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Characterization of opening angle correlations of a biphoton state decomposed in Bessel modes
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The spontaneous parametric down-conversion of photons has been widely applied for generating entangled
photon pairs. We theoretically explore the entangled down-converted state of the photon pair, also known as
biphoton state, for both degenerate and nondegenerate photon pairs. In particular, the spatial structure of the
biphoton state has been expressed in Bessel modes to better understand the correlation with regard to the opening
angle ϑk of Bessel modes. In fact, the opening angles of the down-converted photon pair are not independent of
each other, but rather are correlated. Furthermore, we confirm the experimentally observed conditions concerning
the optimization of generating high-degree spatial entanglement by controlling the beam waist of the pump beam.
We also introduce a new experimental setup for efficient measurement of the spatial entanglement of the biphoton
state using geometrical optics arguments.
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I. INTRODUCTION

Entanglement of quantum states is one of the most ex-
citing features of quantum mechanics and has been widely
exploited in many applications, such as quantum cryptography
[1], quantum teleportation [2], or quantum computing [3].
Experimentally, for instance, spontaneous parametric down-
conversion (SPDC) has been a reliable process for the genera-
tion of entangled photon pairs or nondiffracting heralded sin-
gle photons [4]. Indeed, SPDC is a nonlinear optical process
that converts the high-energy photons into entangled photon
pairs by a nonlinear crystal and whose state is also called
biphoton state. Moreover, SPDC facilitates the generation
of high-dimensional entangled states that are an essential
ingredient in quantum information applications, as these states
enlarge the information encoded in a single quantum system
[5], enhance robustness against eavesdropping [6], and are
more efficient by the distillation of important resource states
for quantum computations [7].

Photons with well-defined orbital angular momen-
tum (OAM), so-called twisted light, are described by
high-dimensional Hilbert spaces. In the SPDC process,
entanglement between spatial modes carrying OAM has been
demonstrated experimentally [8,9] and theoretically [10–13].
In the paraxial approximation, Bessel beams carry well-
defined OAM [14] and are known to be more robust to
losses in the transmission of entangled states at long dis-
tances. Moreover, the measured degree of entanglement in
the Bessel modes recovers when an obstruction is encoun-
tered along the beam (self-healing) [15]. Self-healing of
Bessel beams has also been used to demonstrate hybrid
high-dimensional quantum key distribution through obstacles
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with self-reconstructing single photons [16]. Therefore, the
detailed investigation of the Bessel modes is of direct interest
in quantum protocols. Here, we want to emphasize a property
of Bessel modes that is important for this work.

Monochromatic Bessel beams do (formally) not diffract;
that is, the values of the transversal and longitudinal compo-
nents of the linear momentum are fixed along the beam. As a
consequence, all wave vectors k of the Bessel beam lie on a
cone with an opening angle of ϑk [17]. Therefore, the opening
angle is characteristic for a single and monochromatic Bessel
beam. In contrast to OAM, however, the opening angle is
a continuous variable (CV). In general, the quantum states
that consist of a CV, live in an infinite-dimensional Hilbert
space and extend quantum communication protocols to in-
finite dimensions. Here, the primary motivation for dealing
with continuous variables in quantum information concerns
an efficient implementation of the essential steps in quantum
communication protocols such as preparing, unitarily manip-
ulating, and measuring entangled quantum states [18]. CV
entanglement has been utilized by many experimental and
theoretical studies [19–22]. We recommend for further read-
ing the review article [23], where various ways of preparing
CV quantum information, detecting CV quantum states, and
operating onto the states have been introduced.

The Bessel modes have been used to represent the spatial
correlations of photon pairs. In particular, the description of
the radial degree of freedom by the transverse momentum
of Bessel modes, which is a CV, has been a popular topic of
investigations [24–26]. Here, we introduce a new approach,
namely, the utilization of the opening angle of the Bessel beam
to represent the radial degree of freedom. The opening angle
and the radial momentum can be equivalently used for the
description of Bessel modes. However, the main difference
between the opening angle and the radial momentum is that
the correlations regarding the opening angle depends on the
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FIG. 1. Setup of the SPDC process. A Gaussian beam of pump
photons propagates along the z axis and interacts nonlinearly with a
(nonlinear) crystal of length L to generate (down-converted) photons
pairs. The red arrows represent the down-converted idler and signal
photons whose state, also known as the biphoton state, is generally
entangled.

ratio of energies of the down-converted photons in contrast to
correlation regarding the radial momentum (Sec. II B). This
fact can be useful for the direct investigation of nondegenerate
SPDC process. We therefore express the spatial structure of
the biphoton state in terms of Bessel modes. A possible nor-
malization of Bessel modes has been introduced in Ref. [27]
and the completeness and orthogonality have been introduced
in Ref. [28].

As part of the work, we also analyze how the biphoton
state depends on the shape of the pump beam, the length
of the down-converting crystal, and the ratio of energies of
photon pairs. From this, we obtain optimization conditions
which can control the strength and the rate of correlation
in opening angles of signal and idler photons. In Sec. III,
moreover, we present an experimental setup that can be used
to identify a particular θk by using an axicon lens. In the prior
experimental work [25], the Bessel modes have been detected
using spatial light modulators (SLMs). On the SLMs, encoded
binary Bessel functions enable one to select a particular κ

value with an efficiency of approximately 60%. However, the
selection of θk is more informative as apart from the detection
of a particular Bessel mode with high efficiency, one can also
get information about the energy state of photons.

At the end of this section, we refer to several works in the
field of spatial correlations to have a better overview of current
research. Bessel modes are not the unique modes that have
been used to describe the spatial correlations in SPDC. For
instance, the transverse Hermite-Gauss [29–32], Laguerre-
Gauss (LG) [33,34], or Ince-Gauss modes [35] have also
been used to describe the spatial correlations in parametric
down-conversion. We also refer to Ref. [36] for a compact
overview of research in spatial correlations in SPDC.

II. THEORETICAL METHODS

A. The SPDC state

Figure 1 shows the setup of a typical SPDC process in
which a second-order nonlinear crystal is illuminated by
a quasimonochromatic laser pump beam (blue) and which
propagates in the z direction. In the laboratory, the output
of most lasers is a Gaussian beam, which can be described

by the fundamental zeroth-order transverse Gaussian mode.
The down-converted lower-frequency photons (red) produced
by SPDC are assumed to be monochromatic and fulfill the
energy conservation ωp = ωs + ωi, which can be justified
by choosing narrowband interference filters in front of the
detectors. Here, the subscripts s and i indicate the two down-
converted photons named signal and idler, while p refers to
the pump photon.

In general, at the output of the nonlinear crystal, the
biphoton state in the wave-vector domain can be expressed
by [37]

|�SPDC〉 =
∫∫

dkski�(ks, ki )â
†
s (ks)â†

i (ki ) |00〉 , (1)

where the down-converted photons are described by the
wave vectors ks and ki, and where â†

s (ks) and â†
i (ki ) are

the creation operators for idler and signal photons, respec-
tively, and |00〉 is the vacuum state. The function �(ks, ki ),
also called the phase-matching function, has the role of
representing the coupling between the wave vectors, which
results from the conservation of energy and momentum. These
conversations are inherent in the parametric process, and
therefore, the existence of the function �(ks, ki ) is justified.
How the function looks depends on the mode function of
the pump beam and the properties of nonlinear crystal. The
derivation of the phase-matching function has been discussed
in detail [33,34,37]. Consequently, here, we should restrict
ourselves to some basic formulas and notations required for
the following discussion.

In the laboratory, the phase-matching condition δk = 0
should be fulfilled in order to increase the efficiency of the
generation of the SPDC in an optical setup. The momentum
conservation in SPDC is given by

ks + ki = kp = npωp

c
= nsωs

c
+ niωi

c
, (2)

where np, ns, and ni are the refractive indices at the pump,
signal, and idler wavelengths, respectively. In general, the
condition (2) is difficult to fulfill with most materials as
ns(ωs) < ni(ωi ) < np(ωp) for ωs < ωi < ωp. In order to over-
come this issue, the setup of the experiment is usually realized
with birefringent crystals, which may possess two or three
different refractive indices for a given wavelength. Here, we
consider the β-Ba(BO2)2 (BBO) uniaxial crystal with two
crystal axes, which possess two different refractive indices,
ne (extraordinary) and no (ordinary). We consider the type-I
phase matching, where idler and signal photons are both
polarized in the ordinary direction and have the same polariza-
tion, while the pump photon is polarized in the extraordinary
direction. In the following, we state some assumptions which
allow us to determine the phase-matching function.

(i) The refractive indices at ordinary and extraordinary
directions (the refractive indices at the pump, signal, and
idler wavelengths) are equal: ne,p ≈ no,s ≈ no,i. This is a good
approximation for β-barium borate (BBO) crystal in the range
of wavelengths λp = 200–1000 nm [38].

(ii) The transverse cross section of the nonlinear crystal
is much larger than that of the pump beam. If this condition
holds, the setup is invariant to translations in the plane of
the crystal. Therefore, the phase-matching condition of the
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transverse component of the wave vector q has to be satisfied,
and the only phase mismatch is in the longitudinal direction.

(iii) The emitted angles between the z direction and the
signal and idler beams are small enough to use the paraxial
approximation by rewriting the z component of the momen-
tum vector as kz =

√
k2 − |q|2 ≈ k − |q|2/2k.

With these all assumptions, the phase-matching function
reads as [33]

�(qs, qi ) =

Pump︷ ︸︸ ︷
wp√
2π

e− w2
p

4 |qs+qi|2

×
√

2L

π2kp
sinc

(
L|qs − qi|2

4kp

)
e−i L

4kp
|qs−qi|2

︸ ︷︷ ︸
Phase Matching

, (3)

where L stands for the finite thickness of the crystal in the
longitudinal direction and kp stands for the wave vector of the
pump beam.

Next, we should explore the spatial structure of the bipho-
ton state, which is usually done by mode decomposition of the
photons’ joint wave function using a complete and orthogonal
basis of transverse optical modes. The choice of such kind of
basis is justified due to the paraxial nature of experiments.

The signal and idler photons are naturally entangled in
arbitrary superposition’s of OAM modes, which was shown
theoretically [10,11] and experimentally [8]. Therefore, it
is natural to choose for the decomposition of the biphoton
state a basis that carries OAM. The theoretical Bessel modes,
which carry OAM, have been used for discussion of various
experiments. In particular, the simple mathematical descrip-
tion of these modes made them very attractive for theoretical
calculations. Here, therefore, we explore the biphoton state
given in Bessel modes, where our primary purpose is not only
to show that the photon pairs are OAM correlated but also to
expand this description by considering another characteristic
number of Bessel modes as a possible correlated variable in
the SPDC process, namely, the opening angle ϑk .

Bessel modes generally represent a nonparaxial solution of
the Helmholtz equation. A photon in a Bessel mode can be
described by

|κ, �〉 =
∫

dqaκ�(q)â†(q) |0〉 ,

where aκl (q) is the Bessel mode given in momentum space:

aκ�(q) =
√

2π

κ

(−i)�ei�ϕqδ(q − κ). (4)

These Fourier coefficients are indexed by the modulus of the
transverse momentum κ = |q| and the projection of the OAM,
�, onto the beam axis.

We explore the biphoton state when the signal and idler
photons are given in Bessel modes characterized by the pairs
(κs, �s) and (κi, �i), respectively. Thus, the coincidence am-
plitude can be written as

C�s,�i
κs,κi

=
∫∫

〈�s, κs; �i, κi|�SPDC〉

=
∫∫

d3qsd
3qi�(qs, qi )[aκs�s (qs)]∗[aκi�i (qi )]

∗. (5)

Moreover, the coincidence probability for finding the signal
and idler photons characterized by modes (κs, �s) and (κi, �i)
is given by P�s,�i

κs,κi
= |C�s,�i

κs,κi
|2.

For calculations, it is convenient to represent the integral
(5) in cylindrical coordinates, hence we rewrite the transverse
component q in the following way,

qs,i =
⎛
⎝ρs,i cos ϕs,i

ρs,i sin ϕs,i

0

⎞
⎠,

and find the following for the coincidence amplitude,

C�s,�i
κs,κi

∝
∫ ∞

0

∫ ∞

0

∫ 2π

0

∫ 2π

0
�(ρs, ρi, ϕs, ϕi )[aκs�s (ρs, ϕs)]∗

× [aκi�i (ρi, ϕi )]
∗ρsρidρsdρidϕsdϕi. (6)

Next, we do the following substitution in the expression of the
phase-matching function (3),

|qs ± qi|2 = ρs
2 + ρi

2 ± 2ρsρi cos(ϕs − ϕi ),

and rewrite it as

�(ρs, ρi, ϕs, ϕi ) = wp√
2π

e− w2
p

4 [ρ2
s +ρi

2+2ρsρi cos(ϕs−ϕi )]

√
2L

π2kp

× sinc

(
L

ρ2
s + ρ2

i − 2ρsρi cos(ϕs − ϕi )

4kp

)

× e−i L
4kp

[ρ2
s +ρ2

i −2ρsρi cos(ϕs−ϕi )]. (7)

The function �(ρs, ρi, ϕs, ϕi ) depends on ρs and ρi, and on
the difference of the azimutal angles ϕs − ϕi. Hence, we can
expand this function as the superposition of plane waves with
the phase exp [i�(ϕs − ϕi )]:

�(ρs, ρi, ϕs − ϕi ) =
∞∑

�=−∞
fl (ρs, ρi )e

i�(ϕs−ϕi ). (8)

We substitute the new expression for the phase-matching
function from Eq. (8) into Eq. (6) and first analyze only the
angular integral over the angles ϕs and ϕi:

∞∑
�=−∞

f�(ρs, ρi )
∫ 2π

0

∫ 2π

0
e−i(�sϕs+�iϕi )

× ei�(ϕs−ϕi )dϕsdϕi ∝ δ�,�sδ�,−�i . (9)

The δ functions in Eq. (9) suggest to us to replace in Eq. (6) �s

with � and �i with −�. This guarantees the OAM conservation
in the SPDC process: the entangled photons are perfectly anti-
correlated in �. For further calculations, we use the expression
(7) as the expression (9) has been only introduced, in order to
show the OAM conservation.

Next, we rewrite the sinc function in terms of the step
function in the following way:

sinc

(
L|qs − qi|2

4kp

)
= 1

L

∫ L/2

−L/2
dt exp

(
− i|qs − qi|2t

2kp

)
.

The integration in Eq. (6) over ρs and ρi is because of the
δ function in the expression of Bessel modes (4); very simply,
one should replace ρs and ρi with κs and κi, respectively.

043844-3



BAGHDASARYAN, STEINLECHNER, AND FRITZSCHE PHYSICAL REVIEW A 101, 043844 (2020)

Furthermore, we use the integral representation of the Bessel
function of the first kind for the angular integration [39]:

Jn(z) = 1

2π

∫ 2π

0
ei(z sin ϕ−nϕ)dϕ.

Our final result for the degenerate biphoton state is
given by

C�,−�
κs,κi

∝ wp√
L

√
κsκi

∫ L/2

−L/2
dtJ�[κsκiA(t )]eB(t )(κ2

s +κ
2
i ), (10)

where

A(t ) = − iw2
p/2 − L/(2kp) − t/kp,

B(t ) = − w2
p/4 − iL/(4kp) − it/(2kp).

In order to obtain the coincidence amplitude for the nonde-
generate biphoton state, one should replace the expression
|qs − qi|2 in the last two terms of Eq. (3) by |qsωi/ωs −
qiωs/ωi|2 and perform the analog steps described before (see
the Appendix).

For further discussion, we consider instead the opening
angle of the Bessel mode, which is fully defined by κ for the
given energy ω:

ϑk (κ) = arctan

[
κ√

ω2/c2 − κ
2

]
. (11)

In SPDC, the real correlated parameter is the radial mo-
mentum. However, we translate the correlation regarding
the radial momentum into the correlation in the opening
angle using Eq. (11). The goal is to use the dependence of the
opening angle on the energy of photons, in order to investigate
the nondegenerate SPDC process. In Sec. III, an experimental
setup for the detection of the opening-angle correlation is
introduced, in order to make our discussion complete. In the
following, we explore the correlation between ϑk,s and ϑk,i

by analyzing the coincidence amplitude from Eq. (10). The
integral in Eq. (10) is evaluated numerically. However, by
considering the thin crystal approximation, one can find an
analytical expression for the coincidence amplitude using the
fact that the integration limits depend on the crystal length L.

B. Results and discussion

Expression (10) represents the spatial structure of the
biphoton state if expressed as a superposition of Bessel
modes. In detail, we consider the correlation in the opening
angle of Bessel beams, which depends on parameters such as
the OAM of signal and idler photons, the pump beam waist,
the crystal length, and the ratio of the energies of the signal
and idler photons. We choose for the wavelength of the pump
beam λp = 413 nm, which is a typical value in experiments.

Let us start the discussion from the comparison of our
results with similar calculations, where the spatial structure of
the biphoton state was described in Laguerre-Gauss modes.
Figure 3 displays the coincidence probability P�s,�i

ϑk,s,ϑk,i
of

Bessel modes (upper panels) discussed in the previous section
and P�s,�i

ps,pi
of LG modes (lower panels) derived in Ref. [33].

The highest probabilities of selecting a joint state of a given
OAM, |�|, are located along the diagonals of the graphs, where

FIG. 2. Intensity profiles of Bessel beams in the x-y plane at z =
0. The radius and the amount of the rings in the certain area depend
on the opening angle and the OAM of the Bessel beam. The graphs
are shown for (a) the opening angle ϑk = 0.1◦ and the OAM |�| =
0, (b) for ϑk = 0.1◦ and � = 15, (c) for ϑk = 0.2◦ and |�| = 0, and
(d) for ϑk = 0.2◦ and |�| = 15.

the values of the opening angles ϑk,s and ϑk,i or the radial
indices ps and pi are equal. However, there is an optimal pair
of opening angles or radial indices of given |�| that maxi-
mize the coincidence probability. We also observe that the
increase in the OAM causes a shift of the maximum prob-
ability to the higher values of ϑk and p. To understand this
behavior, we should analyze Eq. (5) and Fig. 2. Here, we
restrict ourselves to the discussion of Bessel modes because
the arguments for the LG modes are analogous.

From Eq. (5) the coincidence amplitude depends on the
product of the pump, idler, and signal modes, and our task
is to understand the dependence of this product on the
shape of these modes. By increasing the opening angle of
the Bessel beam, the inner rings move toward the origin of
the coordinates, where the Gaussian mode has the maximum
value. Therefore, one could expect to have the maximum
of the product of three modes in the region close to the
origin. However, by increasing the opening angle, the width
of the first ring, which has the maximum intensity, decreases,
whereas the number of rings in a particular area increases.
Consequently, there is an optimal pair of opening angles
that maximize the product. Let us assume that the maximum
is reached for a particular opening angle pair. Now, if one
increases the value of the OAM, the radius of the first ring
would increase (see Fig. 2) and move away from the origin.
Therefore, in order to maximize the product again, the rings
have to move toward the origin of the coordinates, which
can be done by increasing the opening angle. To summarize,
the maximum of coincidence probability moves to higher
values of ϑk when the OAM of the SPDC pair increases. All
arguments are also right for LG modes characterized by the
radial index. We conclude that the change in the OAM affects

043844-4



CHARACTERIZATION OF OPENING ANGLE … PHYSICAL REVIEW A 101, 043844 (2020)

FIG. 3. Correlation between ϑk,s and ϑk,i (upper panel) and be-
tween ps and pi derived in Ref. [33] (lower panel) for different values
of the OAM |�| and the degenerate photon pair. The chosen values for
the pump beam waist and the crystal length are wp = 3200 μm and
L = 2 mm, respectively. The highest probability is expected along
the diagonal for both parameters, which shifts along the diagonal
as long as the absolute value of the OAM |�| increases. In contrast
to the radial index p, the opening angle is a continuous variable,
which is shown enlarged on the first graph. The high value of the
OAM, |�| = 15, is chosen for a better demonstration of the shifting
of maxima. The normalization is done for each graph individually.
The normalization in Figs. 4, 5, and 6 is done in the same way.

similar changes in intensity profiles and also in coincidence
probabilities displayed in Fig. 3. In that sense, the opening
angle of Bessel modes and the radial index of LG modes are
analogous parameters. One could expect this, keeping in the
mind that both θk and p represent the radial degree of freedom
of a photon. However, a massive difference exists between the
correlations in the opening angle of Bessel modes and the
radial index of LG modes: in contrast to the radial index of

FIG. 5. The same as in Fig. 4 but for different crystal lengths:
L = 2 and 8 mm. The calculations have been performed for the pump
beam waist wp = 320 μm and the OAM |�| = 4. By increasing the
crystal length, the correlation between opening angles of signal and
idler beams vanishes along the diagonal for large opening angles.

LG modes, the opening angle of Bessel modes describes a
continuous variable, which can be beneficial in the quantum
protocols because of the arguments mentioned in Sec. I.

Next, we discuss the influence of the pump beam waist
on the coincidence probability. From Fig. 4 it follows that
the increase in wp yields to δ correlation between ϑk,s and
ϑk,i. Moreover, an idealized plane-wave pump in the process
of SPDC would lead to strict correlations so that each signal
mode would correspond to a single idler mode. However, the
crystal size places an effective upper limit on the beam waist
and makes impossible the use of an arbitrary large waist.

A second-order nonlinear process, such as SPDC, depends
on the intensity of incident light. If the intensity is sufficiently
low, then no nonlinearity is observed in the experiment. By
decreasing the pump beam waist, one increases the intensity
of the incident light and gives rise to second-order nonlin-
earity. With this in mind, we notice from Fig. 4 that the
probability for photon pairs to have different opening angles
increases, which means the number of photons coupled into a
single-mode system increases. Our results agree with previous
experimental work introduced in Ref. [26].

Furthermore, we discuss the dependence of the biphoton
state on the crystal length. The correlation probability along
the diagonal of the graph from Fig. 5 vanishes for large
opening angles when the length of the crystal increases. A
reason for this behavior could be the path length of photons

FIG. 4. The same as Fig. 3 but for Bessel modes with the OAM � = 4 and different beam waits of the pump beam: wp = 32, 320, and
3200 μm. These graphs show that better focusing of the pump beam increases the amount of nondiagonal correlated pairs. If the beam waist
increases, the strength of the correlation also increases and for infinitely large beam waist (plane wave) leads to δ correlation.
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FIG. 6. The same as in Fig. 4 but for the correlation (a) between
the modulus of transverse momentum of signal and idler photons,
κs and κi, and (b) between ϑk,s and ϑk,i for nondegenerate photon
pairs with energies ωi = 2ωs = 2ωp/3. The correlation regarding the
opening angle in contrast to the transverse momentum correlation
depends strongly on the ratio of the photon pair energies wi/ws.

in the crystal. For small opening angles, the probability is
high that the photon would take a shorter path in the crys-
tal. Moreover, the path length in the crystal enhances faster
for the large opening angles with the length of the crystal,
which means the influence of crystal properties can become
stronger and lead to undesired nonlinearity. Second, from the
experiments it is known that the efficiency of SPDC depends
on the phase-matching condition, and there is an upper limit
for wave-vector mismatch: δk = kp − ks − ki. On the other
hand, it is also known that the mismatch δk is antipropor-
tional to the length of the interacting material, |δk| ∝ 1/L,
which means that if one increases the length L, the upper
limit conditions for δk becomes more strict. If the phase
mismatch condition becomes more strict, fewer photons fulfill
it, and the rate of SPDC decreases. We also recognize from
Fig. 4 that better focusing of the pump beam causes similar
changes on the correlation rate, namely, it leads to vanishing
of correlation on the diagonal. This agrees with previous
works, where it has been shown that the better focusing of the
pump beam and the increasing of the crystal length implies
similar changes in the correlation rate of the biphoton state
[40,41].

Finally, we discuss the nondegenerate biphoton state. We
considered idler and signal photons with the following en-
ergies: ωs = ωp/3 and ωi = 2ωp/3. The calculations showed
that in contrast to the modulus of the transverse momentum κ,
the correlation regarding the opening angle depends strongly
on the ratio of signal and idler photons energies (see Fig. 6).
One should be careful in choosing the ratio of energies, in
order to remain the condition ne,p ≈ no,s ≈ no,i as valid. We
conclude that the measurement of the correlation as a function
of the opening angle enables the analysis of the nondegener-
ated biphoton state. However, our calculations also show that
the appearance of the degenerate biphoton state is the most
probable scenario.

III. AN EXPERIMENTAL SETUP FOR DETECTING THE
OPENING ANGLE CORRELATION

The use of the optical element axicon is a technique to
generate an approximation to a zeroth-order Bessel beam with

FIG. 7. Experimental setup for the detection of a zeroth-order
Bessel mode. After parametric down-conversion, each of the photons
enters a mode detector consisting of an axicon and a monomode
optical fiber. By diffraction at the axicon, the incoming mode un-
dergoes a mode transformation in such a way that a Bessel mode
can be transformed into a Gaussian mode. Only the Gaussian mode
can be coupled into the monomode fiber, as all Bessel modes have a
larger spatial extension. The measurements should be performed in
coincidence detection between the two down-converted photons.

efficiency close to 99% [42,43]. If a Gaussian beam illumi-
nates the axicon with the beam size smaller than the hard
aperture of the axicon, the whole input intensity is converted
into an approximation to a Bessel beam. Higher-order Bessel
beams also can be produced using LG beams to illuminate
the axicon [44]. Axicons are characterized by the opening
angle γ , which defines the opening angle of the Bessel beam
produced by an axicon. The relation of these two angles is
given by [45]

θk = (n − 1)γ , (12)

where n is the refractive index of the axicon. Recently, a
method was introduced to measure the small opening angles
of axicons with high accuracy [46], which also ensures the
well detection of the opening angle of a Bessel beam produced
with an axicon. The simple relation (12) between the two
opening angles motivates us to present an alternative exper-
imental setup for the detection of Bessel modes, which is
briefly presented in the following.

We use the fact that the transformation of light by axicons
is ruled by geometrical optics arguments; that is, the Bessel
beam can be used to produce a Gaussian beam if it propagates
in the opposite direction through the axicon. The scheme
of the setup is shown in Fig. 7. The mode detection of
the down-converted photons should be performed for Bessel
and Gaussian modes. The zeroth-order Bessel modes can be
detected using an axicon with a defined opening angle and
the Gaussian mode can be detected using monomode fibers
in connection with avalanche detectors. Only the Gaussian
modes can be coupled to the monomode fiber because all other
spatial modes have a larger spatial extension. The detection
and analysis of photon pairs can be measured with a coinci-
dence counter.

A similar setup has been used in a prior work [25],
where in SLMs encoded binary Bessel functions have been
used to select a particular Bessel mode. However, using
axicons remains the most efficient technique to generate
Bessel modes. Moreover, the detection of Bessel modes by
an axicon also gives information about the energy state of the
photon.
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IV. CONCLUSION

In this work, we investigated the biphoton state when
its spatial structure was described in Bessel modes. In the
previous works, the radial degree of freedom was described
by the transverse momentum, which was here replaced by
the opening angle of Bessel modes, in order to consider the
nondegenerate SPDC process and detect radial correlations
with a simple experimental scheme. The correlation in open-
ing angles depends on the structure of the pump beam and also
on the crystal properties. In particular, the good beam focusing
or the long crystals reduce the rate of possible correlated pairs
with the same values of opening angles. The pump beam waist
also affects the strength of correlation and even leads to δ

correlation between opening angles of the down-converted
photons when the beam waist attends to infinity. Further-
more, we showed that this correlation strongly depends on
the ratio of the energies of down-converted photons. Our
investigations open up ways for high-dimensional entangle-
ment experiments using continuous variables. An interesting
future work concerns the extension of our work by replac-
ing the Gaussian pump beam with the pump beam carrying
OAM.

APPENDIX

Here, we briefly show how the ratio of energies of down-
converted photon pairs comes into play if one considers the
nondegenerate photon pairs. In a more general way, the phase-
matching function is given by [33]

�(qs, qi ) = E (qs + qi )

√
2L

π2kp
sinc

(
L�kz

2

)
e−i L�kz

2 ,

where E (qs + qi ) is the Fourier transform of the spatial distri-
bution of the pump at the input face of the crystal. Now using
the paraxial approximation kz =

√
k2 − |q|2 ≈ k − |q|2/2k,

Eq. (2), and the assumption ne,p ≈ no,s ≈ no,i, one can replace
�kz with

�kz ≈ |qsωi/ωs − qiωs/ωi|2
2kp

,

which was done in Eq. (3) for ωs = ωi.
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