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Monopole-antimonopole instability in non-Hermitian coupled waveguides
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A non-Hermitian coupled waveguide system with periodically varying parameters, in which the Berry
curvature is analogous to a hyperbolic magnetic monopole or antimonopole, is investigated. It is shown to have
a purely imaginary Berry connection and is consequently influenced by a geometric multiplier. It is possible for
this multiplier to induce net gain or loss in the system, corresponding to the existence of the antimonopole or
monopole in parameter space, respectively. For the right choice of parameters, the system will display an apparent
nonadiabatic change in behavior, which implies a switch between the dominant eigenstate in the waveguides,
leading to a change in parameter space analogous to a charge reversal of the hyperbolic magnetic monopole.
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I. INTRODUCTION

When the external parameters of a quantum mechanical
system change slowly, through making the adiabatic approxi-
mation, we can induce a gauge potential, the Berry connec-
tion, and hence a gauge field, the Berry curvature, which
will give rise to Berry’s geometric phase [1]. All arise from
the geometric properties of the system’s eigenfunctions in
the space of its varying parameters. The geometric phase is
found by integrating the connection over a closed loop in
parameter space and is akin to the Aharonov-Bohm phase of
a charged particle traversing a loop containing magnetic flux;
the curvature in this case is like a magnetic field [1–3]. The
analogy between the curvature field and magnetic fields is
well known [4,5] and can be extended to magnetic monopoles
by the fact that the integral of the curvature over closed
surfaces is known to be topological and of integer value,
as would be the case for Dirac monopoles with quantized
magnetic charges [3].

Magnetic monopoles are the theorized point charges of the
magnetic field. For a simple monopole (the Dirac monopole),
the magnetic field will extend from a single point in a
spherically symmetric pattern, decreasing in strength with
distance from the source point, much like the electric field
for the classical electric point charge. The existence of a
single magnetic monopole would imply the observed perfect
quantization of all electric charges. Even though virtually all
modern grand unified and cosmological theories of physics
predict their existence, the detection of magnetic monopoles
remain elusive in real space, even though their strong interac-
tion with matter should make them easy to observe, meaning
that they are extremely rare or that they simply do not exist [6].
However, magnetic monopole analogs have been observed
in dual space, i.e., the momentum space of solids, via the
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Berry connection of Bloch wave functions, which in this case
will give rise to the transverse conductivity when integrated
over a closed loop [7]. There are many theoretical examples
where the magnetic monopole analogs corresponds to the
source or sink of the Berry curvature, mainly in condensed-
matter physics [8–11]. Note that these examples are dis-
tinct from the condensed-matter spin-ice emergent magnetic
monopoles [12].

The special type of “magnetic monopole” analog proposed
here exists not in k-space, or real space, but in the abstract
space of the varying optical parameters of a non-Hermitian,
PT -symmetric coupled waveguide system, similar to those
seen in Refs. [13–18]. In such a system, it is possible for the
geometric phase to become complex, or even purely imagi-
nary, and hence it no longer represents a true phase [19,20].
In this case, we find a hyperbolic monopole and an an-
timonopole gauge field associated with each instantaneous
eigenstate of the system, as seen in Ref. [11], which will each
have an associated imaginary flux. For a hyperbolic magnetic
monopole, the field will be zero at its origin and will grow
in the direction of two symmetric cones extending from this
point. Such a monopole field can also be found for a one-
dimensional harmonic oscillator system [21]. This imaginary
flux will lead to a real “geometric multiplier” as seen in
Ref. [18], which can be nonzero for a closed loop in param-
eter space due to the nontrivial geometry, and will in turn
affect the system dynamics beyond modulation, inducing an
interesting and potentially useful interplay between gain and
loss.

We show that analytical calculations of the monopole flux
through a loop can be used to predict the gain and loss seen
in simulations to a high degree of accuracy, showing that the
existence of the monopole (or antimonopole) in parameter
space indeed induces an instability in the system. This is an
example of a geometric instability, due to its dependence on
the non-Hermitian Berry connection. If one does not suppress
the nonadiabatic evolution of the system, it is possible to
induce an apparent eigenstate flip, signaling a charge reversal
of the monopole in parameter space.
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II. THE HYPERBOLIC PSEUDOMAGNETIC MONOPOLE

Consider a PT -symmetric coupled waveguide system with
balanced gain and loss, and a complex coupling coeffi-
cient, both which vary periodically along the length of the
waveguides. Such systems can be experimentally realized
via the fabrication of waveguides with sinusoidal modulation
along their length [22]. Use of such a technique is experimen-
tally demonstrated in Ref. [17], where coupling and detuning
coefficients are varied to form a closed loop in parameter
space. Our coupled waveguides can be described by a non-
Hermitian Hamiltonian, akin to the one physically realized in
Ref. [17], and also Ref. [14], where there is no parameter
variation but a complex coupling coefficient is considered;
complex couplings are also found in distributed feedback
lasers, which can be modeled as coupled waveguides [23].
Hence, the following Hamiltonian represents a general, real-
istic physical coupled waveguide system:

Ĥ (z) =
(

i γ (z) κ (z)
κ∗(z) −i γ (z)

)
. (1)

Here, κ (z) = κR(z) + iκI (z) is the complex coupling co-
efficient, γ (z) represents a gain or loss coefficient, and z is
the distance along the length of the waveguides. The form of
the above Hamiltonian is derived from that seen in Ref. [11].
We can, for simplicity, substitute γ (z) = r(z) sin[α(z)] and
κR(z) + iκI (z) = r(z)eiθ (z) in Eq. (1), which gives rise to the
instantaneous eigenstates,

|ψ+〉 = 1√
2

(
ei α+θ

2

e−i α+θ
2

)
, |ψ−〉 = 1√

2

(− e−i α−θ
2

ei α−θ
2

)
, (2)

which correspond to the instantaneous eigenvalues λ± =
±

√
κ2

R(z) + κ2
I (z) − γ 2(z) = ±λ, the form of which already

hints at a hyperbolic geometric structure of the parameter
space. We can also find the adjoint eigenstates by solving for
the eigensystem of Ĥ†:

|φ+〉 = 1√
2

(
e−i α−θ

2

ei α−θ
2

)
, |φ−〉 = 1√

2

(−ei α+θ
2

e−i α+θ
2

)
, (3)

which again correspond to λ±, respectively, as long as
the system remains in the unbroken PT -symmetry phase
(λ2 > 0).

From our instantaneous eigenstates and adjoint eigenstates,
we can find the non-Hermitian Berry connection and the
associated pseudomagnetic field found in the space of our
varying parameters. As we are working with a non-Hermitian
system, we define the connection A±(R) = (A±

x , A±
y , A±

γ ) for
R = [κR(z), κI (z), γ (z)] as follows, in line with the standard
definition for the geometric phase in this case [19,20]:

A±
μ = i

〈φ±|∂μ|ψ±〉
〈φ±|ψ±〉 , (4)

where the index μ = {κR(z), κI (z), γ (z)}. Inserting Eqs. (2)
and (3) into Eq. (4), and taking the curl of the connection with
respect to the system’s parameters, in line with the standard
definition of the Berry curvature, gives us the following

FIG. 1. (a) The monopole (
+) field and (b) the antimonopole
field (
−). The length of the arrows indicates the intensity of the
magnetic field, which increases away from the monopole center. In
both cases, the imaginary unit present in Eq. (5) has been omitted
simply in order to plot the function in real space. Although the field
lines do flow out of (into) a point, the divergence is of course still
zero, due to the fact the field is found by taking the curl of a potential.

induced pseudomagnetic fields:

�± = ±i

2λ3

⎛
⎝κR(z)

κI (z)
γ (z)

⎞
⎠, (5)

which correspond to a source (+) and a sink (−). As we are
working in dimensionless units, we are free to rescale our
parameters without loss of generality. Hence, we choose to
rescale our parameters so that λ = 1 in this work, and the
“magnetic charge” of the monopole or the antimonopole is
consequently rescaled to ±1/2. For a general value of λ, one
could calculate the charge of the monopole from the above
equation.

Figure 1 shows the pseudomagnetic vector fields of the
monopole and the antimonopole (the imaginary unit has been
neglected), plotted in the space of the system’s varying param-
eters. As with ordinary magnetic monopoles, all the field lines
emanate from a point, but the hyperbolic monopole is unusual
in the way the field strength increases with distance from the
source.

III. THE GEOMETRIC MULTIPLIER

For a cyclic Hamiltonian, if the adiabatic approximation is
upheld, then eigenstates will gain a geometric phase once the
system’s parameters have returned to their original values, and
otherwise remain unchanged. In non-Hermitian systems, it is
no longer a requirement that Berry’s geometric phase is a real
function, and in general it is complex, no longer representing
a true phase [19]. In terms of Eq. (4), we find explicitly the
following geometric function:

γ ±
B (z) =

∫ z

0
A±(R)dR (6)

=
∫ z

0
− i

2
tan [α(z′)][α′(z′) ± κ ′(z′)] dz′. (7)

In this case, as the connection itself is imaginary, eigen-
states will hence be influenced by a real geometric multi-
plier [18]. As this multiplier is a periodic function, even if it
returns to zero after a complete cycle, it will magnify the non-
Hermitian analog of Floquet sidebands in the spectrum of the
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FIG. 2. Example loops on the surface of constant flux (λ2 =
constant and >0) associated with the monopole and antimonopole,
where the varying parameters are in units of λ. The tilted loop around
the neck of the surface will yield zero net flux, and hence the system
will remain stable as its radius increases. For the other loops, the
net flux, and consequently γB, will be nonzero for a complete cycle,
causing the system to exhibit gain or loss.

coupled waveguide system. Furthermore, it can be expected
to modulate the amplitude of the instantaneous eigenstates as
they evolve along the waveguides. If the geometric multiplier
is nonperiodic, we can expect it to introduce either net gain
or loss into our system by changing the amplitude of the
waveguide modes by a fixed amount every time a cycle is
completed.

The energy surface (λ2 = constant), which corresponds
to our eigenstates in parameter space, takes the form of
a one-sheet hyperboloid for λ2 > 0, as in Fig. 2. We are
free to rescale our parameters such that λ2 = 1; this is au-
tomatically true when κR = cosh η cos θ , κI = cosh η sin θ ,
and γ = sinh η. Hence, we can find closed, cyclic paths on
our hyperboloid’s surface which will correspond to periodic
variations in our waveguide parameters by giving θ and η

a periodic variation in z. Examples of possible closed paths
corresponding to cycles of the Hamiltonian the parameters
could take on the energy surface, and which can consequently
be used to calculate the corresponding geometric phase, are
shown in Fig. 2.

Due to the correspondence between the Berry connec-
tion (4) and the magnetic vector potential, the integral above
is identical to the integral one would use to calculate the flux
of the hyperbolic monopole or antimonopole through a closed
loop, such as those seen in Fig. 2. Hence, we can relate the net
flux out of (into) the monopole (antimonopole) to the presence
of gain or loss in our system, given the evolution is suitably
adiabatic that other effects can be neglected. One can calculate
an approximate ratio of amplitude of the wave function at
the end of the waveguides (|ψ (L)|2), to the amplitude of the
initially excited eigenstate (|ψ±|2), due to the presence of
a nonperiodic geometric multiplier from the following, by

z

FIG. 3. The variation of the geometric function iγB(z) with the
distance along the coupled waveguides, z, for a circular loop (a = 2,
b = 1), a tilted loop (a = 3, b = 1), and a side loop (a = 1, b = 0.5),
as seen in Fig. 2.

assuming the wave function gains a factor eiγ ±
B at the end of

each cycle:

|ψ (L)|2
|ψ±|2 = (eiγ ±

B )bL/π , (8)

where b is the frequency of the parameter variation along z, L
is the total length of the coupled waveguides along the z axis,
and |ψ (L)|2 is the amplitude of the evolved wave function
at z = L. The formula comes from estimating how many
complete cycles occur for distance L. (If the function γB(z)
has a periodicity 2π , a cycle will happen every z = 2π/b,
and hence the total number of cycles is Lb/2π .) The function
iγB(z) is plotted in Fig. 3 for a circular loop (loop 3), a tilted
loop (loop 2), and a loop on the side of the monopole (loop
1), like those visible in Fig. 2. It is clear that varying the
system’s parameters such that a loop is traced out on the side
on the monopole will induce net gain or loss in the coupled
waveguide system.

IV. SIMULATION RESULTS

A loop on the side of the energy sheet of our system,
such as loop 1 in Fig. 2, has the following parametri-
zation: κR(z) = cosh [a cos (bz)] cos [−a sin (bz)], κI (z) =
cosh [a cos (bz)] sin [−a sin (bz)], and γ (z)= sinh [a cos (bz)],
where a controls the size of the loop, and b is the frequency
of the parameter variation along z. Figure 4(a) shows
the amplitude of a wave function as it evolves along the
coupled waveguides for a = 0.1 and b = 0.1 when the plus
instantaneous eigenstate is initially excited; the same is shown
in Fig. 5(a) for the minus eigenstate. The corresponding final
spectra at the end of the propagation for Figs. 4(a) and 5(a)
are displayed in Figs. 4(b) and 5(b), respectively. In each
case, the dominant peak corresponds to the initially excited
eigenstate, and a small second peak corresponding to the
alternate eigenstate is present due to nonadiabatic effects.
Floquet side bands are also present due to the periodic
parameter variation, which can be intensified due to the
modulation of the states’ amplitude from the geometric
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FIG. 4. (a) Net loss of a wave function evolving along the
coupled waveguide system for a = 0.1 and b = 0.1, when the initial
instantaneous eigenstate is |ψ+〉, due to the presence of the geometric
multiplier eiγB . (b) The spectrum corresponding to panel (a).

multiplier, when it is itself periodic [18]. If we calculate the
factor in Eq. (8) for this loop, for |ψ±|2 = 0.5 as seen in
Figs. 4(a) and 5(a), we find |ψ (L)|2 = 0.367 42 for the plus
eigenstate and |ψ (L)|2 = 2.721 68 for the minus eigenstate,
which closely matches the final amplitudes seen in Figs. 4(a)
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FIG. 5. (a) Net gain of a wave function evolving along the
coupled waveguide system for a = 0.1 and b = 0.1, when the initial
instantaneous eigenstate is |ψ−〉, due to the presence of the geometric
multiplier eiγB . (b) The spectrum corresponding to panel (a).
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FIG. 6. (a) The variation of the amplitude of the wave function
with distance z along the coupled waveguides, when the initial eigen-
state is |ψ+〉, for a = 0.123 35 and b = 0.5. (b) The corresponding
spectrum. Here, the peaks located at approximately ±1 correspond to
each instantaneous eigenstate. All other peaks are Floquet sidebands
which are enhanced by the presence of the periodically varying
geometric multiplier [18]. The presence of both peaks, and the
sudden conversion from loss to gain in z space, indicates that the
system is not evolving adiabatically.

and 5(a), respectively. This confirms that the gain and loss
pictured in Figs. 5 and 4 are due to the geometric multiplier
and the flux of the corresponding monopole through the
chosen loop. In this case, as the loop is anticlockwise, we can
expect a positive flux for the monopole, and a negative flux
for the antimonopole, leading to loss and gain, respectively,
and hence an unstable behavior of the system.

In Fig. 6, we see the simulation results for the same
anticlockwise side loop, with a = 0.123 35 and b = 0.5, when
the plus eigenstate is initially excited. These parameters are
chosen as they will cause a seemingly perfect conversion of
loss to gain for coupled waveguides of length L = 2000. The
peaks in the spectrum suggest an equally strong presence of
the plus eigenstate and the minus eigenstate in the coupled
waveguide system. If the system were evolving adiabatically,
we would expect to see net loss, as in Fig. 4(a), and if we
had initially excited the minus eigenstate, we would expect to
see net gain, as in Fig. 5(a). Hence, what we appear to see is
the system effectively switches from the dominant presence of
one eigenstate (plus) to another (minus), and consequently a
switch from the existence of the monopole in parameter space
to the existence of the antimonopole in parameter space: an
analog of charge reversal.

Our claim of an effective state flip is not extreme, as it
was recently experimentally demonstrated that a waveguide
which causes the parameters of a system to encircle an excep-
tional point can be used as an asymmetric mode switch; the
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encircling of the exceptional points causes the switch between
different waveguide modes [17]. In our work, one could
assume the breakdown of adiabaticity has led to a similar
effect. If this coincides with the breaking of PT symmetry,
then our one-sheet hyperboloid pictured in Fig. 2 will split
into a two-sheet hyperboloid, as seen in Ref. [11].

V. CONCLUSIONS

We have shown that the presence of a nonperiodic geomet-
ric multiplier in a non-Hermitian coupled waveguide system
with periodically varying parameters and PT symmetry can
induce net gain or loss along the waveguides. It is possible
in such cases to induce a “charge switch,” where there is an

apparent flip from one eigenstate to another in the system,
which consequently implies a sign flip of the Berry curva-
ture, analogous to a charge switch from a monopole to an
antimonopole. The first direct observation of Berry curvature
effects in an optical system was recently made, which demon-
strates that gaining experimental evidence for the existence of
our monopole-antimonopole switch is possible [24].
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