�+〉〈�−| + e−iϕ (−ε + 2γ ±
√

ε2 + 4|γ |2)|�−〉〈�+|
N1,2

. (G10)

Here γ1,2 = (2κ ±
√

ε2 + 4|γ |2)/4 are the individual spin-flip rates, N2
1,2 = ε2 + [2γ ±

√
ε2 + 4|γ |2)]2 are the normalization

factors, and we have introduced ε = 〈J†J〉+ − 〈J†J〉−, γ = η(〈J†J〉+〈J†J〉+)1/2, and the phase e2iϕ|η| = η. Note that the total
dissipation rate κ = (〈J†J〉+ + 〈J†J〉−)/2. When |η| = 1, there is only a single jump, s1. This corresponds to the case when the
jump J leaves the cavity state within the DFS [cf. Eq. (G7)]. This takes place for single-photon losses and the cavity dynamics
in the weak-coupling limit (see Sec. IV B and Refs. [52–54]).

Steady state. The effective dynamics in Eq. (G6) features a unique stationary state,

ρss = 〈J†J〉−|�+〉〈�+| + 〈J†J〉+|�−〉〈�−|
〈J†J〉+ + 〈J†J〉− , (G11)

which approximates, in the zeroth order of the perturbation by J , the stationary state of the dynamics L = L0 + δL.
Derivation of Eq. (G6). As �0 conserves the parity, the first-order corrections (G2) must also feature the weak-parity

symmetry. Indeed, in the basis {|�+〉〈�+|, |�−〉〈�−|, |�+〉〈�−|, |�−〉〈�+|}, the effective dynamics is block diagonal,

d

dt
ρ(t ) =

⎡⎢⎣
−〈J†J〉+ Tr(1+J|�−〉〈�−|J† ) 0 0

Tr(1−J|�+〉〈�+|J† ) −〈J†J〉− 0 0

0 0 − 1
2 Tr[L+−(J†J|�+〉〈�−| − |�+〉〈�−|J†J )] Tr(L+−J|�+〉〈�−|J† )

0 0 Tr(L−+J|�−〉〈�+|J† ) − 1
2 Tr[L−+(J†J|�−〉〈�+| − |�−〉〈�+|J†J )]

⎤⎥⎦ρ(t ).
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The diagonal terms stem from the parity-conserving terms in (G4), i.e., (J†J ρ + ρ J†J )/2, while the off-diagonal terms originate
from the parity swap JρJ†. Here, we denoted the averages as 〈J†J〉± ≡ Tr(1±J†J|�±〉〈�±|) = 〈�±|J†J|�±〉.

We can further simplify the effective dynamics. First, from the trace preservation of Eq. (F5), we have that
Tr(1∓J|�±〉〈�±|J†) = 〈J†J〉±. Second, we note that |�+〉 and |�−〉 are the dark states of the dynamics (24) and (25), i.e.,
M̃g|�±〉 = M̃e|�±〉 = 0. Therefore, as the dynamics of coherences to a dark state is governed by the effective Hamiltonian of
(25), i

2 (M̃†
g M̃g + M̃†

e M̃e), the projection �0 reduces to the orthogonal projection onto the dark states |�+〉, |�−〉 [115]

�0(J†J|�+〉〈�−|) = lim
t→∞ etL0 (J†J|�+〉〈�−|) = lim

t→∞[e− 1
2 (M̃†

g M̃g+M̃†
e M̃e )t J†J|�+〉]〈�−| = 〈J†J〉+|�+〉〈�−|. (G12)

Finally, as the effective dynamics is completely-positive [50,90,91,116], we have that [cf. Eq. (G7)]

Tr(L+−J|�−〉〈�+|J†) = η (〈J†J〉+〈J†J〉−)1/2, where |η| � 1. (G13)

Moreover, when L0 + δL corresponds to the real dynamics (see Sec. II C), η is also real.

3. Metastable dynamics due to nonmonochromatic atom beam

a. General results

Effective dynamics. We now consider a perturbation δL of
the cavity dynamics L0 and assume that δL conserves the
photon-number parity (see Sec. II C). As we derive below,
the effective first-order dynamics in the DFS basis |�+〉〈�+|,
|�−〉〈�−|, |�+〉〈�−|, |�−〉〈�+| is diagonal,

d

dt
ρ(t ) =

⎡⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 −i� − γdeph 0

0 0 0 i� − γdeph

⎤⎥⎥⎥⎦ρ(t ),

(G14)

where −i� − γdeph = Tr(L+−δL|�+〉〈�−|), which corre-
sponds to effective dephasing at the rate γdeph and unitary
rotation at frequency �, along the direction of the DFS parity,

d

dt
ρ(t ) = −i� [sz, ρ(t )]

+ γdeph

(
sz ρ(t ) s†z − 1

2
[s†z sz ρ(t ) + ρ(t ) s†z sz]

)
,

(G15)

sz = 1√
2

(|�+〉〈�+| − |�−〉〈�−|). (G16)

For discussion of metastability in the case with a hard wall in
the dynamics, see Appendix G 4.

Steady states. Any dynamics conserving the parity fea-
tures at least two stationary states [75], corresponding to the
conserved quantities 1+ and 1− (cf. Sec. II C). Indeed, in
(G14) the even-odd coherences dephase to 0 whenever γdeph >

0 (cf. Fig. 6) and asymptotic states are mixtures of the odd and
even stationary states

ρss = p |�+〉〈�+| + (1 − p) |�−〉〈�−|, (G17)

where p is determined by the initial support in the even parity
subspace. ρss approximates (in the zeroth order of δL) the
asymptotic state of L = L0 + δL.

Derivation of Eq. (G14). As the projection on the sta-
tionary subspace �0 also conserves the parity, Eq. (G3), so
does the first-order effective dynamics, Eq. (G2). Therefore,
in the basis |�+〉〈�+|, |�−〉〈�−|, |�+〉〈�−|, |�−〉〈�+|, the
effective dynamics must be diagonal. The first two terms on
the diagonal are 0 from the trace preservation of the effective
dynamics [50,90,91,116]. Furthermore, from L0 + Lδ being
Hermiticity preserving we have [Tr(L−+δL|�−〉〈�+|)]∗ =
Tr(L+−δL|�+〉〈�−|), which is in general complex so that we
set Tr(L+−δL|�+〉〈�−| ≡ −i� − γdeph.

b. Metastable dynamics due to parity-conserving higher order corrections in far-detuned regime

Here we derive the Hamiltonian contribution to Eq. (45).
Unitary first-order dynamics of dark states. We now consider the case of δL corresponding to the perturbation of the

Hamiltonian H by δH and a jump J by δJ in the master equation (F1),

L (ρ) = (L0 + δL)(ρ) = −i[H + δH, ρ] + (J + δJ )ρ(J + δJ )† − 1
2 {(J + δJ )†(J + δJ ), ρ}

= −i[H, ρ]+Jρ J†− 1
2 {J†J, ρ}−i[δH, ρ] + δJρ J† + Jρ δJ† − 1

2 {δJ†J + J†δJ, ρ} + δJρ δJ† − 1
2 {δJ†δJ, ρ}, (G18)

where {X,Y } = XY + Y X denotes the anticommutator, which corresponds to the first-order correction δL1 and second-order
correction δL2 in δH and δJ . In the case when stationary states of L0 are pure, |�+〉 and |�−〉, and dark with respect to the jump
operator J , i.e., J|�±〉 = 0, so that they form a DFS, the first-order corrections to the dynamics in the DFS are unitary [89,90]
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and only due to the Hamiltonian δH ,

�0 δL1(|�+〉〈�−|) = �0(−i[δH, |�+〉〈�−|] + δJ|�+〉〈�−| J† + J|�+〉〈�−| δJ† − 1
2 {δJ†J + J†δJ, |�+〉〈�−|})

= �0
(−i[δH, |�+〉〈�−|] − 1

2 J†δJ|�+〉〈�−| − 1
2 |�+〉〈�−|δJ†J

)
= −i(〈δH〉+ − 〈δH〉−)|�+〉〈�−| − i〈δH〉−+(|�−〉〈�−| − |�+〉〈�+|), (G19)

where 〈δH〉−+ = 〈�−|δH |�+〉, and in the last line we used the fact that coherences to dark states are orthogonally projected on
the dark states (cf. Eq. (G12) and see Ref. [115]). When both L0 and L conserve the parity, the parity is necessarily conserved
by H , J , and δH , δJ [75], and thus the first-order correction is given by [cf. Eq. (G14)]

�0 δL1(|�+〉〈�−|) = −i
(〈δH〉+ − 〈δH〉−

)|�+〉〈�−| = −i� |�+〉〈�−|. (G20)

Higher order corrections in far-detuned regime. The result in Eq. (G20) is directly used in Eq. (47), which corresponds
to the higher order corrections in the parity-conserving Kraus operators due to finite detuning, Eqs. (B25) and (B26). The
parity-conserving operators can be shifted so that |�+〉 and |�−〉 are the dark states of the adiabatic dynamics [see Eq. (24) and
(25)]. In this case, we can identify H = 0 and

δH = i

2

(
c∗

geiτ |g2 |2
� M1 − cge−iτ |g2 |2

� M†
1 − c∗

e eiτ |g2 |2
� M3 + cee−iτ |g2 |2

� M†
e

)
, (G21)

while the changes in the shifted Kraus operators

M̃1 = M1 − cge−iτ |g2 |2
� 1, (G22a)

M̃3 = M3 + cee−iτ |g2 |2
� 1, (G22b)

that play the role of jump operators, do not contribute. Note that here we use the definitions of the Kraus operators M1 and M3

from Eqs. (B25) and (B26), which differ from the Kraus operators defined in Eq. (10) by the global phase eiτ |g2 |2
� due to constant

terms neglected in (6).

c. Metastable dynamics due to relaxing conditions
for Stark-shift cancellation

We now consider relaxing the conditions in Eq. (5). Be-
cause of parity conservation, this leads to dephasing of odd-
even coherences, Eq. (G14), but only in a higher than the first
order.

Corrections to two-photon interaction. Relaxing the con-
ditions in Eq. (5), which cancel the Stark shifts from the
atom-cavity interactions in Eq. (6), leads to the higher or-
der corrections to this Hamiltonian, as given by Eq. (4).
Therefore, the dynamics remain parity conserving, but with
modified Kraus operators M1 and M3 [cf. Appendix C]. This
is analogous to the case of the fourth-order corrections to
the atom-cavity interactions, Eq. (B27), contributing to cavity
dynamics, which is discussed in Appendix G 3 b.

Resulting cavity dynamics. In the lowest order, the pertur-
bation away from Eq. (5), contributes to the unitary dynamics
via Eq. (G21), while in the higher order it can also lead to
dephasing of coherences [cf. Eq. (G14)]. Dephasing manifests
mixedness of the odd and even stationary states, and thus only
takes place when the perturbed interaction in Eq. (4) does not
lead to different set of pure stationary states [for the general
dynamics leading to pure stationary states, see Appendix C].

d. Metastable dynamics due to mixed atom states

In the main text, we discussed the properties of two-photon
micromaser dynamics under the assumption that all atoms
entering the cavity are prepared in an identical pure state,
Eq. (8). Here we investigate how the imperfections of the atom
preparation influence the resulting cavity dynamics.

Micromaser dynamics with mixed atom state. The most
general state of the atom invariant to the Hamiltonian (2a) (as
required by Assumption 3 in Appendix B 1) is

ρat = pa|ψa〉〈ψa| + pb|ψb〉〈ψb| +
∑

j=0,2,4,a

p j | j〉〈 j|, (G23)

where pa + pb + ∑
j=0,2,4,a p j = 1 and coherent superposi-

tions

|ψa〉 = cg|1〉 + ce|3〉, |ψb〉 = c∗
e |1〉 − c∗

g|3〉 (G24)

are allowed due to the two-photon resonance in Eq. (3) [cf.
Eq. (8)]. Note that the states |ψa〉 and |ψb〉 are orthonormal.

The cavity dynamics due to a passage of a single atom in
the mixed state (G23) is given by [cf. Eq. (B8)]

ρ (k) =
∑

j = g, e
l = a, b

pl Mjl ρ
(k−1) M†

jl +
∑

j = 0, 2, 4, a

p j Mjρ
(k−1) M†

j

≡ M[ρ (k−1)], (G25)

where for the initial states |ψa〉 and |ψb〉 we have two pairs of
Kraus operators [cf. Eqs. (B7) and (10)],

Mga = 〈1|Ueff (τ )|ψa〉, Mea = 〈3|Ueff (τ )|ψa〉, (G26a)

and

Mgb = 〈1|Ueff (τ )|ψb〉, Meb = 〈3|Ueff (τ )|ψb〉 (G26b)

with the effective Hamiltonian Heff coupling the resonant
levels given by (6), while for |0〉, |2〉, |4〉, |a〉

M0 = eiτa†a |g2 |2
� , M2 = e−iτa a† |g2 |2+|g3 |2

� ,
(G27)

M4 = eiτa a† |g3 |2
� , and Ma = 1,
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up to a global phase [see Eqs. (B7), (5), and (A9)]. The
continuous dynamics is then given by Eq. (B9). We note that
Eq. (G27) depends on the specific (5 + 1)-model implement-
ing the effective Hamiltonian in Eq. (6), but below we discuss
the effects from Eq. (G26) and Eqs. (G27) separately, and
thus our results will be applicable to other realizations of
two-photon dynamics without Stark shifts.

We note that, exactly as in the case of a pure atom state,
the cavity dynamics is parity conserving, which is due to the
far-detuned limit, Eq. (6). Furthermore, it also corresponds to
real-valued dynamics when p0 = p2 = p4 = 0, as in this case
the relative phase between coefficients of both atom states
|ψa〉 and |ψb〉 is the same (see Sec. II C).

Mixed stationary states of the dynamics. As discussed in
Sec. III A, a pair of Kraus operators in Eq. (10) corresponding
to a pure atom state in Eq. (8) features two even and odd pure
eigenstates, which are determined by the recurrence relation
in Eq. (16). In order for stationary states of the cavity to be
pure in the dynamics with the mixed-atom state (G23) it is
necessary for it to be an eigenstate of all Kraus operators in
Eqs. (G26) and (G27). However, for the orthogonal states |ψa〉
and |ψb〉, Eq. (G24), the corresponding recurrence relations
features the factors ce/cg and −c∗

g/c∗
e , respectively, which

are always different, as |cg|2 �= −|ce|2. Therefore, no pure
stationary states exist if the atom state is mixed between
levels | j〉 with j = 0, . . . , 4 (i.e., except |a〉). Nevertheless,
the cavity features at least two, odd and even, mixed stationary
states, since the photon-number parity is conserved [75]. We
note that, even in the case when pa = 0 (or pb = 0), the
Kraus operators M0, M2, and M4 in Eq. (G27) cannot feature
pure cavity states as eigenstates unless the cavity state is
a fixed photon number state or the interaction time τ is
such that |g2|2

�
τ = |g3|2

�
τ = 2π , so that M0 = M2 = M4 = 1.

This is because those Kraus operators imprint a nontrivial
phase on the cavity state and thus lead to its dephasing [but
if the state of outgoing atoms is measured, the conditional
cavity state can become asymptotically pure for pa = 0 (or
pb = 0); however, only the probability of the photon number
will be stationary with the phases changing due to M0, M2,
and M4].

Coherent stationary state of cavity from coherent states
of atoms. In Appendix H, we show that the dynamics with
the atom state diagonal in atom levels leads to effective
classical detailed balance dynamics of the cavity with odd
and even thermal steady states diagonal in the photon-number
basis, with the temperature determined as exp[−2ω/(kBT )] =
pa|ce|2 + pb|cg|2/(pa|cg|2 + pb|ce|2). We now prove that
whenever the atom state, Eq. (G23), is not diagonal in the
atom levels, i.e., coherent (pa �= pb and |ce| �= 1, 0), the even
and odd stationary states of the cavity are coherent in the
photon-number basis.

Consider a diagonal even state ρ+ = ∑∞
n=0 p2n|2n〉〈2n|.

We have [cf. Eqs. (B8) and (10)]

M(ρ+) = Mdiag(ρ+) +
∞∑

n=0

{−icec∗
g sin2n(φ)(

√
pa

−√
pb)[cos2n−1(φ)p2n

− cos2n+2(φ)p2n+2]|2n + 2〉〈2n| + H.c.}, (G28)

where Mdiag is the dynamics with a diagonal atom
state,

∑
j = 0, 2, 4, a pj | j〉〈 j| + [pa|cg|2 + pb|ce|2]|1〉〈1| +

[pa|ce|2 + pb|cg|2]|3〉〈3|, which leaves diagonal states diag-
onal. Therefore, for ρ+ to be a stationary state, no coherences
can appear in Eq. (G28), and thus cec∗

g = 0, or p = 1 − p,
or cos2n−1(φ)p2n − cos2n+2(φ)p2n+2 = 0. The first two con-
ditions correspond to incoherent states of the atom, while
the last condition cannot be fulfilled for a stationary state
of the diagonal dynamics Mdiag, as it is effectively thermal
(see Appendix H) and thus independent from the interaction
strength. The proof for the odd stationary state is analogous.

Metastable dephasing dynamics for almost pure states.
When atom state in Eq. (G23) is almost pure, pa ≈ 1 (or pb ≈
1) so that ρat ≈ |ψa〉〈ψa| (or |ψb〉〈ψb|), the Kraus operators
M0, M2, M4, and Mgb and Meb (or Mga and Mea) can be treated
as the perturbation of the dynamics with the pure states |�+〉,
|�−〉 that takes place at the reduced rate νpa (or νpb).

From parity conservation, this perturbation necessarily
leads to dephasing of the even-odd coherences |�+〉〈�−| and
|�−〉〈�+| [cf. Eq. (G14)]. The dephasing manifests the fact
that the even and odd stationary states of the dynamics are
mixed (although in the zeroth order they are approximated by
the pure state |�+〉 and |�−〉), and coherences between them
are not stationary. The rate of dephasing and the frequency of
unitary dynamics are bounded as [cf. Eq. (G23)]

γdeph � 2ν(1 − pa − pa), (G29)

|�| � ν(p0 + p2 + p4). (G30)

This is follows from the fact that for the mixed atoms we have
[cf. Eqs. (G2) and (G14)]

−i� − γdeph = ν
∑

j=b,0,2,4

p j{Tr[L+−M′
j (|�+〉〈�−|)] − 1},

(G31)
where M′

b(ρ) = MgbρM†
gb + MebρM†

eb and M′
j (ρ) =

MjρM†
j for j = 0, 2, 4 are all quantum channels conserving

the parity [cf. Eqs. (G26) and (G27)]. For any quantum
channel M′, we have that �0[M′(|�〉〈�|)] is a quantum
state, and thus its fidelity with any other state is between
0 and 1. Therefore, for |�〉 = (|�+〉 + |�−〉)/

√
2, any

parity-conserving M′ we have that 0 � 2〈�|�0[M′(|�〉
〈�|)]|�〉 = 1 + Re{Tr[L+−M′(|�+〉〈�−|)]) and, similarly,
for |� ′〉 = (|�+〉 ± i|�−〉)/

√
2, we have 0 � 2〈� ′|�0

[M′(|�〉〈�|)]|� ′〉 = 1 ∓ Im{Tr[L+−M′(|�+〉〈�−|)]) � 2.
Noting that 1 − pa − pa = ∑

j=b,0,2,4a p j , and that both
M′

a and M′
b can be considered real valued, so M′

b does
not contribute to the unitary dynamics, we finally arrive at
Eqs. (G29) and (G30), respectively. We also note that the rate
of coherence decay can be simply bounded by the mixedness
of the atom state (defined as 1 minus the purity), as from
Eq. (G29) we have γdeph � 2ν(1 − pa) ≈ 1 − Tr(ρ2

at) for
pa ≈ 1.

Dynamics in weak-coupling limit. In the limit of small inte-
grated coupling, |φ| � 1, the stationary states of the dynamics
with a pure atom state are given by Schrödinger cat states [cf.
Eqs. (29) and (33)]. For the mixed state, dynamics in Eq. (33)
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in general additionally features two-photon injections, photon-
number Hamiltonian, and dephasing in photon number (see
also Refs. [39,40,52])

d

dt
ρ = −i[g∗

2pha2 + g2pha†2, ρ]

+ κ2ph
(
a2ρa†2 − 1

2

{
a2†a2, ρ

})
+ γ2ph

(
a†2ρa2 − 1

2

{
a2a2†, ρ

})
− i[ω0 n, ρ] + γ0

(
nρn − 1

2

{
n2, ρ

})
, (G32)

Here n = a†a and the parameters g2ph = ν(pa − pb)c∗
gce φ,

κ2ph = νpa |cg|2φ2, γ2ph = νpb|cg|2φ2, ω0 = ν[φ2(p0 −
p2) + φ3(p4 − p2)], and γ0 = ν[p0φ

2
2 + p2(φ2 + φ3)2 +

p4φ
2
3 ]. The terms in the first line of Eq. (G33) arise from the

expansion of Mga, Mea [see Eqs. (32) and (G26)], and

Mgb ≈ c∗
e1 + ic∗

gφ a†2, (G33a)

Meb ≈ −c∗
g1 − ic∗

eφ a2 + c∗
g
φ2

2
a2a†2, (G33b)

where we kept terms contributing to up to second order in
φ and ce to the master equation [cf. Eq. (33)]. The terms
in the second line of Eq. (G33) originate from the first and

the second orders in the expansion of M0, M2, and M4 of
Eq. (G27) in φ j = |g j |2/�, which we assumed small, |φ j | �
1, j = 2, 3.

For pa ≈ 1, we arrive at the metastable dynamics in with

� = ω0(〈n〉+ − 〈n〉−), (G34)

γdeph = γ0[〈n2〉+ + 〈n2〉− − 2Tr(L+−n|�+〉〈�−|n)]

+ γ2ph[〈n2〉+ + 〈n2〉− + 3(〈n〉+ + 〈n2〉−)

+ 6 − 2Tr(L+−a†2|�+〉〈�−|a2)], (G35)

where the stationary states are Schrödinger cat states
in Eq. (29) with a modified parameter α = (1 −
pb/2)e−iπ/4

√
2ce/(cgφ) in Eq. (29). Since |α|2|φ| =

2(1 − pb)|ce/cg| � 1, the bounds in Eqs. (G29) and (G30)
indeed hold true even for large |α|, where 〈n〉± ≈ |α|2 and
〈n2〉± ≈ |α|4. Furthermore, since L+− is known, Eqs. (G34)
and (G35) can be computed exactly [39]. Finally, we note
that for the mixed state supported only on |1〉 and |3〉 levels,
which corresponds to dissipative dynamics with two-photon
injections only (ω0 = 0 = γ0), we indeed observe that � = 0,
as argued above.

e. Metastable dynamics due to decaying atom levels

Finite lifetime of atom levels. In this work so far, we have assumed that all atoms are prepared identically in an initial state
ρat which only changes due to the interaction with the cavity (see Appendix B 1). In general, however, atoms interact also with
the external environment of continuum modes, which leads to decay of the atomic levels. Such decay may include transitions
between the states |0〉, . . . , |4〉, |a〉 as well to other atom levels which are not coupled to the cavity field, and is described in the
frame of the free Hamiltonian [Eq. (A1)] as

d

dt
ρat(t ) =

∑
k=−1,0,1,2,3,4,a

∑
j<k

γ jk

[
σ jkρat(t )σk j − 1

2
σkkρat(t ) − 1

2
ρat(t )σkk

]
, (G36)

where the state |−1〉, without loss of generality, describes all the other atom levels not coupled to the cavity and we consider
only the transitions corresponding to the loss of atom energy.

Mixed atom states. For the initial pure state in Eq. (8), the dynamics in Eq. (G36) gives a mixed atomic state ρat(t ) [cf.
Eq. (G23)], where

ρat(t ) − [1 − p(t )] | − 1〉〈−1|

=
[

e−�1t |cg|2 + γ13
e−�1t − e−�3t

�3 − �1
|ce|2 + γ12γ23

�3 − �2

(
e−�1t − e−�2t

�2 − �1
− e−�1t − e−�3t

�3 − �1

)
|ce|2

]
|1〉〈1|

+ e− �1+�3
2 t cgc∗

e |1〉〈3| + e− �1+�3
2 t c∗

gce |3〉〈1| + e−�3t |ce|2 |3〉〈3| + γ23
e−�2t − e−�3t

�3 − �2
|ce|2 |2〉〈2|

+
{
γ01

e−�0t − e−�1t

�1 − �0
|cg|2 + γ03

e−�0t − e−�3t

�3 − �0
|ce|2

+ γ01γ13

�3 − �1

(
e−�0t − e−�1t

�1 − �0
− e−�0t − e−�3t

�3 − �0

)
+ γ02γ23

�3 − �2

(
e−�0t − e−�2t

�2 − �0
− e−�0t − e−�3t

�3 − �0

)

+ γ01γ12γ23

�3 − �2

[
e−�0t − e−�1t

(�2 − �1)(�1 − �0)
− e−�0t − e−�2t

(�2 − �1)(�2 − �0)
− e−�0t − e−�1t

(�3 − �1)(�1 − �0)
+ e−�0t − e−�3t

(�3 − �1)(�3 − �0)

]}
|0〉〈0|

≡ p(t ) ρat(t ), (G37)

and we defined �k = ∑
j<k γ jk , p(t ) = ∑

j=0,1,2,3,4,a〈 j|ρat(t )| j〉.
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Below we show that the possible decay of atoms during the time T between the preparation of the initial atomic state [Eq. (8)]
and entering the cavity leads to an effective micromaser with the reduced rate ν = p(T )ν and the mixed atom state given by
ρat ≡ ρat(T ) (cf. Assumption 2 in Appendix B 1). In particular, for transitions only toward levels not coupled to the cavity
(γ jk = 0 unless j = −1), the cavity interacts with the effective pure atom state

ρat(T ) = e−�1T |cg|2 |1〉〈1| + e− �1+�3
2 T cgc∗

e |1〉〈3| + e− �1+�3
2 T c∗

gce |3〉〈1| + e−�3T |ce|2 |3〉〈3|
e−�1T |cg|2 + e−�3T |ce|2 = |ψat(T )〉〈ψat(T )| (G38)

where [cf. Eq. (8)]

|ψat(T )〉 = cg(T ) |1〉 + ce(T ) |3〉 = e− �1
2 T cg |1〉 + e− �3

2 T ce |3〉√
e−�1T |cg|2 + e−�3T |ce|2

, (G39)

arriving at the reduced rate ν = (e−�1T |cg|2 + e−�3T |ce|2)ν. We note that for the uniform decay, �1 = �3 = �, the atom state
remains the same, |ψat(T )〉 = |ψat〉, but the rate is exponentially reduced, ν = e−�T ν.

Modified cavity dynamics. In the first order, the interaction with the external environment and the cavity are independent,
leading to the change in the cavity given by [cf. Eq. (B6) and Eq. (G36)]

ρ (k) = Trat{�(τ )[ρat(T ) ⊗ ρ (k−1)]}
= p(T ) Trat{�(τ )[ρat(T ) ⊗ ρ (k−1)]} + [1 − p(T )] ρ (k−1)

≡ p(T )M[ρ (k−1)] + [1 − p(T )] ρ (k−1), (G40)

where we introduced [cf. Eq. (B5)]

�(τ ) = T e−i
∫ τ

0 dt[H(t )+Lat], (G41)

with H(t )(·) = −i[Hint(t ) + H0, (·)], and we again consider the frame rotating with the free Hamiltonian [Eq. (A1)]. The
continuous dynamics takes place at the reduced rate ν = p(T )ν [cf. Eq. (B9)]

d

dt
ρ(t ) = ν̄ M[ρ(t )] − ν̄ ρ(t ) ≡ L[ρ(t )]. (G42)

The cavity dynamics will be modified for two reasons. First, the mixed atom state ρ(T ) [cf. Eq. (G37)] will lead to the
cavity dynamics being a mixture of dynamics for different pure states, as discussed in Appendix G 3 d. Namely, dynamics for
the eigenstates of ρ(T ): |ψk (T )〉 [of the general form |ψa(T )〉 and |ψb(T )〉 supported on |1〉 and |3〉, and | j〉 with j = 0, 2;
cf. Eq. (G23)], chosen with the probability pk (T ) given by the corresponding eigenvalues, k = a, b, 0, 2. Second, possible atom
decays during the interaction with cavity will lead to the evolution with a non-Hermitian Hamiltonian H (t ) = H0 + Hint(t ) +
i
2

∑
jk γ jkσ j j intercepted by the updates of the atom state according to the occurring decay events. This will lead to a generally

different set of Kraus operators for any sequence of decay events and the average dynamics given by the integral over all events
[cf. Eq. (G26)],

M =
∑

j = −1, 0, 1, 2, 3, 4, a
k = a, b, 0, 2

pk (T )

⎡⎢⎢⎢⎣M jk (τ ) +
∞∑

n=1

∫ τ

0
dtn

∫ tn

0
dtn−1· · ·

∫ t2

0
dt1

×
∑

j1, ..., jn = −1, 0, 1, 2, 3, 4, a
k1, ..., kn = 0, 1, 2, 3, 4, a

γ jnkn . . . γ j1k1 M j; jnkn··· j1k1;k (τ ; t1, ..., tn)]

⎤⎥⎥⎥⎦, (G43)

where

M jk (τ ) = M jk (τ )ρ M jk (τ )†, (G44)

M j; jnkn··· j1k1;k (τ ; t1, ..., tn) = M j; jnkn··· j1k1;k (τ ; t1, ..., tn)ρ M j; jnkn··· j1k1;k (τ ; t1, ..., tn)† (G45)

with
M jk (τ ) = 〈 j|T e−i

∫ t
0 dt ′H (t ′ )|ψk (T )〉 (G46)

and

M jk; jnkn··· j1k1 (τ ; t1, ..., tn) = 〈 j|T e−i
∫ τ

tn
dt ′H (t ′ )| jn〉〈kn|T e−i

∫ tn
tn−1

dt ′H (t ′ )| jn−1〉 . . . 〈k2|T e−i
∫ t2

t1
dt ′H (t ′ )| j1〉〈k1|e−i

∫ t1
0 dt ′H (t ′ )|ψk (T )〉.

(G47)

In the far detuned limit, the levels 4 and a are not coupled to the dynamics.
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In particular, for decay transitions only toward levels not coupled to the cavity and the far detuned limit, we obtain [cf.
Eq. (G39)]

M0 = Mg(τ ) + Me(τ ) +
∫ τ

0
dt [�1 Mg(t ) + �3 Me(t )], (G48)

where

Mg(t ) (ρ) = Mg(t )ρ Mg(t )†, (G49a)

Me(t ) (ρ) = Me(t )ρ Me(t )†, (G49b)

with [cf. Eq. (10) and see Appendix C]

Mg(t ) = 〈1|T e−i
∫ t

0 dt ′[Heff (t ′ )− i
2 (�1σ11+�3σ33 )]|ψat(T )〉 = e− �1+�3

4 t

[
cg(T ) cos

(
t

√
|λ|2 a†2a2 − (�1 − �3)2

16

)

−
(

cg(T )
�1 − �3

4
+ ice(T )λ∗a†2

) sin
(
t
√

|λ|2 a2a†2 − (�1−�3 )2

16

)√
|λ|2 a2a†2 − (�1−�3 )2

16

⎤⎦, (G50a)

Me(t ) = 〈3|T e−i
∫ t

0 dt ′[Heff (t ′ )− i
2 (�1σ11+�3σ33 )]|ψat(T )〉 = e− �1+�3

4 t

[(
−icg(T )λa2 + ce(T )

�1 − �3

4

)

×
sin

(
t
√

|λ|2 a†2a2 − (�1−�3 )2

16

)√
|λ|2 a†2a2 − (�1−�3 )2

16

+ ce(T ) cos

(
t

√
|λ|2 a2a†2 − (�1 − �3)2

16

)⎤⎦, (G50b)

where we neglected a global phase e−iτ (�1+ |g2 |2
�

) (cf. Appendix B 2). In Eq. (G48), the terms Mg(τ ) + Me(τ ) describe the
situation when no decay events occur during the interaction time τ , while the decay from |1〉 or from |3〉, happening at time t
is described by Mg(t ) or Me(t ), respectively, as in those cases the atom interacts with the cavity only for time t . For the case
of uniform decay, �1 = �3 = �, we simply have M j (t ) = e− �

2 t Mj (t ), j = g, e, where Me(t ) and Mg(t ) are Kraus operators in
Eq. (10) for the interaction time t . Therefore, the dynamics in Eq. (G48) simplifies to

M0 = e−�τM0(τ ) + �

∫ τ

0
dt e−�tM0(t ). (G51)

Even and odd stationary states of cavity. We note that in the far-detuned limit the modified cavity dynamic in Eq. (G43)
conserved the photon number parity P in Eq. (13) as the Kraus operators in Eqs. (G46) and (G47) commute with P. Therefore,
there exist both odd and even stationary states. Those stationary states, however, are mixed, as already due to the mixed atom
state ρat(T ), the Kraus operators in Eq. (G46) corresponding to the initial pure states |ψa(T )〉 and |ψb(T )〉 could only imply
contradictory recurrence relations for pure stationary states (cf. Appendixes C and G 3 d).

Even in the case of decay only toward levels not coupled to the cavity, Eq. (G48), when the effective atom state is pure,
Eq. (G39), the Kraus operators in Eq. (G50) do not feature a pure steady state when �1 �= �3 [cf. case B in Appendix C].
Furthermore, even in the case of the uniform decay, since pure stationary states vary with the interaction time [cf. Eq. (19)],
random interaction times caused by decay events will lead to mixed stationary states of the overall dynamics.

Dynamics in the limit of weak atom decay. We now consider a limit of weak decay with respect to two timescales T and
τ , which determine the effective atom state and the atom-cavity interaction, respectively. In the first order, due to the parity
conservation, atom decay will lead to dephasing dynamics of odd-even coherences, as given by Eq. (G14).

(1) Contribution from T . For �1, �3 � T −1, the effective atom state entering the cavity is approximately pure. Assuming
further weak decay from all relevant levels, i.e., � j � T −1 also for j = 0, 2, from Eq. (G37) we simply have [cf. Eq. (G23)]

pa(T ) = 1 − (�3 − γ−13)T |ce|2 − (�1 − γ13 − γ−11|ce|2)T |cg|2, pb(T ) = γ13T |ce|4,
p0(T ) = γ01T |cg|2 + γ03T |ce|2, p2(T ) = γ23T |ce|2, p4 = pa = 0, (G52)

with [cf. Eq. (8) and (G39)]

|ψa(T )〉 = cg[1 − (�1 − �3)T |ce|2/2 + γ13T |ce|4]|1〉 + ce[1 + (�1 − �3)T |cg|2/2 − γ13T |cg|2|ce|2]|3〉, (G53)

which is normalized up to the first order, and |ψb(T )〉 supported on |1〉 and |3〉 and orthogonal to |ψa(T )〉 [cf. Eq. (G24)]. The
bound in Eq. (G29) gives the resulting contribution to the dephasing as

γdeph(T ) � 2ν [1 − pa(T )] ≈ 2ν[(�1 − γ−11)|cg|2 + (
�3 − γ−13 − γ13|cg|2

)|ce|2]T (G54)

(since we consider first-order effects, we assumed a unitary atom-cavity dynamics). Here dephasing takes place between pure
stationary states of the cavity obtained with the atom state |ψa(T )〉 instead of Eq. (8). In particular, for the decay only to the
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uncoupled levels, the bound in Eq. (G54) indicates no dephasing, which is indeed due to the effective state being pure [cf.
Eq. (G39); this observation actually holds for any T ]. An analogous bound holds for the frequency of unitary dynamics [cf.
Eqs. (G30) and (G37)]

|�(T )| � ν[p0(T ) + p2(T )] ≈ ν[γ01|cg|2 + (γ03 + γ23)|ce|2]T . (G55)

The inequalities in Eqs. (G54) and (G55) hold also in the case of weak decay only for |1〉 and |3〉 levels [117].
(2) Contribution from τ . Second, we discuss the dephasing due to atom decay during its interaction with the cavity for

�1, �3 � τ−1.
For the decay only to uncoupled levels, we have

γdeph(τ )

ν
= �1 + �3

2
τ −

∫ τ

0
dt

∑
j=g,e

� jTr[L+− M j (λt )(|�+〉〈�−|)] − �1 − �3

4
τ (〈Y 〉+ + 〈Y 〉−), (G56)

� = 0, (G57)

where

Y = |cg|2 sin(φ
√

a2 a†2)

φ
√

a2 a†2
+ |ce|2 sin(φ

√
a†2 a2)

φ
√

a†2 a2
, (G58)

and no unitary dynamics follows from the fact that since
Mg(t ) and Me(t ) can be considered real valued for all t
[cf. Sec. II C]. Furthermore, in the case of the uniform decay
[cf. Eq. (G51)], the modified dynamics M0 can be seen as
a perturbation of the dynamics without decay M0(τ ) at a
rate ν further reduced by e−�τ , by a quantum channel �/(1 −
e−�τ )

∫ τ

0 dt e−�tM0(t ) at the rate ν(1 − e−�τ ). Therefore, in
the limit � � τ−1, the resulting dephasing rate in Eq. (G56)
is bounded as [cf. the derivation of Eq. (G29)]

γdeph(τ ) � 2ν �τ, (G59)

while there is no unitary dynamics, � = 0, since M0(t ) can
be considered real valued for all t [cf. Sec. II C]. Similarly,
for the nonuniform decay to the uncoupled levels only [cf.
Eq. (G48)], we have � = 0, since Mg,e(t ) can be considered
real valued for all t and

γdeph(τ ) � 2ν max (�1, �3)τ. (G60)

Equation (G60) follows from Eq. (G59) and the fact that we
can consider first-order effects. Indeed, for �1 > �3 (�3 >

�1), increasing the decay rate from |3〉 (|1〉) by �1 − �3

(�3 − �1), while leading to the uniform decay at the rate
max (�1, �3), can only increase the effective dephasing rate
γdeph(τ ). Note that here we consider the unperturbed dynamics
with respect to the pure atom state in Eq. (G39) rather than
Eq. (8), which is modified due to atom decay before entering
the cavity.

Finally, for general case, we note that Eq. (G60) also
holds true provided that we also assume �1, �3 � T −1 [cf.
Eq. (G43)], in which limit ν can be further replaced by ν,

γdeph(τ ) � 2ν max (�1, �3)τ. (G61)

Indeed, in that case, since we consider first-order contribu-
tions, we can assume pure atom state |ψa(T )〉 in Eq. (G53)
entering the cavity, so that Eq. (G46) is given by Eq. (G50)
with |ψa(T )〉 [instead of |ψat(T )〉 in Eq. (G39)]. Thus, in-
creasing the decay rate from |1〉 or |3〉 to achieve the uniform
decay rate equal max (�1, �3) gives again a perturbation of
M0(τ ) by a quantum channel multiplied by max(�1, �3)τ . In
this general case, the unitary dynamics is possible with the

frequency bounded as

|�(τ )| � ν (γ01 + γ03 + γ23)τ, (G62)

where we further assumed weak decay from all relevant
levels, i.e., � j � T −1 also for j = 0, 2, so that the contribu-
tion to the frequency comes from

∫ τ

0 dt [γ01 Mg(t ) + (γ03 +
γ23)Me(t )] [cf. Eq. (G49)], and we used the fact that Mg(t )
and Me(t ) are completely positive and do not increase trace
[cf. the derivation of Eq. (G30)].

We conclude that in the limit of weak decay with respect
to both T and τ , we obtain dephasing dynamics of odd-even
coherences at the rate γdeph(τ ) + γdeph(τ ) in Eqs. (G54) and
(G61), with unitary rotation at the frequency �(T ) + �(τ )
in Eqs. (G55) and (G62) [see Eqs. (70) and (71)]. We also
note that even in the case of nonuniform decay, the dephasing
rate is bounded by the change in the purity of the atom state
during the total time T + τ . Finally, for the decay only to
levels not coupled to the cavity, the timescale T does not
contribute to noise, but it modifies the rate of the unperturbed
dynamics to ν, so that its relaxation timescales are rescaled by
(e−�1T |cg|2 + e−�3T |ce|2).

Dynamics in the limits of weak coupling and weak atom
decay. In the weak coupling limit, we can expand Eqs. (G46)
and (G47) up to quadratic order in φ and ce [see Sec. III C]
and linear order in decay.

For the case of decay only toward uncoupled levels with
�1, �3 � τ−1 [Eqs. (G48)–(G50)], we obtain

d

dt
ρ = −i[g∗

2pha2 + g2pha†2, ρ]

+ κ2ph

(
a2ρa†2 − 1

2
{a2†a2, ρ}

)
, (G63)

where

g2ph = νe− �1+�3
2 T c∗

gce φ

(
1 − �1 + �3

4
τ

)
,

κ2ph = νe−�1T |cg|2φ2

(
1 − �1

2
τ − �3

6
τ

)
. (G64)

This result follows from the expansion Mg(t ) ≈ cg(T ) (1 −
�1t/2) − ce(T )φa†2 − cg(T ) φ2a†2

a2[1 − (�1 − �3)t/12 −
(�1 + �3)t/4]/2 and Me(t ) ≈ ce(T ) (1 − �3t/2) −
icg(T ) φa2[1 − (�1 + �3)t/4], which holds for
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|ce(T )|/|cg(T )| = e−(�3−�1 )T |ce|/|cg| � 1 (which in general
does not require �1, �3 � T −1), and considering the
contributions to Eq. (G42) up to quadratic order in φ

and ce(T ). Therefore, in the presence of the decay to only
uncoupled levels, there is no effective dephasing, and the DFS
of pure Schrödinger cat states with a modified parameter α,

|α〉 ± | − α〉√
2 ± 2e−2|α|2

, α = e−i π
4

√
2g2ph

κ2ph
= e

�1−�3
4 T

×
(

1 + 3�1 − �3

24
τ

)
e−i π

4

√
2ce

cgφ
,

(G65)

remains stationary [cf. Eqs. (29) and (33)].
For the general case of the atom decay in Eq. (G36),

we will have two contributions to the metastable dephasing
dynamics in Eq. (G14), from the mixedness of atom state
ρat(T ) [Eq. (G37)], and via the decay during interaction with
the cavity [Eqs. (G46) and (G47)]. In the first order of the limit
of weak decay from all relevant levels � j � τ−1, T −1 for j =
0, 1, 2, 3, the mixedness of atom state ρat(T ) will contribute to
the dephasing dynamics as given in Eqs. (G34) and (G35) with
the probabilities from Eq. (G52) [see also Eq. (G33)]. Second,
since we can neglect the contribution from the mixedness of
atoms when considering decay during the interaction with the
cavity, the Kraus operators in Eq. (G46) can be expanded as
in the case of decay only to uncoupled levels but for |ψa(T )〉
in Eq. (G53) instead of |ψat(T )〉 in Eq. (G39), while Kraus
operators in Eq. (G47) will feature only a single decay event
with H (t ) replaced by H eff(t ), and can be further expanded to
consider only the contributions up to quadratic order in φ and
ce for Eq. (G42).

Stationary states in the limit of weak atom decay. The
atom decay will not only change the long-time dynamics
but also introduce corrections to the steady states, rendering
them no longer pure, but mixed [cf. Sec. V B]. In order to
generate approximately pure steady states, it is thus important
to achieve �1, �3 � τ−1, T −1. Interestingly, for the decay
only toward levels not coupled to the cavity, the timescale
T does not play a role, but the only approximately pure
stationary states are still altered by the decay, since in general
the effective atom state in Eq. (G39) changes with T [see also
Eq. (G65)].

f. Metastable dynamics due to Nonmonochromatic atom beam

In Secs. II–IV, we assumed that the atomic beam is
monochromatic, i.e., the velocity v of all atoms passing
through the cavity is the same, leading to identical time τ

spent in the cavity, and thus the uniform value of the integrated
coupling strength φ [see Eqs. (B7) and (B9), and cf. Ap-
pendix B 1]. Here, we discuss how the micromaser dynamics
is changed for a nonmonochromatic atomic beam.

Micromaser dynamics. We consider atom velocities drawn
from a probability distribution p(v), which can be, for
example, a Maxwell-Boltzmann distribution, i.e., a Gaussian
distribution with thermal width

√
kBT/m and the correspond-

ing average velocity of the atoms v = ∫
dv p(v)v. The veloc-

ity distribution determines the probability distribution of the

integrated coupling given by g(φ)dφ = p(l/φ)l/φ2dφ, where
l is the length of the cavity (note that in general φ = lv−1 �=
l/v). The dynamics of the cavity due to a single atom passage
is now described by the average [cf. Eqs. (B8) and (9)]

M =
∫

dφ g(φ)M(φ), (G66)

where M(φ) denotes the dynamics with the integrated cou-
pling strength φ [see Eq. (10)].

Mixed stationary states of even and odd parities. As the re-
currence relation in Eq. (19) obeyed by pure stationary states
depends on φ, it can no longer be fulfilled for all velocities
so that the stationary state becomes in general mixed [cf.
Appendix G 3 d]. Nevertheless, due to the far-detuned limit
in Eq. (6), the parity is conserved by the dynamics, and thus
there exists two even and odd stationary states [75], which are
mixed [cf. Fig. 10(a)].

Metastable dephasing dynamics. In the case in which the
distribution of the integrated coupling is sufficiently peaked
around its average, we expect δM ≡ M − M(φ) can be
treated as a perturbation of M(φ). In such a case, it induces
the dephasing dynamics within the DFS of the pure stationary
states of M(φ), as the parity is conserved [see Eq. (G14)].
Furthermore, as the dynamics of M(φ) corresponds to real-
valued dynamics for all φ (cf. Sec. II C), there is no associated
Hamiltonian contribution and � = 0 in Eq. (G14). In particu-
lar, by expanding Kraus operator in Eq. (10) in φ = φ + δφ,
we arrive at

γdeph = ν δφ2

[ |cg|2
2

(〈a†2 a2〉+ + 〈a†2 a2〉−)

+ |ce|2
2

(〈a2 a†2〉+ + 〈a2 a†2〉−)

− |cg|2Tr(L+−a2|�+〉〈�−|a†2)

− |ce|2Tr(L+−a†2|�+〉〈�−|a2)

]
, (G67)

with δφ2 being the variance of the distribution of φ. To arrive
at Eq. (G70), we assumed that δφ n � 1 within the support of
the pure stationary states, which corresponds to the condition

(〈n〉± +
√

〈n2〉± − 〈n〉2±)δφ2 � 1. (G68)

The effective dephasing dynamics manifests the fact that the
even and odd stationary states of the dynamics with M are
mixed (and only in zero order are they approximated by the
pure states |�+〉 and |�−〉), and coherences between them are
not stationary.

We note that Eq. (G70) can be interpreted as originating
from dynamics with two photon losses and and two-photon
injections at the respective rates ν δφ2|cg|2 and ν δφ2|ce|2.
Therefore, as a2ρa†2 is a positive matrix, so is its projec-
tion on the DFS, �0(a2ρa†2) [cf. Eq. (26)], and thus we
have Tr(L+−a2|�+〉〈�−|a†2)| �

√
〈a†2 a2〉+〈a†2 a2〉− [see

also Eq. (G7)]. Analogously, |Tr(L+−a†2|�+〉〈�−|a2)| �
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FIG. 11. Effective dynamics of realistic micromaser with hard walls. First wall at even m1 leads to hard walls of both parities (cf. Table I)
and multiple even and odd stationary states [(a), (c)], while first wall at odd m1 leads to only odd hard walls and multiple odd stationary states
[(b), (d)]. [(a), (b)] Single-photon losses and higher order corrections to far-detuned limit induce local transitions between states of opposite
parity: from ρ+

k only to ρ−
k−1 and ρ−

k (solid arrows), from ρ−
k only to ρ+

k or ρ+
k+1 (dashed arrows) for m1 even, from the unique even state

|�+〉〈�+| to odd states ρ−
k (solid arrows), and from the odd states to the even state (dashed arrows) for m2 odd, k = 0, 1, .... [(c), (d)] Atom

decay and nonmonochromaticity of atom beam lead to local transitions only between the states of the same parity: from ρ±
k only to ρ±

k−1 and
ρ±

k+1. All effective dynamics feature detailed balance.

√
〈a2 a†2〉+〈a2 a†2〉− and we arrive at the lower bound

γdeph � ν δφ2

[ |cg|2
2

(
√

〈a†2 a2〉+ −
√

〈a†2 a2〉−)2

+ |ce|2
2

(
√

〈a2 a†2〉+ −
√

〈a2 a†2〉−)2

]
, (G69)

and the upper bound [cf. Eq. (73)]

γdeph � ν δφ2

[ |cg|2
2

(
√

〈a†2 a2〉+ +
√

〈a†2 a2〉−)2

+ |ce|2
2

(
√

〈a2 a†2〉+ +
√

〈a2 a†2〉−)2

]
. (G70)

No metastable dephasing in weak-coupling limit. In the
weak-coupling limit, however, from Eq. (G66), we ob-
tain the dynamics described by Eq. (33) with the av-
eraged coefficients 〈g2ph〉 = νc∗

gce〈φ〉, 〈κ2ph〉 = ν|cg|2〈φ2〉.
Therefore, in the weak-coupling limit, the stationary states
are pure Schrödinger cat states of Eq. (29) with α =
e−iπ/4

√
2〈g2ph〉/〈κ2ph〉 = e−iπ/4

√
2ce〈φ〉/(cg〈φ2〉), and their

coherences are stationary as well. Indeed, in Eq. (G67), we
only have contribution from two-photon losses [cf. Eq. (31)],
which preserve the DFS of cat states and give γdeph = 0. We
emphasize that this approximation requires the weak-coupling
limit to be valid for all values of φ attainable in the distribution
g(φ) [cf. Eq. (G68)].

Phase estimation precision. In the lowest order in δM,
the nonmonochromaticity of the atom beam leads to the
dephasing of the odd-even coherences, so that the QFI of
the states of fixed parity is not affected. However, those
stationary states are only approximately pure [cf. Fig. 10(a)]
with corrections proportional to δM and the relaxation time

of M(φ) (cf. Sec. V B). This mixedness introduced by the
nonmonochromaticity of atom beam affects the QFI in phase
estimation, (77) [cf. Fig. 10(b)].

This can be understood as follows. The enhancement in
estimation precision and the long relaxation time is due to the
presence of soft walls (cf. Sec. V). The height and position
of soft walls, sinm(φ) ≈ 0, however, depends on φ, leading
to strong variations of the structure of the stationary states
of M(φ) (see Fig. 2) and thus also the QFI (cf. Fig. 8).
Therefore, for a broad enough distribution g(φ), the individual
stationary states of M(φ) differ significantly from the station-
ary state of M(φ), and the state of the averaged dynamics,
Eq. (G66), is mixed. But, importantly, even when the purity
of the final state is significantly reduced, it can still yield an
enhancement over the standard quantum limit [cf. Fig. 10(b)].
See also Appendix G4g.

4. Metastable dynamics in the presence of hard walls

We now discuss the effective dynamics due to higher order
corrections in the far-detuned limit [cf. Eq. (45)], single-
photon losses [cf. Eq. (45)], and decay of atom levels or non-
monochromaticity of the atom beam [cf. Eq. (67)] in the case
when the unperturbed dynamics features hard walls and thus
multiple stationary states of the same parity (see Sec. III D). In
the presence of weak noise or small imperfections, these states
become metastable and undergo long-time dynamics with
local transitions between the hard walls [see Fig. 11]. As a
consequence, there exist no trapping states in a cavity pumped
by excited atoms. These results also inform Sec. IV D, in
which we discuss dynamics of a realistic micromaser with
noise and corrections faster than the timescales of relaxation
across soft walls, as in such case soft walls can be replaced
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by hard by means of approximately degenerate perturbation
theory.

a. Summary of results on effective dynamics

No hard walls beyond far-detuned limit or in the presence
of single-photon losses. A hard wall at m refers to the case of
the zero amplitude of connecting states |m〉 and |m + 2〉 [cf.
Eqs. (10) and (35)]. As the wall affects only the states of the
same parity [the subsequent walls are exponentially separated;
see Eq. (38)], any perturbations in the dynamics that swap the
parity allow for circumventing hard walls and lead to a unique
stationary state (see Fig. 11). As we discuss below, this is
indeed the case for higher order corrections in the far-detuned
limit and single-photon losses from the cavity.

For the first wall being even, there exist infinitely many
even and odd stationary states between hard walls, which we
denote ρ+

k and ρ−
k , k = 0, 1, ... (cf. Table I). In the presence of

weak single-photon losses or small higher order corrections,
these states become metastable and at long times undergo
transitions from ρ+

k to ρ−
k−1 or to ρ−

k at the respective rates
γ −+

k−1,k and γ −+
k,k , and from ρ−

k to ρ+
k or to ρ+

k+1 at the respective
rates γ +−

k,k and γ +−
k+1,k , where

γ −+
k,k′ = κ〈n〉+k,k′ + ν〈X 〉+k,k′ , γ +−

k,k′ = κ〈n〉−k,k′ + ν〈X 〉−k,k′ ,

(G71)

and 〈n〉±k,k′ = Tr(1∓
k aρ±

k′ a†) and 〈X 〉±k,k′ =∑
j=0,2,4 Tr(1∓

k Mjρ
±
k′ M

†
j ), while 1±

k is the projection on
the support of ρ±

k [cf. Eqs. (45) and (55)]. The rates in
Eq. (G71) simply depend on the overlap of the perturbed
state, i.e., the state after a photon loss, with the support of a
state of the opposite parity. Note that the ladder structure of
the transitions obeys detailed balance [see Fig. 11(a)]. Thus,
the stationary state is approximated as [cf. Eq. (75)]

ρss ≈
∞∑

k=0

p+
k ρ+

k +
∞∑

k=0

p−
k ρ−

k , (G72)

which is determined by the rates in the recurrence relation

p+
k

p−
k−1

= γ +−
k,k−1

γ −+
k−1,k

,
p−

k

p+
k

= γ −+
k,k

γ +−
k,k

, (G73)

where p+
0 is determined by the normalization

∑
k (p+

k +
p−

k ) = 1.
When the first hard wall is odd, there are no hard walls

of even parity. As the effective dynamics features only the
transitions between the states of opposite parity, we only have
transitions from |�+〉〈�+| into ρ−

k , and from ρ−
k to |�+〉〈�+|,

for k = 0, 1, ..., with the respective rates γ −+
k and γ +−

k ,

γ −+
k = κ〈n〉+k + ν〈X 〉+k , γ +−

k = κ〈n〉−k + ν〈X 〉−k ,

(G74)

where 〈n〉−k = Tr(n ρ−
k ) and 〈X 〉−k = Tr(X ρ−

k ), while 〈n〉+k = Tr(1−
k a|�+〉〈�+|a†) and 〈X 〉+k = ∑

j=0,2,4

Tr(1−
k Mj |�+〉〈�+|M†

j ) with the projection 1−
k on the support of ρ−

k . Note that the star structure also obeys detailed
balance [see Fig. 11(b)]. Thus, the stationary state for cosm1 (φ) = −1 is approximated by

ρss ≈ p+ |�+〉〈�+| +
∞∑

k=0

p−
k ρ−

k with
p−

k

p+ = γ −+
k

γ +−
k

. (G75)

For cosm1 (φ) = 1, the dynamics can additionally create odd coherences |�−
k 〉〈�−

k′ | from the even state at the rate
κTr(L−

k,k′ a|�+〉〈�+|a†) + ν
∑

j=0,2,4 Tr(L−
k,k′ Mj |�+〉〈�+|M†

j ). These coherences decay at the rate κ (〈n〉−k + 〈n〉−k′ )/2 +
ν(〈X 〉−k + 〈X 〉−k′ )/2, leading to the stationary state

ρss = p+ |�+〉〈�+| +
∞∑

k=0

p−
k |�−

k 〉〈�−
k | +

∞∑
k=0

∑
k′ > k :

(k′ − k)|2

[c−−
k,k′ |�−

k 〉〈�−
k′ | + (c−−

k,k′ )∗|�−
k′ 〉〈�−

k |] (G76)

with the probabilities as in Eq. (G75) and

c−−
k,k′ = 2

κ Tr(L−
k,k′ a|�+〉〈�+|a†) + ν

∑
j=0,2,4 Tr(L−

k,k′ Mj |�+〉〈�+|M†
j )

κ〈n〉−k + κ〈n〉−k′ + ν〈X 〉−k + ν〈X 〉−k′
p+

ss. (G77)

No hard walls for finite-life time of atom levels. Similarly, the atom decay or nonmonochromatic atom beam lead to a random
distribution of interaction times between atoms and the cavity, and thus the value of the integrated coupling φ fluctuates, and
so does the presence of hard walls. Therefore, in the limit of weak noise, formerly stationary states between hard walls become
metastable and effectively connected to the preceding and following states of the same parity [see Figs. 11(c) and 11(d)]. The
dynamics takes place independently in the odd- and even-parity subspace as a consequence of the parity conservation, and leads
to two, rather than one, odd and even stationary states.
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For the first wall being even, ρ±
k can transition to ρ±

k−1 or to ρ±
k at the respective rates γ ±

k−1,k and γ ±
k+1,k , where

γ +
k+1,k = ν |ce|2

[
�1

2
τ + sin2

m2k+1
(φ)

]
〈m2k+1|ρ+

k |m2k+1〉, (G78a)

γ +
k−1,k = ν |cg|2

[
4�3 − 3γ13

8
τ + sin2

m2k−1
(φ)

]
〈m2k−1 + 2|ρ+

k |m2k−1 + 2〉, (G78b)

γ −
k+1,k = ν |ce|2

[
�1

2
τ + sin2

m2k+2
(φ)

]
〈m2k+2|ρ−

k |m2k+2〉, (G78c)

γ −
k−1,k = ν |cg|2

[
4�3 − 3γ13

8
τ + sin2

m2k
(φ)

]
〈m2k + 2|ρ+

k |m2k + 2〉, (G78d)

with mk being the position of the kth wall and sin2
m(φ) denoting the average of sin2

m(φ) with respect to the distribution of
integrated coupling from a nonmonochromatic atom beam. The rates simply depend on the local density of the state at the wall it
is transformed across. This ladder structure within each of the parity subspaces again obeys detailed balance [see Fig. 11(c)] and
the asymptotic state is a probabilistic mixture of two odd and even stationary states with probability p = Tr(1+ρ) approximated
by [cf. Eq. (69)]

ρss ≈ p
∞∑

k=0

p+
k ρ+

k + (1 − p)
∞∑

k=0

p−
k ρ−

k , (G79)

where the stationary states are determined by the rates in the recurrence relations

p±
k

p±
k−1

= γ ±
k,k−1

γ ±
k−1,k

(G80)

with p±
0 determined by the normalization

∑
k p±

k = 1.
For the first hard wall being odd, due to parity conservation, the effective dynamics features only the transitions between the

states of odd parity, from ρ−
k to ρ−

k−1 and ρ+
k−1, with the respective rates

γ −
k+1,k = ν |ce|2

[
�1

2
τ + sin2

mk+1
(φ)

]
〈mk+1|ρ−

k |mk+1〉, (G81a)

γ −
k−1,k = ν |cg|2

[
4�3 − 3γ13

8
τ + sin2

mk
(φ)

]
〈mk + 2|ρ+

k |mk + 2〉. (G81b)

This dynamics structure also obeys detailed balance [see Fig. 11(d)], and the asymptotic state is a probabilistic mixture of two
odd and even stationary states with probability p = Tr(1+ρ) approximated by [cf. Eq. (G80)]

ρss ≈ p |�+〉〈�+| + (1 − p)
∞∑

k=0

p−
k ρ−

k , with
p−

k

p−
k−1

= γ −
k,k−1

γ −
k−1,k

. (G82)

and p = Tr(1+ρ).
Finally, we note that there is no contribution to the dynamics from the atom decay during time of preparation and entering

cavity, which leads to mixed rather than pure atom states (cf. Appendixes G 3 d and G 3 e). Indeed, dynamics with mixed atom
state conserves the support of the states between hard walls, leading only to dephasing of coherences between pure states (see
below).

Dynamics of realistic micromaser. In a realistic micromaser, the dynamics features both the transitions between the states of
the opposite parity in Eq. (G71) [Eq. (G74)] and the states of the same parity in Eqs. (G78) and (G81). Such dynamics does not
feature detailed balance, unless γ +−

k,k−1γ
−+
k,k /(γ −+

k−1,kγ
+−
k,k ) = γ −

k,k−1/γ
−
k−1,k and γ +−

k,k−1γ
−+
k−1,k−1/(γ −+

k−1,kγ
+−
k−1,k−1) = γ +

k,k−1/γ
+
k−1,k [

γ −+
k γ +−

k−1/(γ +−
k γ −+

k−1 ) = γ −
k,k−1/γ

−
k−1,k], in which case the steady states in Eqs. (G72) and (G79) [Eqs. (G75) and (G82)] coincide.

No trapping states. In the cavity with the first wall even and pumped by excited atoms, |ce| = 1, the long-time dynamics,
Eqs. (G71) and (G78), features only the transitions that increase the photon number: |mk〉 is transformed into |mk+1〉 at the

rate κ mk + ν 〈mk|X |mk〉 and into |mk+2〉 at the rate ν [�1τ/2 + sin2
mk

(φ)]. Similarly, in the cavity with the first wall odd and
pumped by excited atoms, no even stationary state exists and the odd trapping states are connected to this subspace at the rate

κ mk + ν 〈mk|X |mk〉, while |mk〉 is transformed into |mk+1〉 at the rate ν [�1τ/2 + sin2
mk

(φ)]. We thus conclude there exists no
trapping states in a realistic micromaser.

Below we derive Eqs. (G71)–(G82) and the corresponding dynamics of coherences.

043847-45



ANDREAS KOUZELIS et al. PHYSICAL REVIEW A 101, 043847 (2020)

b. Multiple stationary states for hard walls without single-photon losses

Hard walls in the far-detuned dynamics of Eq. (10) lead to presence of multiple stationary states (see Sec. III D). If the first
wall appears at even m1, sinm1 (φ) = 0, there are infinitely many stationary states of both parities, as the parity of subsequent
walls alternates. If the first wall appears at odd m1, however, there are only odd walls, leading to multiple odd stationary states
(cf. Table I). Furthermore, pure stationary states exist only when the first wall is odd with the integrated coupling strength such
that cosm1 (φ) = 1. In this case, also the coherences between the pure stationary states with the same boundary conditions are
stationary.

In derivations below, we assume there is a unique stationary state between each two walls. In such case, for the first hard wall
at even m1, the asymptotic state is given by

lim
t→∞ ρ(t ) =

∞∑
k=0

p+
k ρ+

k +
∞∑

k=0

p−
k ρ−

k , (G83)

where ρ+
k [ρ−

k ] denotes kth even (odd) stationary states, i.e., the stationary state supported between walls at m2k−1 and m2k+1 (at
m2k and m2k+2), and we formally expressed the boundary conditions (of non-negative photon number) as m−1 = −2 and m0 =
−1. The probabilities are given by the initial support between the hard walls, p±

k = Tr(1±
k ρ) with 1+

k = ∑m2k+1
m=m2k−1+2 |m〉〈m| and

1−
k = ∑m2k+2

m=m2k+2 |m〉〈m|. Similarly, for the first wall being odd,

lim
t→∞ ρ(t ) = p+|�+〉〈�+| +

∞∑
k=0

p−
k ρ−

k +
∞∑

k=0

(c+−
2k |�+〉〈�−

2k| + H.c.) +
∞∑

k=0

∑
k′>k :

(k′−k)|2

(c−−
k,k′ |�−

k 〉〈�−
k′ | + H.c.), (G84)

and p+ = Tr(1+ρ) with 1+ = ∑∞
m=0 |2m〉〈2m|. The second line in Eq. (G84) is present only when the first wall corresponds to

cosm1 (φ) = 1, i.e., the odd stationary states are pure, ρ−
k = |�−

k 〉〈�−
k | allowing for stationary coherences with c+−

2k = Tr(L+−
2k ρ)

and c−−
k,k′ = Tr(L−

k,k′ρ), where L+−
2k is a conserved quantity in odd-even coherences with the odd part within the support of ρ−

2k ,
while L−

k,k′ is the conserved quantity between the supports of ρ−
k and ρ−

k′ (where k′ > k such that the difference k′ − k is divisible
by 2).

c. Effective dynamics due to single-photon losses

As a single-photon loss changes the parity of a state, consequently only the states of opposite parity in Eqs. (G83) and (G84)
get connected. Furthermore, a single-photon loss reduces photon number by 1 in each state. Therefore, for the states to get
connected, their supports need to overlap after the loss.

Case of the even first wall. For the probability p±
k of being in the state ρ±

k [cf. Eq. (G83)] single-photon losses induce the
following dynamics [see Eq. (G6)]:

d

dt

⎛⎜⎜⎜⎜⎜⎜⎝

p+
0

p−
0

p+
1

p−
1

...

⎞⎟⎟⎟⎟⎟⎟⎠ = κ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−〈n〉+0 〈n〉−0,0

〈n〉+0 −〈n〉−0 〈n〉+1,0

〈n〉−0,1 −〈n〉+1 〈n〉−1,1

〈n〉+1,1 −〈n〉−1
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

p+
0

p−
0

p+
1

p−
1

...

⎞⎟⎟⎟⎟⎟⎟⎠, (G85)

where 〈n〉±k = Tr(n ρ±
k ), 〈n〉±k,k′ = Tr(1∓

k′ aρ±
k a†), and empty entries correspond to 0. Since the parity of the subsequent walls

alternates, the support of a given state between two walls shifted by 1 overlaps only with two states of opposite parity, so that
〈n〉±k,k + 〈n〉±k,k∓1 = 〈n〉±k (except the case of ρ+

0 ).
The dynamics in Eq. (G85) obeys detailed balance, leading to the unique stationary state given by

ρss =
∞∑

k=0

(p+
ss,k ρ+

k + p−
ss,k ρ−

k ), where
p+

ss,k

p−
ss,k−1

= 〈n〉−k−1,k

〈n〉+k,k−1

and
p−

ss,k

p+
ss,k

= 〈n〉+k,k

〈n〉−k,k

, (G86)

and p+
ss,0 is determined by the normalization

∑∞
k=0(p+

ss,k + p−
ss,k ) = 1 and 〈n〉+0,0 ≡ 〈n〉+0 . Equation (G86) follows from Eq. (G85)

corresponding to the classical birth-death process.
Trapping states. In the case when the cavity is being pumped by the atoms in the excited state (|ce| = 1), the stationary states

of the cavity are pure and correspond to the position of hard walls ρ+
k = |m2k+1〉〈m2k+1| and ρ−

k = |m2k+2〉〈m2k+2|. In this case,
a single-photon loss transforms the states into |m2k+1 − 1〉〈m2k+1 − 1| and |m2k+2 − 1〉〈m2k+2 − 1|, which evolve into ρ−

k and
ρ+

k+1, respectively. Therefore, the effective dynamics due to single-photon losses leads to the stochastic increase of the photon
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number of the cavity [cf. Eq. (G85)]

d

dt

⎛⎜⎜⎜⎜⎜⎜⎝

p+
0

p−
0

p+
1

p−
1

...

⎞⎟⎟⎟⎟⎟⎟⎠ = κ

⎛⎜⎜⎜⎜⎜⎜⎝

−m1

m1 −m2

m2 −m3

m3 −m4

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

p+
0

p−
0

p+
1

p−
1

...

⎞⎟⎟⎟⎟⎟⎟⎠, (G87)

and no stationary state exists. This is due to the assumption, that κ � ν, so that cavity is pumped at a much higher rate than it
loses photons. Furthermore, the formerly stationary coherences between trapping states of the same parity decay as

d

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

c++
k,k′

c−−
k,k′

c++
k+1,k′+1

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= κ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

. . . −m2k+1+m2k′+1

2

η̄++
k,k′ −m2k+2+m2k′+2

2

η̄−−
k,k′ −m2k+3+m2k′+3

2

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

c++
k,k′

c−−
k,k′

c++
k+1,k′+1

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(G88)

where c++
k,k′ is the coefficient corresponding to the even-even coherence |m2k+1〉〈m2k′+1| and c−−

k,k′ is the coeffi-
cient for the odd-odd coherence |m2k+2〉〈m2k′+2|. We have defined η̄++

k,k′ = √
m2k+1m2k′+1〈m2k′+1 − 1|L−

k,k′ |m2k+1 − 1〉 and
η̄−−

k,k′ = √
m2k+2m2k′+2〈m2k′+2 − 1|L+

k+1,k′+1|m2k+2 − 1〉, where L−
k,k′ and L+

k,k′ are the conserved quantities corresponding to
|m2k+2〉〈m2k′+2| and |m2k+1〉〈m2k′+1|, respectively. Furthermore, when cosm1 (φ) = 1, the formerly stationary even-odd and
odd-even coherences similarly decay as

d

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

c+−
k,k′

c−+
k,k′+1

c+−
k+1,k′+1

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= κ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .

. . . −m2k+1+m2k′+2

2 p

η̄+−
k,k′ −m2k+2+m2k′+3

2

η̄−+
k,k′+1 −m2k+3+m2k′+4

2

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

c+−
k,k′

c−+
k,k′

c+−
k+1,k′+1

...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (G89)

where c+−
k,k′ is the coefficient corresponding to the even-odd coherence |m2k+1〉〈m2k′+2|, c−+

k,k′ is the coefficient corresponding to
the odd-even coherence |m2k+2〉〈m2k′+1|, and we have defined η̄+−

k,k′ = √
m2k+1m2k′+2〈m2k′+2 − 1|L−+

k,k′+1|m2k+1 − 1〉 and η̄−+
k,k′ =√

m2k+2m2k′+1〈m2k′+1 − 1|L+−
k+1,k′ |m2k+2 − 1〉 with L−+

k,k′ and L+−
k,k′ being the conserved quantities corresponding to |m2k+2〉〈m2k′+1|

and |m2k+1〉〈m2k′+2|, respectively.
Case of the odd first wall. For the case of the first wall with cosm1 (φ) = −1, there exist a single even pure stationary state

and multiple odd mixed stationary states between odd hard walls [cf. Eq. (37)]. In the presence of single-photon losses, the
corresponding probabilities [cf. Eq. (G84)] undergo the following dynamics [see Eq. (G6)]

d

dt

⎛⎜⎜⎜⎜⎝
p+

p−
0

p−
1

...

⎞⎟⎟⎟⎟⎠ = κ

⎛⎜⎜⎜⎜⎜⎝
−〈n〉+ 〈n〉−0 〈n〉−1 · · ·

〈n〉+0 −〈n〉−0
〈n〉+1 −〈n〉−1
...

. . .

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

p+

p−
0

p−
1

...

⎞⎟⎟⎟⎟⎠, (G90)

where 〈n〉+ = 〈�+|n|�+〉, 〈n〉−k = Tr(n ρ−
k ), and 〈n〉+k = Tr(1−

k a|�+〉〈�+|a†). For the first wall with cosm1 (φ) = −1, the
dynamics in Eq. (G90) leads to the stationary state

ρss = p+
ss |�+〉〈�+| +

∞∑
k=0

p−
ss,k ρ−

k , where
p−

ss,k

p+
ss

= 〈n〉+k
〈n〉−k

, (G91)

in which the structure is due to the dynamics obeying the detailed balance, as the odd states are only coupled to the unique even
state. In Eq. (G91), p+

ss is determined by the normalization p+
ss + ∑∞

k=0 p−
ss,k = 1.

For the first wall with cosm1 (φ) = 1, coherences can also be stationary in the absence of single-photon losses [cf. Eq. (G84)],
but the single-photon losses lead to their partial decay, as follows. For the coherences between the even state and odd states, we
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have

d

dt

⎛⎜⎜⎜⎜⎜⎜⎝

c+−
0

c−+
0

c+−
2

c−+
2

...

⎞⎟⎟⎟⎟⎟⎟⎠ = κ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−〈n〉++〈n〉−0
2 η̄0,0 η̄2,0 · · ·

η̄0,0 −〈n〉++〈n〉−0
2 η̄2,0

. . .

η̄0,2 −〈n〉++〈n〉−2
2 η̄2,2

η̄0,2 η̄2,2 −〈n〉++〈n〉−2
2

. . .

...
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

c+−
0

c−+
0

c+−
2

c−+
2

...

⎞⎟⎟⎟⎟⎟⎟⎠, (G92)

where c+−
2k , c−+

2k are the coefficients for the coherences |�+〉〈�−
2k| and |�−

2k〉〈�+|, respectively, and we have defined η̄2k,2k′ =
Tr[(L+

2k′ )† a|�+〉〈�−
2k|a†], k, k′ = 0, 1, .... Furthermore, the coherences between odd states decay as

d

dt
c−−

k,k′ = −κ
〈n〉−k + 〈n〉−k′

2
c−−

k,k′ , (G93)

where c−−
k,k′ is the coefficient for the coherences |�−

k 〉〈�−
k′ | and (k′ − k) is divisible by 2 (then they correspond to states with the

same boundary conditions). Finally, coherences between the odd states can be created by the single-photon loss from the even
state [cf. Eq. (G90)]

κ−1 d

dt
|�+〉〈�+| = −〈n〉+|�+〉〈�+| +

∞∑
k=0

〈n〉+k |�−
k 〉〈�−

k | +
∞∑

k=0

∑
k′ > k :

(k′ − k)|2

[Tr(L−
k,k′ a|�+〉〈�+|a†)|�−

k 〉〈�−
k′ | + H.c.]. (G94)

Therefore, the coherences between the even state and odd states decay at long times, while the coherences between odd states
can be featured in the stationary state [cf. Eq. (G91)]

ρss = p+
ss |�+〉〈�+| +

∞∑
k=0

p−
ss,k |�−

k 〉〈�−
k | +

∞∑
k=0

∑
k′ > k :

(k′ − k)|2

[c−−
ss,k,k′ |�−

k 〉〈�−
k′ | + (c−−

ss,k,k′ )∗|�−
k′ 〉〈�−

k |], (G95)

where p−
ss,k/p+

ss = 〈n〉+k /〈n〉−k as before, while

c−−
ss,k,k′ = 2 Tr(L−

k,k′ a|�+〉〈�+|a†)

〈n〉−k + 〈n〉−k′
p+

ss. (G96)

d. Effective dynamics due to corrections to the far-detuned limit

The corrections to the far-detuned limit lead to the introduction of the parity-swapping Kraus operators M0, M2, and M4,
and modification of the parity-conserving Kraus operators M1, M3 (as well as the introduction of Ma) [cf. Eq. (42) and
Appendix B 2].

Dissipative dynamics. The parity-swapping Kraus operators M0, M2, and M4 can change the support of a state between hard
walls only by a single-photon number (analogously to adding or removing a single photon) in the first order of the ratio between
couplings and detunings (see Appendix B 2). Therefore, repeating the arguments for the dynamics with single-photon losses, we
conclude that the parity-swapping Kraus operators lead to the second-order dynamics as in Eqs. (G85)–(G93), but with

√
κa

replaced by
√

νM0,
√

νM2, or
√

νM4, and then summed [compare Eqs. (45) and (50) and Eqs. (55) and (56)].
Unitary dynamics. The parity-conserving Kraus operators M1, M3 change the support of a state between hard walls by two

photons in the second order of the ratio between couplings and detunings (see Appendix B 2). Therefore, these corrections
contribute unitarily to the dynamics of coherences as follows [cf. Eqs. (45) and (47)]: For the first wall being even and trapping
states [cf. Eqs. (G88) and (G89)]

d

dt
c++

k,k′ = −i[〈δH〉+k − 〈δH〉+k′ ]c++
2k , (G97)

d

dt
c−−

k,k′ = −i[〈δH〉−k − 〈δH〉−k′ ]c−−
2k cosm1 (φ), (G98)

d

dt
c+−

k,k′ = −i[〈δH〉+k − 〈δH〉−k′ ]c+−
k,k′ , (G99)
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where δH is given by Eq. (G21). For the first wall being odd [cf. Eqs. (G92) and (G93)],

d

dt
c+−

2k = −i[〈δH〉+ − 〈δH〉−k ]c+−
2k , (G100)

d

dt
c−−

k,k′ = −i[〈δH〉−k − 〈δH〉−k′ ]c−−
k,k′ cosmk (φ), (G101)

and we further have cosmk (φ) = (−1)k .
Steady states. From the above considerations, the stationary state for the first wall being even is, cf. Eq. (G86),

ρss =
∞∑

k=0

(p+
ss,k ρ+

k + p−
ss,k ρ−

k ), where
p+

ss,k

p−
ss,k−1

= 〈X 〉−k−1,k

〈X 〉+k,k−1

and
p−

ss,k

p+
ss,k

= 〈X 〉+k,k

〈X 〉−k,k

, (G102)

where 〈X 〉±k,k′ = ∑
j=0,2,4 Tr(1∓

k′ Mjρ
±
k M†

j ). For the first wall being odd with cosm1 (φ) = −1 [cf. Eq. (G91)]

ρss = p+
ss |�+〉〈�+| +

∞∑
k=0

p−
ss,k ρ−

k , where
p−

ss,k

p+
ss

= 〈X 〉+k
〈X 〉−k

, (G103)

where X = ∑
j=0,2,4 M†

j Mj , 〈X 〉−k = Tr(X ρ−
k ), and 〈X 〉+k = ∑

j=0,2,4 Tr(1−
k Mj |�+〉〈�+|M†

j ), while for cosm1 (φ) = 1 the
stationary state features coherence between odd states [cf. Eq. (G95)],

ρss = p+
ss |�+〉〈�+| +

∞∑
k=0

p−
ss,k |�−

k 〉〈�−
k | +

∞∑
k=0

∑
k′ > k :

(k′ − k)|2

[c−−
ss,k,k′ |�−

k 〉〈�−
k′ | + (c−−

ss,k,k′ )∗|�−
k′ 〉〈�−

k |], (G104)

where p−
ss,k/p+

ss = 〈X 〉+k /〈X 〉−k as before and

c−−
ss,k,k′ = 2

∑
j=0,2,4 Tr(L−

k,k′ Mj |�+〉〈�+|M†
j )

〈X 〉−k + 〈X 〉−k′
p+

ss. (G105)

e. Effective dynamics due to mixed atom state

We now show that a mixed, rather than pure, atom state can only lead to to dephasing of coherences between pure states
that were stationary in the unperturbed dynamics (the case of the odd first wall with cosm1 (φ) = 1 (cf. Appendix G 3 d). We can
further bound the dephasing rates and frequencies analogously to Eqs. (70) and (71). These results are due to the fact that the
modified dynamics preserves not only the parity but also the support of the states between the hard walls.

Case of the even first wall. We now argue that the probability p±
k of being in the state ρ±

k [cf. Eq. (G83)] is stationary:

d

dt

⎛⎜⎜⎜⎜⎜⎜⎝

p+
0

p−
0

p+
1

p−
1

...

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

0

0

0

0
...

⎞⎟⎟⎟⎟⎟⎟⎠. (G106)

Indeed, from Eq. (G27), we have that M0, M2, M4, and Ma as function of the photon number n conserve the support of ρ±
k ,

i.e., [Mj,1
±
k ] = 0 [cf. Eq. (14)], j = 0, 2, 4, a. Similarly, Kraus operators Mgb and Meb in Eq. (G26) are defined for the same

integrated coupling as Mga and Mea, and thus feature the same hard walls leading to [Mja,1
±
k ] = 0 = [Mjb,1

±
k ], j = g, e. We

conclude that Eq. (G106) holds true to all orders, while the states ρ±
k are modified by higher order corrections.

Case of the odd first wall. For the case of the first wall with cosm1 (φ) = −1, there exist a single even pure stationary state and
multiple odd mixed stationary states between odd hard walls [cf. Eq. (37)]. Analogously to Eq. (G106) we have

d

dt

⎛⎜⎜⎜⎜⎝
p+

p−
0

p−
1

...

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0

0

0
...

⎞⎟⎟⎟⎟⎠. (G107)
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In the limit of almost pure atom state, coherences, which are stationary for the unperturbed dynamics, again undergo dephasing
[cf. Eq. (67)]. For the first wall with cosm1 (φ) = 1 [cf. Eq. (G84)],

d

dt
c+−

2k = −(γ2k + i�2k ) c+−
2k , c−+

2k = −(γ2k − i�2k ) c−+
2k (G108)

where c+−
2k , c−+

2k are the coefficients for the coherences |�+〉〈�−
2k| and |�−

2k〉〈�+|, respectively, and we have defined −γk −
i�k = pb

∑
j=g,e Tr(L+

2k Mjb|�+〉〈�−
2k|M†

jb) + ∑
j=0,2,4 p jTr(L+

2k Mj |�+〉〈�−
2k|M†

j ) for k = 0, 1, .... Analogously, the coherence
between odd states decay as

d

dt
c−−

k,k′ = −(γk,k′ + i�k,k′ ) c−−
k,k′ , (G109)

where c−−
k,k′ is the coefficient for the coherences |�−

k 〉〈�−
k′ |, (k′ − k) is divisible by 2 (then they correspond

to states with the same boundary conditions), and we defined −γk − i�k = pb
∑

j=g,e Tr(L−
k,k′ Mjb|�−

k 〉〈�−
k′ |M†

jb) +∑
j=0,2,4 p jTr(L+

k,k′ Mj |�−
k 〉〈�−

k′ |M†
j ) (note that γk,k′ = γk′,k and �k,k′ = −�k′,k).

The dephasing rates can be further bounded as [cf. Eq. (G29)]

γ2k, γk,k′ � 2ν(1 − pa − pa) (G110)

and frequencies as [cf. Eq. (G30)]

|�2k|, |�k,k′ | � ν(p0 + p2 + p4). (G111)

These results follow from the derivation in Appendix G 3 d by considering dynamics restricted to the sum of the even subspace
and support of |�−

2k〉, or the sum of supports of |�−
2k〉 and |�−

2k′ 〉, respectively.
Steady states. The mixed atom state leads to stationary states of the cavity being probabilistic mixtures of states between hard

walls, i.e., given by Eqs. (G83) and (G84) (without the second line), where the probabilities are determined by the support of the
initial cavity state between the walls.

Dynamics for trapping states. Finally, we note that in the case of the atoms prepared in the excited state |ce| = 1, the
probabilities are again conserved [cf. Eqs. (G106) and (G107)], while the coherences simply undergo dephasing with bounds
analogous to Eqs. (G110) and (G111).

f. Effective dynamics due to atom decay

We now discuss how decay of atoms leads to the mixing dynamics of states between hard walls with the same parity. This
leads to two mixed stationary states of even and odd parities, which is due to the fact that the parity remains conserved.

There are two contributions arising from the finite lifetime of atom levels that modify the dynamics of micromaser (cf.
Appendix G 3 e). First, atoms arrive at the cavity in the mixed rather than pure state with probabilities given by Eq. (G52). In
the limit of weak decay, this only leads to the dephasing of coherences between pure stationary states between the walls [see
Eqs. (G108) and (G108)] with the rates bounded as in Eqs. (70) and (71) [cf. Eqs. (G110) and (G111)]. Second, the possible
atom decay during the interaction with the cavity modifies Kraus operators in Eq. (10). We now discuss this contribution in the
limit of weak decay and only toward the levels uncoupled to the cavity [see Eqs. (G48)–(G50)]. We comment on the general
case at the end of this Appendix.

Case of the even first wall. For the probability p±
k of being in the state ρ±

k [cf. Eq. (G83)], atom decay induces the following
dynamics,

d

dt

⎛⎜⎜⎜⎜⎝
p+

0

p+
1

p+
2

...

⎞⎟⎟⎟⎟⎠ = ν

2

⎛⎜⎜⎜⎜⎜⎝
−|ce|2 �1τ ρ+

0;m1
|cg|2 �3τ ρ+

1;m1+2

|ce|2 �1τ ρ+
0;m1

−|cg|2 �3τ ρ+
1;m1+2 − |ce|2 �1τ ρ+

1;m3
|cg|2 �3τρ+

2;m3+2

|ce|2 �1τ ρ+
1;m3

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

p+
0

p+
1

p+
2

...

⎞⎟⎟⎟⎟⎠, (G112)

and, analogously,

d

dt

⎛⎜⎜⎜⎜⎝
p−

0

p−
1

p−
2

...

⎞⎟⎟⎟⎟⎠ = ν

2

⎛⎜⎜⎜⎜⎜⎝
−|ce|2 �1τ ρ−

0;m2
|cg|2 �3τ ρ−

1;m2+2

|ce|2 �1τ ρ−
0;m2

−|cg|2 �3τ ρ−
1;m2+2 − |ce|2 �1τ ρ−

1;m4
|cg|2 �3τ ρ−

2;m4+2

|ce|2 �1τ ρ−
1;m4

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

p−
0

p−
1

p−
2

...

⎞⎟⎟⎟⎟⎠, (G113)

where we introduced ρ±
k;m = 〈m|ρ±

k |m〉 as the local density of the state ρ±
k . Here we considered contribution from Eqs. (G48)–

(G50). Since the nontrivial dynamics is only induced when the support of the state is changed beyond the hard wall, only the
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contribution decay events, described by the integral in Eq. (G48), lead to the long-time dynamics of the state between hard
walls. In the limit of the weak decay, keeping terms up to linear order allows us to replace Mg(t ) and Me(t ) in Eq. (G48) by
Mg(t ) and Me(t ), which can allow a transition of ρ±

k to ρ±
k+1 and ρ±

k−1, respectively. The integral, however, effectively gives a
random interaction time t described by a uniform distribution within the interval [0, τ ). In that case, the rates of the long-time
dynamics are proportional to the averaged probability of crossing a hard wall at m (see Appendix G4g), and we simply have

sin2
m(φ) = τ−1

∫ τ

0 dt sin2
m(λt ) = Kπ/(2φ

√
(m + 1)(m + 2)) = 1/2 [cf. Eq. (35) and see Eqs. (G122) and (G123)].

The dynamics within the even and odd subspaces, Eqs. (G112) and (G113), respectively, obeys detailed balance, leading to
an asymptotic state being a general mixture of odd and even stationary states given by

ρss = p
∞∑

k=0

p+
ss,k ρ+

k + (1 − p)
∞∑

k=0

p−
ss,k ρ−

k , (G114)

where
p+

ss,k

p+
ss,k−1

= |ce|2
|cg|2

�1

�3

ρ+
k−1;m2k−2

ρ+
k;m2k−1+2

and
p−

ss,k

p−
ss,k−1

= |ce|2
|cg|2

�1

�3

ρ−
k−1;m2k

ρ−
k;m2k+2

, (G115)

and p±
ss,0 are determined by the normalization

∑∞
k=0 p±

ss,k = 1, but p = Tr(1+ρ) is determined by the support of the initial state. In
the case of the uniform decay, the stationary state is the same as the stationary state of the micromaser with a nonmonochromatic
atom beam [see Eq. (G125) below], as in that case atom decay leads exactly to the random interaction time described by the
uniform distribution [cf. Eqs. (G48) and (G66)].

Case of the odd first wall. Similarly, for the case of the first wall with cosm1 (φ) = −1, we have [cf. Eq. (G84)]

d

dt
p+ = 0, (G116)

and

d

dt

⎛⎜⎜⎜⎜⎝
p−

0

p−
1

p−
2

...

⎞⎟⎟⎟⎟⎠ = ν

2

⎛⎜⎜⎜⎜⎜⎝
−|ce|2 �1τ ρ−

0;m1
|cg|2 �3τ ρ−

1;m1+2

|ce|2 �1τ ρ−
0;m1

−|cg|2 �3τ ρ−
1;m1+2 − |ce|2 �1τ ρ−

1;m2
|cg|2 �3τ ρ−

2;m2+2

|ce|2 �1τ ρ−
1;m2

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

p−
0

p−
1

p−
2

...

⎞⎟⎟⎟⎟⎠, (G117)

where the first equation is a direct consequence of the parity conservation and uniqueness of the even steady state. Therefore,
the dynamics in in Eqs. (G116) and (G117) leads to the stationary state

ρss = p |�+〉〈�+| + (1 − p)
∞∑

k=0

p−
ss,k ρ−

k , where
p−

ss,k

p−
ss,k−1

= |ce|2
|cg|2

�1

�3

ρ−
k−1;mk

ρ−
k;mk+2

(G118)

and p−
ss,0 is determined by the normalization

∑∞
k=0 p−

ss,k = 1, but p = Tr(1+ρ) is a free parameter.
For the first wall with cosm1 (φ) = 1, atom decay also leads to dynamics of coherences in Eq. (G84). We have that coherences

between even and every second odd state decay as

d

dt
c+−

k = −(γ k + i�k ) c+−
k , c−+

k = −(γ k − i�k ) c−+
k (G119)

where c+−
2k , c−+

2k are the coefficients for the coherences |�+〉〈�−
2k| and |�−

2k〉〈�+|, while coherences between odd states decay as

d

dt

⎛⎜⎜⎜⎜⎜⎜⎝

...
ck−1,k′−1

ck,k′

ck+1,k′+1
...

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . . −γ k−1,k′−1 − i�k−1,k′−1 ν η̄−−
k,k′

ν η̄++
k−1,k′−1 −γ k,k′ − i�k,k′ ν η̄−−

k+1,k′+1

ν η̄++
k,k′ −γ k+1,k′+1 − i�k+1,k′+1

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

...
ck−1,k′−1

ck,k′

ck+1,k′+1
...

⎞⎟⎟⎟⎟⎟⎟⎠, (G120)

where c−−
k,k′ is the coefficient for the coherences |�−

k 〉〈�−
k′ | and (k′ − k) is divisible by 2. We have introduced [cf. Eq. (G56)]

γ 2k

ν
= �1 + �3

2
τ −

∫ τ

0
dt

∑
j=g,e

� jTr[L+
2k M j (λt )(|�+〉〈�−

2k|)] − �1 + �3

4
τ (〈Y 〉+ + 〈Y 〉−k ), (G121a)

γ k,k′

ν
= �1 + �3

2
τ −

∫ τ

0
dt

∑
j=g,e

� jTr[L−
k,k′ M j (λt )(|�−

k 〉〈�−
k′ |)] + �1 + �3

4
τ (〈Y 〉−k + 〈Y 〉−k′ ), (G121b)

043847-51



ANDREAS KOUZELIS et al. PHYSICAL REVIEW A 101, 043847 (2020)

η̄++
k,k′ = |ce|2 �1τ c(k)

mk+1

[
c(k′ )

mk′+1

]∗〈mk′+1 + 2|L−
k+1,k′+1|mk+1 + 2〉 τ−1

∫ τ

0
dt sinmk+1 (λt ) sinmk′+1

(λt ) = 0, (G121c)

η̄−−
k,k′ = |cg|2 �3τc(k)

mk+2

[
c(k′ )

mk′ +2

]∗〈mk′ |L−
k−1,k′−1|mk〉 τ−1

∫ τ

0
dt sinmk (λt ) sinmk′ (λt ) = 0, (G121d)

where Y is defined in Eq. (G58) and we used τ−1
∫ τ

0 dt sinm(λt ) sinm′ (λt ) = τ−1
∫ τ

0 dt {cos[λt
√

(m + 1)(m + 2) −
λt

√
(m + 1)(m + 2)] − cos[λt

√
(m + 1)(m + 2) + λt

√
(m + 1)(m + 2)]}/2 = 0 (see also Appendix G4g), so that all coher-

ences simply undergo dephasing (this, however, will not be the case for general decay; see below). Moreover, there is no
contribution to the unitary dynamics, �2k = 0 and �k,k′ = 0 due to real-valued dynamics [cf. Eq. (G57)]. As a result of the
dephasing of all coherences, the stationary state for cosm1 (φ) = 1 is again given by Eq. (G118).

General decay. For the case of general atom decay [see Eq. (G36) and Eqs. (G43)–(G47)], decay toward levels |0〉, |2〉, or
|1〉, leads to the nontrivial cavity dynamics also after the decay event [cf. Eqs. (G48) and (G66)]. In particular, the dynamics of
probabilities in Eqs. (G112), (G113), and (G117) is modified by replacing �3 by (�3 − γ13) + γ13/4 = �3 − 3γ13/4. Here, the
new term corresponds to decay from |3〉 to |1〉 followed by atom leaving the cavity in a state |1〉, which contributes with the
average probability as τ−1

∫ τ

0 dt cos2
m[λ(τ − t )] sin2

m(λt ) = τ−1
∫ τ

0 dt cos2
m(λt )] sin2

m(λt ) = Kπ/[8φ
√

(m + 1)(m + 2)] = 1/8
for a hard wall at m described by Eq. (35). Similarly, the dynamics of coherences will have the structure of Eqs. (G119)
and (G120), but with modified parameters due to a more complex single decay contribution in Eq. (G43). In particular,
τ−1

∫ τ

0 dt sinm(λt ) sinm′ (λt ) will be replaced by τ−1
∫ τ

0 dt cosm(λt ) cosm′ (λt ) sinm(λt ) sinm′ (λt ) in Eqs. (G121c) and (G121d)
due to possible decay from |3〉 to |1〉.

g. Effective dynamics due to nonmonochromatic atom beam

Finally, we consider a nonmonochromatic atom beam, which leads to the fluctuating integrated coupling τ described by a
probability distribution (see Appendix G 3 f). Since the existence and positions of the hard wall depend on φ (see Sec. III D and
Appendix D), the supports of the states between the hard walls are not conserved, leading to mixing dynamics between the states
of the same parity.

Case of the even first wall. For the probability p±
k of being in the state ρ±

k [cf. Eq. (G83)], nonmonochromatic beam induced
the following dynamics [cf. Eq. (G85)]:

d

dt

⎛⎜⎜⎜⎜⎝
p+

0

p+
1

p+
2

...

⎞⎟⎟⎟⎟⎠ = ν

⎛⎜⎜⎜⎜⎜⎜⎝
−|ce|2sin2

m1
(φ)ρ+

0;m1
|cg|2sin2

m1
(φ)ρ+

1;m1+2

|ce|2sin2
m1

(φ)ρ+
0;m1

−|cg|2sin2
m1

(φ)ρ+
1;m1+2 − |ce|2sin2

m3
(φ)ρ+

1;m3
|cg|2sin2

m3
(φ)ρ+

2;m3+2

|ce|2sin2
m3

(φ)ρ+
1;m3

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
p+

0

p+
1

p+
2

...

⎞⎟⎟⎟⎟⎠,

(G122)
and, analogously,

d

dt

⎛⎜⎜⎜⎜⎝
p−

0

p−
1

p−
2

...

⎞⎟⎟⎟⎟⎠ = ν

⎛⎜⎜⎜⎜⎜⎜⎝
−|ce|2sin2

m2
(φ)ρ−

0;m2
|cg|2sin2

m2
(φ)ρ−

1;m2+2

|ce|2sin2
m2

(φ)ρ−
0;m2

−|cg|2sin2
m2

(φ)ρ−
1;m2+2 − |ce|2sin2

m4
(φ)ρ−

1;m4
|cg|2sin2

m4
(φ)ρ−

2;m4+2

|ce|2sin2
m4

(φ)ρ−
1;m4

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
p−

0

p−
1

p−
2

...

⎞⎟⎟⎟⎟⎠,

(G123)
where sin2

m(φ) = ∫
dφ g(φ) sin2

m(φ) is the average with respect to the distribution g(φ) of the integrated coupling strength, and

ρ±
k;m = 〈m|ρ±

k |m〉 is the local density of the state ρ±
k . Note that we expect sin2

m(φ) � 1 for a narrow enough distribution g(φ)

with sin2
m(〈φ〉) = 0, that is, when m (φ2 − φ

2
) � 1.

The dynamics within the even and odd subspaces, Eqs. (G122) and (G123), respectively, again obeys detailed balance, leading
to the mixture of odd and even stationary states

ρss = p
∞∑

k=0

p+
ss,k ρ+

k + (1 − p)
∞∑

k=0

p−
ss,k ρ−

k , (G124)

where

p+
ss,k

p+
ss,k−1

= |ce|2
|cg|2

ρ+
k−1;m2k−2

ρ+
k;m2k−1+2

and
p−

ss,k

p−
ss,k−1

= |ce|2
|cg|2

ρ−
k−1;m2k

ρ−
k;m2k+2

, (G125)
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and p±
ss,0 are determined by the normalization

∑∞
k=0 p±

ss,k = 1, but p is a free parameter and depends on the support of the initial
cavity space ρ in the even subspace, p = Tr(1+ρ), which is a consequence of the parity conservation [cf. Eq. (14)]. We note that
the structure of the stationary states is independent from the distribution of the integrated coupling.

Case of the odd first wall. For the case of the first wall with cosm1 (φ) = −1, there exist a single even pure stationary state
and multiple odd mixed stationary states between odd hard walls. For the nonmonochromatic atom beam, the corresponding
probabilities [cf. Eq. (G84)] undergo the following dynamics [cf. Eqs. (G122) and (G123)]:

d

dt
p+ = 0, (G126)

and

d

dt

⎛⎜⎜⎜⎜⎝
p−

0

p−
1

p−
2

...

⎞⎟⎟⎟⎟⎠ = ν

⎛⎜⎜⎜⎜⎜⎜⎝
−|ce|2sin2

m1
(φ)ρ−

0;m1
|cg|2sin2

m1
(φ)ρ−

1;m1+2

|ce|2sin2
m1

(φ)ρ−
0;m1

−|cg|2sin2
m1

(φ)ρ−
1;m1+2 − |ce|2sin2

m2
(φ)ρ−

1;m2
|cg|2sin2

m2
(φ)ρ−

2;m2+2

|ce|2sin2
m2

(φ)ρ−
1;m2

. . .
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
p−

0

p−
1

p−
2

...

⎞⎟⎟⎟⎟⎠.

(G127)
Therefore, for the first wall with cosm1 (φ) = −1, the dynamics in Eqs. (G126) and (G127) leads to the stationary state [cf.
Eqs. (G124) and (G125)]

ρss = p |�+〉〈�+| + (1 − p)
∞∑

k=0

p−
ss,k ρ−

k , where
p−

ss,k

p−
ss,k−1

= |ce|2
|cg|2

ρ−
k−1;mk

ρ−
k;mk+2

(G128)

and p−
ss,0 is determined by the normalization

∑∞
k=0 p−

ss,k = 1, but p = Tr(1+ρ) is a free parameter.
For the first wall with cosm1 (φ) = 1, nonmonochromatic beam also leads to decay of formerly stationary coherences, as given

by Eqs. (G119) and (G120), but with parameters defined as

γ 2k

ν
= −Tr[L+

2k M(φ)(|�+〉〈�−
2k|)] + 1, (G129a)

γ k,k′

ν
= −Tr[L−

k,k′ M(φ)(|�−
k 〉〈�−

k′ |)] + 1, (G129b)

η̄++
k,k′ = |ce|2c(k)

mk+1

[
c(k′ )

mk′+1

]∗〈mk′+1 + 2|L−
k+1,k′+1|mk+1 + 2〉 sinmk+1 (φ) sinmk′+1

(φ), (G129c)

η̄−−
k,k′ = |cg|2c(k)

mk+2

[
c(k′ )

mk′ +2

]∗〈mk′ |L−
k−1,k′−1|mk〉 sinmk (φ) sinmk′ (φ) (G129d)

with c(k)
m = 〈m|�−

k 〉. Here k �= k′ = 0, 1, 2, .... and (k′ − k) is
divisible by 2. There is no unitary dynamics, �2k = 0 = �k,k′ ,
as the dynamics is real valued (see Secs. II C and IV C). The
coherences decay at long times, leading to the same structure
of the stationary state as in Eq. (G128).

APPENDIX H: CLASSICAL MICROMASER DYNAMICS
FOR THERMAL ATOMS

Here we consider the micromaser dynamics, Eq. (B9), in
the case of thermal atoms. The dynamics in the far-detuned
limit is classical and obeys detailed balance, resulting in
thermal stationary states of even and odd parities, which are
independent from the integrated coupling.

1. Classical detailed-balance dynamics

Consider an atom in a thermal state

ρat =
∑

j=0,...,4,a

p j | j〉〈 j|, p j ∝ e− E j
kBT , (H1)

where T denotes the atom temperature and Ej is the energy of
the atomic level (see Sec. II).

There are eight Kraus operators [cf. Eqs. (B7), (10), and
(G27)]:

Mgg = cos(φ
√

a†2a2), Meg = −i a2 sin(φ
√

a†2a2)√
a†2a2

,

(H2a)

Mge = −i a†2 sin(φ
√

a2a†2)√
a2a†2

, Mee = cos(φ
√

a2a†2),

(H2b)

M0 = eiτa†a |g2 |2
� , M2 = e−iτa a† |g2 |2+|g3 |2

� ,

M4 = eiτa a† |g3 |2
� , and Ma = 1, (H2c)

which describe the change in the cavity state due to a passage
of the atom as [cf. Eq. (B8)]

ρ (k) =
∑

j,l=g,e

pl Mjl ρ
(k−1) M†

jl +
∑

j=0,2,4,a

p j Mj ρ
(k−1) M†

j

≡ M[ρ (k−1)]. (H3)

The resulting continuous cavity dynamics in Eq. (B9)
conserves the parity, Eq. (14), due to the approximation of
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far-detuned limit [cf. Eq. (6)]. Furthermore, the dynamics is
classical, with diagonal states in the photon number basis
remaining diagonal and thus evolving independently from
the coherences. In particular, for diagonal states, Eqs. (H2)
describe a detailed balance process between the photon num-
ber states of fixed parity, which corresponds to the so-called
birth-death process with the birth referring to the change from
|n〉〈n| to |n + 2〉〈n + 2| due to the Kraus operator Mge, and the
death referring to that from |n〉〈n| to |n − 2〉〈n − 2| due to the
Kraus operator Meg, while the other Kraus operators do not
contribute. The respective rates are given by

bn = ν p3 sin2
n(φ), dn = ν p1 sin2

n−2(φ). (H4)

2. Thermal stationary states

From the detailed balance, it follows that two
stationary states ρ+ = ∑∞

n=0 p2n|2n〉〈2n| and ρ− =∑∞
n=0 h2n+1|2n + 1〉〈2n + 1| are thermal with the

probabilities determined by the recurrence relation

hn+2

hn
= bn

dn+2
= p3

p1
= e

−2ω
kBT , (H5)

where 2ω = E1 − E3 due to the two-photon resonance in
Eq. (3). Furthermore, the detailed balance dynamics is present
for any diagonal, not necessarily thermal, state of the atom. In
this case, Eq. (H5) defines the effective temperature T .

The sequence of probabilities hn is convergent if
e−2ω/kBT < 1, which takes place for positive temperatures
T > 0 (or for a diagonal state when p1 > p3). In the case of
an initial state of the cavity ρ with support on both even and
odd subspaces, the asymptotic state is a probabilistic mixture
of the even and odd stationary states

ρss = pρ+ + (1 − p) ρ− = 1

1 + e
−2ω
kBT

∞∑
n=0

e
−2nω
kBT

× [p |2n〉〈2n| + (1 − p) |2n + 1〉〈2n + 1|], (H6)

where the probability p = Tr(1+ρ) is determined by the
initial support on the even subspace.

3. Interaction-dependent timescales of dynamics

Because the initial atomic state is thermal, Eq. (H1),
the stationary states of the cavity are independent from the
integrated coupling strength φ. However, the dynamics of
relaxation toward the stationary state depends crucially on
the value of φ. This follows from the birth and death rates,
Eq. (H4) being dependent on sin2

n(φ). Therefore, the presence
of a soft wall at n = m, sinm(φ) ≈ 0, leads to a slowdown of
the dynamics, similar to the case for the quantum micromaser
dynamics discussed in Sec. III E. In particular, the relaxation
timescales to the stationary state are dominated by the slowest
pairs of the birth and death rates, i.e., such m within the sup-
port of the stationary state for which bm, dm+2 ∝ sin2

m(φ) ≈ 0.
Treating bm, dm+2 as a perturbation of the dynamics with
b(0)

m = 0, d (0)
m+2 = 0, from Eq. (G2) we obtain the long-time

dynamics between thermal states supported before and after a

wall as [86]

d

dt
pk (t ) = −[

p1 sin2
mk

(φ) p(k)
mk+2 + p3 sin2

mk+1
(φ) p(k)

mk+1

]
pk (t )

+ p1 sin2
mk

(φ) p(k)
mk+2 pk−1(t )

+ p3 sin2
mk+1

(φ) p(k)
mk+1

pk+1(t ), (H7)

where pk (t ) denotes the probability of being in the kth state
supported after kth wall, while h(k)

n denotes the probability of
finding n photons in the kth state (for simplicity we dropped
the indices denoting the parity, but only the states of the same
parity are coupled) (see also Appendix E). Note that the final
stationary state is again given by Eq. (H6).

APPENDIX I: CONTINUOUS VERSUS DISCRETE
CAVITY DYNAMICS

In this Appendix, we discuss similarities and differences
between continuous dynamics, Eqs. (B9) and (11), and the
discrete dynamics, Eqs. (B8) and (9), where the number of
atoms that has passed is known explicitly. In particular, the
numerical simulations in Figs. 1–3, 5–11, 8, and 10 utilize the
discrete dynamics.

1. Discrete dynamics

The master equations (B9) and (11) represent continuous
dynamics of the density matrix, which describes the cavity
state averaged both over the possible measurement outcomes
of the outgoing atomic states—i.e., when the atoms are traced
out—and over the exponentially distributed arrival times of
atoms into the cavity (see Appendix B 1). The former average
procedure results precisely in Kraus operators in Eqs. (B8)
and (42), while the latter average yields the master equation
(B9) governing continuous evolution of the cavity in time.
Note that by counting the number of atoms that have passed
through the cavity, its state after the passage of k atoms is
simply given by [cf. Eqs. (B8) and (9)]

ρ (k) = Mk (ρ), (I1)

where ρ ≡ ρ (0) denotes the initial state of the cavity. Note
that the conditional discrete dynamics in (I1) is independent
from the atom rate ν, but the probability of the passage of k
atoms up to time t is given by e−νt (νt )k/k!, which depends
solely on νt , as described by the Poisson point process (see
also Appendix B 1).

2. Timescales of dynamics

We first note that, in the far-detuned limit, the stationary
states of the discrete dynamics (9) corresponding to the eigen-
value 1 of M0 are also the stationary states of the continuous
dynamics L0, (11), which is also the case beyond the adiabatic
approximation for M and L, Eqs. (B8) and (B9). Actually, all
eigenmodes of the discrete dynamics are also eigenmodes of
continuous dynamics, with eigenvalues λdiscrete

m of M rescaled
to the eigenvalues λm of L as [118]

λm = ν
(
λdiscrete

m − 1
)
, (I2)
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since L = ν(M − I ). The relation (I2) plays an important
role in the presence of a hard wall (see Sec. III D). For the
discrete dynamics, all eigenmodes of M with eigenvalue of
absolute value 1 are nondecaying, while for the continuous
dynamics only the modes corresponding to the eigenvalue 1
are stationary. In particular, for a hard wall leading to different
boundary conditions before and after the wall, the coherence
between the pure stationary states after and before the wall
is nondecaying in the discrete dynamics, but the coherence
phase is flipped, i.e., shifted by π , with each passing atom,
which in the continuous case leads to its dephasing (see
Sec. III D).

3. Metastability in discrete dynamics

a. Discrete dynamics in the presence of losses

In Sec. IV B, we consider cavity dynamics in the presence
of single-photon losses at rate κ . In the derivation of the
dynamics governed by the master equation (52), it is assumed
that photon loss takes place when there is no atom within
the cavity, i.e., κ τ � 1 for the atom passage time τ , so that
the single-photon losses can be considered independent of the
atom-cavity dynamics [31,64]. For the discrete dynamics, this
assumption leads to the state of the cavity after the passage of
k atoms given by

ρ (k) = (M1ph)k (I − L1ph/ν)−1(ρ), where

M1ph ≡ (I − L1ph/ν)−1M0. (I3)

Note that M1ph describes the joint effect of the passage of
an atom in the far-detuned limit given by M0, and the losses
that can occur afterward, but before the passage of the next
atom,

∫ ∞
0 dt νe−νt etL1ph = [I − L1ph/ν]−1. Equation (I3) can

be used to derive the master dynamics (52) in the limit κ � ν

(cf. Appendix A in Ref. [31]).
Therefore, from Eq. (I3), the stationary state of continuous

dynamics in the presence of losses (52) corresponds to the
stationary state of the discrete dynamics,

ρdiscrete
ss = (I − L1ph/ν)ρss, (I4)

since Lρss = 0, where L ≡ ν(M0 − I ) + L1ph, so that
M0ρss = (I − L1ph/ν)ρss and, thus, M1phρss = ρss.

b. Metastability

In the metastable limit of a small rate of the single-
photon losses, κ � ν, we recover ρdiscrete

ss ≈ ρss from Eq. (I4).
Furthermore, the continuous dynamics of all the metastable
modes discussed in Sec. IV B will be approximately the
same in the discrete case, as follows. Recall from above that,
without the losses, the DFS of pure stationary states |�+〉 and
|�−〉, Eq. (22), is stationary both in the continuous case of L0

and discrete case of M0. Expanding M1ph in (I3), we have

M1ph = M0 + L1phM0/ν + O(κ2/ν2). (I5)

Therefore, within the DFS, the eigenvalues and eigenmodes of
M1ph in the lowest order of the expansion in κ/ν correspond
to the eigenmodes of the continuous effective first-order dy-
namics in Eq. (55), as

�0M1ph�0 = �0 + �0L1ph�0/ν + O(κ2/ν2), (I6)

where �0 denotes the projection on the formerly stationary
DFS (cf. Sec. III B and Appendix G 2), while the initial term
[I − L1ph/ν]−1 in (I3) contributes only as the higher order
corrections to the eigenmodes of the discrete dynamics.

Similarly, in the case of the metastability due the higher
order corrections to the two-photon cavity dynamics (see
Sec. IV A), the long-time discrete dynamics beyond adiabatic
limit M can be approximated within the metastable DFS ex-
actly as in Eq. (I6), but with �0L1ph�0 replaced by the master
operator of Eq. (45), which corresponds to ν(�0M�0 − �0).

APPENDIX J: IDENTIFYING POSSIBLE (5 + 1)-LEVEL
SCHEME IN RYDBERG ATOMS

Here we provide discussion of the results on Rydberg
atoms from Sec. VI.

1. Methods

We have used the ARC package [106,107] (see also
Refs. [119,120] for related software) in order to evaluate the
energies of levels | j〉, j = 0, .., 4, as well as the corresponding
dipole moments

d j−1, j = 〈 j − 1|er̂| j〉, (J1)

j > 0, where e is the electron charge and r̂ the position
operator. The dipole moments determine the single-photon
Rabi frequencies gj as

g j = d j−1, j

√
ω

2h̄ε0V
, (J2)

where ω, ε0, and V are the cavity frequency, vacuum permit-
tivity, and the volume of the cavity mode, respectively.

We take V = 70 mm3 as a benchmark from Ref. [32]. The
number of possible transitions grows rapidly with the number
of basis states considered. Considering Ref. [32], which used
a ladder configuration 39S 1

2
↔ 39P3

2
↔ 40S 1

2
, we limit the

search to a set of 30 basis states |n, l, j〉 with n = 35, .., 45
and l = 0, 1, where j = l ± s, with s = 1/2 being the value
of the electronic spin. For π polarization, we identify 444 600
dipole allowed transitions. In order to satisfy the resonance
condition in Eq. (3), we further define the cavity frequency as

ω = (E3 − E1)/2h̄ (J3)

and the corresponding detunings � j according to Eq. (1).
Postselecting on cases where the levels | j〉, j = 1, 2, 3 form a
ladder, i.e., E1 > E2 > E3 or E1 < E2 < E3 [cf. Fig. 1(a)], and
requiring the rotating-wave approximation, max(|� j/ω| <

0.1), and the far-detuned limit, max(|gj/� j |) < 0.1), to hold,
we are left with 104 transitions [121]. Having identified
the possible candidates, we asses the conditions (5a) and
(5b) according to the following criterion. We define fac-
tors fa,b as |g1|2/�1 = fa|g2|2/�, |g4|2/�4 = − fb|g3|2/�,
so that the conditions are satisfied for fa = fb = 1, and min-
imize max(|1 − fa|, |1 − 1/ fa|) + max(|1 − fb|, |1 − 1/ fb|).
This leads us to the transitions 37S 1

2
↔ 37P3

2
↔ 38S 1

2
↔

38P3
2

↔ 39S 1
2
, as described in Sec. VI.

043847-55



ANDREAS KOUZELIS et al. PHYSICAL REVIEW A 101, 043847 (2020)

2. Possible improvements

In order to increase the effective coupling strength |λ|, the
search strategy could consider a larger set of basis states, and,
in particular, the level manipulations with external electric
field E which would allow for further modification of � j

through the static Stark effect. Here, in order to evaluate (5),
one needs to compute not only the energies of the atomic lev-
els but also the dipole elements of the allowed transitions. For
l � 3 and small values of E , one might attempt a perturbative
approach with level energies given by

Enl j = −ERy

n∗2
− 1

2
α0E2, (J4)

where ERy is the Rydberg energy, n∗ = n − δnl j with the
quantum defect δnl j [122–125], while the static polarizability
α0 = β1n∗6 + β2n∗7. Here, β1, β2 are coefficients which can
be obtained, e.g., by the ARC package [106] and have been
found to be in good agreement with experimental values; see
Refs. [126,127] for the case of rubidium. For higher l and
values of E , a numerical approach requiring exact diagonal-
ization of the Hamiltonian with the external electric field is
necessary. A systematic exploration of the coupling strengths
in this generalized scenario, however, goes beyond the scope
of this work.
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[99] In general, the maximal QFI is achieved for p = 0 when
FQ(|�+〉) � FQ(|�−〉) + 4(〈n〉+ − 〈n〉−)2, p = 1 when
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