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Delay-induced instability in phase-locked dual-polarization distributed-feedback fiber lasers
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We study experimentally and theoretically a dual-polarization fiber laser submitted to time-delayed frequency-
shifted optical feedback. In addition to the usual frequency-locking regime that is expected when the frequency
shift is close to the polarization beat frequency, we observe at high pumping rates a dynamical pulsing regime
inside the locking range. This regime is experimentally evidenced in a full-fibered experiment based on an
erbium-doped distributed-feedback fiber laser in which polarization beat frequency is about 1 GHz. A rate-
equation model including the frequency-shifted feedback term reproduces well the experimental bifurcation
maps, provided that both the time delay and a phase-amplitude coupling parameter (α factor) are taken into
account. The impact on microwave-photonics applications is discussed.
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I. INTRODUCTION

Distributed-feedback (DFB) fiber lasers are appealing
sources for various applications, notably because they offer
a combination of low linewidth and high power [1]. When
operating in a regime of simultaneous emission of two orthog-
onal eigenstates, such short-cavity lasers can be considered as
microwave-optical sources, since the typical beat frequency
between the two polarization modes is in the GHz range [2–9].
In this context, the stabilization of the beat frequency, in order
to reduce the phase noise in microwave photonic links, is a
question that led recently to develop an optical phase-locked
loop scheme [9], and to the use of frequency-shifted optical
feedback [10]. However, a full dynamical description of fiber
lasers with FSF has not been explored yet.

Frequency-shifted feedback (FSF) was originally intro-
duced to stabilize dual-frequency bulk solid-state lasers
[11,12]. It fostered further developments in our group, lead-
ing to the discovery of original bounded-phase [13,14], ex-
citablelike [15], or intensity-chaotic frequency-locked [16]
regimes. Other studies involved integrated pairs of semicon-
ductor lasers [17,18], but the case of fiber lasers was left
open. Contrary to bulk solid-state lasers, as we will show in
the following, the effect of the time delay on the feedback
regimes in DFB fiber lasers turns out to be important, as in
many other fields [19]. Besides, the phase-amplitude coupling
parameter (α factor) remains a debated question for fiber
lasers [20–23]. Since this parameter is well known to induce
a wealth of dynamics in semiconductor lasers [24], it may
also play a role in the fiber laser feedback scheme. Also,
DFB fiber lasers were shown to exhibit specific dynamics with
respect to semiconductor lasers in direct injection experiments
[25,26]. Consequently, the study of DFB fiber lasers subjected
to optical feedback needs to be performed for both applied and
fundamental laser dynamics issues.

Here we propose an all-fibered experimental setup based
on a dual-frequency erbium-doped DFB fiber laser. A

feedback loop containing an intensity modulator permits one
to reinject one frequency-shifted polarization mode into the
other. In Sec. II, we show experimentally that short-cavity
fiber lasers exhibit either a simple locking regime, or an origi-
nal dynamical regime within the locking range, depending on
the laser pumping rate. Phase noise is measured in the locking
region. In Sec. III, we focus on a set of delayed-differential
equations in order to model the system with the best accuracy,
paying attention to the bifurcation maps obtained in the feed-
back rate-detuning plane and to the role of delay and α factor.
Conclusions, discussion of applications, and perspectives are
given in Sec. IV.

II. EXPERIMENTAL RESULTS

A. Method

The experimental setup designed for the FSF stabilization
of a DFB fiber laser is described in Fig. 1. The fiber laser
is a 33-mm-long Er3+-doped fiber into which a phase-shifted
Bragg grating was photoinduced. The intensity transmission
coefficients of the resulting mirrors linked to both grating
sections separated by the phase step are estimated to be
−34 dB and −57 dB, respectively, and the laser effective
length is about 2.6 mm. The laser is pumped at 976 nm
through a pump-signal combiner (WDM) and emits at 1547
nm two orthogonal polarization modes Ex and Ey with eigen-
frequencies νx and νy, respectively (we choose νx > νy). The
threshold pump power is about 10 mW, and the laser emits a
total continuous-wave output power of about 100 μW when
backward pumped with 100 mW. Due to the birefringence
induced by UV photo inscription of the Bragg grating [27],
the polarization beat is at around fb = νx − νy = 1 GHz. This
beat frequency is slightly tunable using either the pump power,
with a slope of −20 kHz/mW, or the DFB temperature, with
a slope of about 10 kHz/K. In free-running operation, the
radio-frequency beat note has a linewidth of 3 kHz, and drifts

2469-9926/2020/101(4)/043843(7) 043843-1 ©2020 American Physical Society

https://orcid.org/0000-0002-7157-4744
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.043843&domain=pdf&date_stamp=2020-04-28
https://doi.org/10.1103/PhysRevA.101.043843


M. GUIONIE et al. PHYSICAL REVIEW A 101, 043843 (2020)

FIG. 1. Full-fibered experimental scheme of a dual-frequency
fiber laser (DFFL) submitted to polarization-rotated frequency-
shifted feedback. WDM, pump signal combiner; PC, polarization
controller; CPL, 10-dB coupler; PBS, polarization beam splitter;
EOM, electro-optic modulator driven by a synthesizer at frequency
fLO. The EDFA permits one to control the feedback power. Optical
spectra at different points are sketched below: When νx is selected by
the PBS, the νx − fLO component of the reinjected field is resonant
with νy. See text for details.

within a few MHz span over a period of one day [9]. Such
dual-frequency fiber laser (DFFL) free-running features are
very attractive for heterodyning applications, compared to the
use of separate lasers. However, it does not meet the standards
for high-purity microwave-photonic links, hence motivating
the search for efficient stabilization loops.

The FSF loop is based on a polarization-maintaining (PM)
polarization beam splitter whose outputs are closed on one an-
other after passing through the frequency shifter, here realized
with a PM electro-optic modulator (EOM). It is a standard
Mach-Zehnder-type amplitude modulator which provides a
high bandwidth (10 GHz). The polarization controller PC
between the laser and the FSF loop permits one to select one
of the polarization states, say Ex(νx ), with an extinction ratio
reaching 40 dB (at point B in Fig. 1). The remaining circu-
lating mode can be amplified through a PM erbium-doped
fiber amplifier (EDFA) with a maximum gain G of 17 dB, and
then reaches the EOM. The EOM is driven by a synthesizer at
frequency fLO, acting as a local oscillator, and thus generates
in the optical field two sidebands at frequencies νx ± fLO.
By biasing the EOM at minimum carrier transmission, the
sideband power is maximized with respect to the carrier, with
a typical 20-dB ratio (at point C in Fig. 1). After the PBS, we
are then left with a feedback field whose polarization direction
is parallel to Ey. Hence, for a small detuning � = fLO −
(νx − νy) = fLO − fb, the reinjected field contains an optical
sideband resonant with νy. Intracavity coupling may then lead
to frequency locking between νy and the νx − fLO component
of the reinjected field (compare D with A in Fig. 1). We then
expect to find a stability transfer from the synthesizer fLO to
the beat note fb. When the EDFA is inserted, the overall feed-
back loop is about 8 m, corresponding to a delay τ = 40 ns.
Note that the clockwise rotation of the y polarization along the
feedback loop is prevented by an optical isolator associated
with the EDFA, thus eliminating any risks of mutual delayed

feedback. Besides in order to monitor the beat note, a 90:10
optical coupler is inserted between the PC and the PBS. The
−10 dB output is then detected with a 10-GHz bandwidth
photodiode after an optical isolator.

In addition to the detuning � parameter, two other system
parameters are important in the following dynamical study:
the injection rate and the laser pumping power. The injection
rate is �exp = √

Pinj/Px, where Px is the intracavity power
emitted in the x-polarized mode (roughly half the total power),
and Pinj is the power reinjected inside the laser by the feedback
field, that is, y polarized and frequency shifted. Considering
the estimated output coupler intensity transmission T and
the measured global transmission Tloop of the feedback loop
(including EOM conversion losses as well as all the insertion
losses), the EDFA gain parameter permits one to raise �exp =
T

√
TloopG up to 3.8 × 10−4. Note that, while the reinjected

optical power is very low (at the pW level), it still corresponds
to a strong feedback: the normalized reinjection rate as defined
in Sec. III is found to be in the 0–30 range. Besides, the
pumping power is commonly characterized by the excitation
rate η which is the ratio of the pumping power to the threshold
power.

B. Stabilization results

In a first step, we record the RF spectra when the local
oscillator is swept. We choose to inject Ex into the FSF loop,
as in Fig. 1, with a moderate excitation rate η = 1.3 and an
EDFA gain of 12 dB yielding �exp = 2.2 × 10−4. The free-
running beat is fb=1.015 GHz. In this case, the spectrogram
shown in Fig. 2(a) is recorded while sweeping the synthesizer
frequency across fb over a 7-MHz span in 1000 steps. As
a result, each of the 1000 lines in the figure corresponds to
an electrical spectrum coded in false colors. The two (high-
intensity) yellow lines correspond to the free-running beat fb

(central line) and the swept synthesizer fLO (oblique line),
respectively. As expected from such an injection experiment,
when the local oscillator is close enough to the free beat
note, the laser gets locked. Figures 2(b) and 2(c) show spectra
corresponding to two lines of Fig. 2(a), in the unlocked and
locked regimes, respectively. The locking range between the
beat note and the synthesizer, emphasized by the dotted box
in Figs. 2(a) and 2(d), is measured to be about 2 MHz.

We observe that the locking region increases with the rein-
jection rate, as is usual with injection schemes. Figure 3 shows
a map of the experimental locking region in the (�,�) plane.
� is driven by the EDFA gain. At a maximum gain of 17 dB,
the locking range is 4-MHz wide. It is noteworthy to mention
that such a locking range is wide enough to compensate for
usual laboratory temperature variations, and that the DFFL
then stays locked for days. This map also shows that the
locking region is symmetrical with respect to the detuning.
Note also that, in a first realization of the loop made without
the EDFA, stabilization also occurred at small detunings and
the locking range was measured to be about 200 kHz.

C. Self-pulsing dynamics

In a second step, we notice that the DFFL offers another
kind of response at higher pumping rates. Indeed, we observe
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FIG. 2. RF spectrum analysis of the beat note. �exp = 2.2 × 10−4

(G = 12 dB). Resolution bandwidth (RBW) 50 kHz. (a)–(c) η = 1.3
(� = 20). Span 7 MHz. (a) Swept spectrogram showing unlocked
and locked states. RF spectra (b) from the unlocked regime and
(c) from the locked regime in (a). (d) and (e) η = 4.1 (� = 12). Span
6 MHz. (d) Swept spectrogram showing the instability area within
the locked state. (e) RF spectrum extracted from the instability area
in (d).

an area of instabilities inside the locking range as soon as η

is above a value of roughly 3. The corresponding spectrogram
is then the one shown in Fig. 2(d), recorded at η = 4.1, for
example. The instability area appears for positive values of �,
and the spectrum then develops a comb of equidistant lines
with a frequency spacing of the same order of magnitude

FIG. 3. Experimental stability maps in the (�,�) plane at differ-
ent pumping rates. (a) η = 1.3, (b) η = 4.1. Dots are experimental
points. Colored areas delimit the different stability regimes. White,
unlocked; blue, locked; red, self-pulsing instability.

FIG. 4. Oscilloscope trace of the self-pulsing regime inside the
instability area. η = 11.2 and � = 5.

as the relaxation oscillation frequency ( fR = 170 kHz in this
case), as depicted in Fig. 2(e). The corresponding oscilloscope
trace is reproduced in Fig. 4, showing a regular self-pulsing
regime with a 200-kHz repetition rate of 2-μs-long pulses. We
observe that the pulsing period increases with the detuning.
The lower panel of Fig. 3 shows both locking (in blue) and
instability (in red) regions in the (�,�) plane for η = 4.1.
As in the previous low excitation rate case, the locking range
increases with the injection rate up to about 4 MHz at maxi-
mum. The normalized right-hand side vertical scale changes
with respect to the upper panel, since the relaxation oscillation
frequency increases with the excitation rate.

Interestingly, we find that when the roles of Ex and Ey

are interchanged, the response of the system looks different
at first sight. Thanks to the polarization controller, we check
the dynamical responses when Ey is injected in the FSF loop
instead of Ex. In this case, frequency locking occurs between
νx and the νy + fLO component of the reinjected field. We
still find a locking region, with a comparable width, but
the instability area appears for an opposite detuning. This
is obvious by comparing the spectrograms of Figs. 5(a) and
5(b). This apparent sign reversal is explained by considering
the optical frequencies: In the first situation [Fig. 5(a)], the
instability is obtained when � > 0, that is νx − fLO < νy;

FIG. 5. RF spectrograms recorded η = 4.1 and G = 13.6 dB.
(a) Ex reinjected with �exp = 2.6 × 10−4 (� = 13.9). Span 5 MHz.
Instability areas are observed when � > 0. (b) Ey reinjected with
�exp = 1.9 × 10−4 (� = 10.9). Span 2 MHz. Instability areas ob-
served when � < 0.
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in the second situation [Fig. 5(b)] the instability is obtained
when � < 0, that is νy + fLO < νx. It means that, in both
cases, the instability area is consistently found when the
reinjected “master” optical frequency is lower than the “slave”
optical frequency. Another feature of the instability area is
that it appears whatever the sweeping direction but with a
slight hysteresis: The width of this instability area is narrower
when � decreases in the first situation [νx − fLO injects νy;
see Fig. 5(a)], or when � increases in the second situation
[νy + fLO injects νx; see Fig. 5(b)].

Finally, when the DFFL operates within the stability re-
gion, one can measure its phase noise. In Fig. 6, we plot the
phase noise spectra of the beat note in two different parameter
regions: in the phase-locked state (green curve) and at the edge
of the instability region (blue curve). One can see that the two
curves are close to each other at low offset frequencies; this
could be an indication of a bounded-phase state at the edge of
the instability area [16]. In the instability area, the phase noise
spectrum is affected by relaxation oscillations and harmonics,
but it is strongly reduced to −80 dBc/Hz at 1 kHz offset.
These measurements are compared with a previous plot of the
free-running beat note phase noise [9]: The noise is reduced
by 40 dB at 1-kHz offset even in the instability region.

To the best of our knowledge, this dynamical instability
had not been observed in other laser structures, and it is surely
related to the specific time scales of this system. We develop a
rate-equation model in the next section that intends to support
these original experimental observations.

III. THEORETICAL MODEL

A. Rate equations with delayed feedback

In order to reproduce the experimental results, we intro-
duce the following model equations:

dex

ds
= (1 + iα)

(mx + βmy)

1 + β

ex

2
, (1)

dey

ds
= (1 + iα)

(my + βmx )

1 + β

ey

2
+ i� ey + �ex(t − τ ), (2)

dmx,y

ds
= 1 − (|ex,y|2 + β|ey,x|2)

−ε mx,y[1 + (η − 1)(|ex,y|2 + β|ey,x|2)]. (3)

The model describes the amplitudes ex,y of two laser fields
coupled by optical injection, and the relative population inver-
sions mx,y. The scaled time s is related to the physical time t

by s = 2π fRt . η is the pump parameter, and ε =
√

τcav
(η−1)τinv

,

where τcav and τinv are the cavity and inversion lifetimes,
respectively. β accounts for cross-saturation in the active
medium. The ex field is injected into the ey field after having
been delayed and frequency shifted. The injection process is
accounted for by two parameters: the detuning � and the
injection strength �. The assumptions and approximations
leading to this model are described in more detail in [14,15]
and references therein. With respect to the equations written
in [14,15], two important parameters complete the model: The
equations contain the phase-amplitude coupling α and the
delay τ associated with the propagation time in the fibered
feedback loop.

FIG. 6. Phase noise of the beat note in the locked state (green
curve), and at the edge of the self-pulsing state (blue curve). Phase
noise of the free-running beat, obtained from the phase-locked loop
in [9] is recalled for comparison (dashed black curve).

The model parameters are set as follows. τinv is estimated
from the transient response of the laser to a step in the
pumping process, similarly to what is done in [28]. Combining
the estimated value τinv � 75 μs with the measure of fR,
around 160 kHz for a pump rate η = 4, one can deduce τcav �
40 ns. We note that from τcav one can evaluate the global
losses over one roundtrip to be 6 × 10−4 (−32 dB). This is
in good agreement with the independently estimated mirror
transmission of −34 dB. The reinjection strength � can be
calculated via its expression � = �exp

τRT2π fR
, where τRT is the

roundtrip time inside the laser cavity. For a typical value of
G = 11 dB one gets � � 11. Now, � also gives an estimate
of the half width of the locking range normalized to fR. This
leads us to predict a locking range of around 3 MHz, in good
agreement with experiments. An important parameter ruling
the dynamics of the system is the cross-saturation parameter
β. We measure it experimentally by using the ratio of the
antiphase and relaxation oscillation frequencies [29,30] and
find β = 0.65, in agreement with former measures in bulk
erbium lasers [31].

B. Simulation results

Figures 7(a) and 7(b) present the power spectrum of the
beat-note intensity Ixy as a function of the detuning �. Given
that Eqs. (1)–(3) are written for slowly varying amplitudes,
the interference between the x- and y-polarized fields must be
written as [14]

Ixy = ∣∣exei2πνxs + eyei2π (νx− fLO )s
∣∣2

= ∣∣ex + eye−i2π[ fb+�]s
∣∣2

, (4)

where all frequencies are normalized to fR. The numerical
value of the free-running beat-note frequency fb is immaterial
for the present discussion, and has been shifted to about
1.015 GHz in Fig. 7 to match with the experimental value.
We can see from Fig. 7 that the model is able to reproduce
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FIG. 7. RF spectrogram computed from Eqs. (1)–(3) with (a) η

= 1.3, � = 15, τ = 0.029, ε = 0.085; and (b) η = 4.1, � = 8, τ =
0.047, ε = 0.0133. (c) Time series inside the instability area with η

= 4.1 and � = 3. (d) Bifurcation diagram as � is swept from left to
right (red), then from right to left (blue), showing hysteresis as in the
experiment (Fig. 5). α = 1 and β = 0.65 in all simulations.

the experimental findings. When |�| becomes smaller than
�, the beat-note frequency locks on fLO. Furthermore, at
higher pumping rates, we recover an instability area inside
the locking range, for positive detunings only, as in the
experiment. Inside the instability area, observed periodic self-
pulsing regime is predicted as well, as shown in Fig. 7(c). This
self-pulsing regime appears for moderate, positive detunings
only, and presents some hysteresis [Fig. 7(d)]. As the detuning
is further increased, phase locking with the local oscillator is
recovered.

In order to have a more global view, we have computed
maps of the system’s behavior in the {�, �} plane (Fig. 8).
To obtain these maps, a time series is computed for each value
of � and �. Then, after eliminating the transient dynamics,
we calculate the difference between the extrema of δφ(t ) =
φy(t ) − φx(t ), where φy(t ) and φx(t ) are the arguments of
ey and ex, respectively. If max(δφ) − min(δφ) = 0 then the
system is phase locked, corresponding to the dark regions in
the maps. Conversely if max(δφ) − min(δφ) = 2π then the
system is unlocked, as in the yellow regions. Intermediate
bounded-phase zones where max(δφ) − min(δφ) < 2π also
appear. Figures 8(a) and 8(b) are computed with the same
phase-amplitude coupling α = 1. From Fig. 8(a), which is
computed with η = 1.3, we can see that the instability area
disappears at low pump rates. Figure 8(b) is computed with
η = 4.1 and reproduces the appearance of the instability
area. We check the influence of the α parameter on these
results. First, Fig. 8(c) computed with α = 0 fails to reproduce
the experimental results, since the instability area disappears.
Second, Fig. 8(d) computed with α = 2 shows a wide insta-
bility zone as in the experiment but the bounded-phase zone

FIG. 8. Simulated stability maps in the (�, �) plane at (a) η =
1.3 and α = 1; (b) η = 4.1 and α = 1; (c) η = 4.1 and α = 0; and
(d) η = 4.1 and α = 2. Other parameters as in Fig. 7.

almost disappears. In Fig. 8(b) we notice that, close to the left
border of the instability area, we have a region of bounded
phase in agreement with the measured phase noise in Fig. 6, a
behavior already reported in other lasers [32]. Concerning the
apparent sign reversal observed experimentally in Figs. 5(a)
and 5(b), we notice that, in Eqs. (1)–(3), whether νx > νy or
not, the form of the equations is the same. However, if νx > νy

then νinj = νx − fLO, and we obtain the RF detuning � =
fLO − fb. The instability occurs for � > 0, i.e., for fLO > fb.
If, on the contrary, one has νx < νy, then νinj = νx + fLO, and
� becomes � = fb − fLO. So, in this latter case the instability
appears for fLO < fb.

C. Discussion

What do we learn from simulations that was not known
from the experiment? A first point is that the phase-amplitude
α factor, which is sometimes overlooked in solid-state lasers,
cannot be ignored in order to reproduce the experimental
findings, in particular the asymmetric behavior with respect
to �. We notice that a moderate value α = 1 yields a set of
simulations consistent with the experimental data. Another
unexpected insight is that the seemingly short delay (τ � 0.05
in units of the laser intrinsic time scale 1/ωR) plays a crucial
role in the appearance of the instability. This is obvious from
the bifurcation diagram in Fig. 9, where we see that the
instability begins at a finite, nonzero value of the delay. This
also sheds light on the dependence on the pump rate η. Indeed,
a lower value of η implies a slower laser intrinsic dynamics, so
that effectively, at low pump rates, the feedback loop appears
shorter (τ = 0.029 for η = 1.3, while τ = 0.047 for η = 4.1)
and the instability disappears. Finally the crucial role of the
delay also reveals that the coupling due to cross-saturation in
the active medium is essential for observing this instability.
Indeed, if β = 0 the system boils down to a master-slave
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FIG. 9. Bifurcation diagram of the beat-note envelope vs the
delay τ . η = 4.1, � = 8, � = 3.

configuration where the x mode is unaffected by the dynamics
so that ex is a constant: Obviously in this case the notion of
delay loses its meaning.

IV. CONCLUSION

We have studied experimentally and theoretically a dual-
polarization fiber laser in the presence of frequency-shifted
feedback. In addition to the expected phase-locking effect
typical of coupled oscillators, we have observed an original
dynamical regime of self-pulsed operation inside the phase-
locking region. A set of normalized coupled rate equations
has been introduced with all the parameters experimentally
measured except the α factor. It permits one to find all the
typical regimes of this laser’s dynamics: the phase locking
region and the instability area.

As regards microwave photonics applications, our feed-
back scheme provides a very efficient stabilization mechanism
of the beat note. The locking range can reach 4 MHz at

maximum gain in our setup; it could be further enhanced
with higher optical gain in the loop. The locking range is
wide enough to compensate for environmental drifts, leading
to robust beat-note stabilization for days, with a phase noise
as low as −90 dBc/Hz at 1-kHz offset frequency. Here
experiments were conducted with a beat note around 1 GHz,
but the loop would work at higher frequencies if necessary,
provided a wide-bandwidth modulator such as the EOM is
used. Finally the setup is all fibered and could be integrated
in a compact system.

Our work also shows that the phase-locked state can be
destabilized into a regular self-pulsing state, even with a
modest delay. We have found that this instability area is
characterized by the following features: (i) It appears when
the reinjected optical frequency is lower than the other laser
frequency only (denoting a nonzero value of the α factor), (ii)
its width increases with the reinjection rate, (iii) it appears
whatever the sweeping direction but with a slight hysteresis.
This impacts of course the design of such loops for appli-
cations, where shorter loops would be preferable to avoid
spurious self-pulsed states.

Finally our rate-equation model provides simulations con-
sistent with all the experimental results, showing in particular
the necessity to include the α factor and the feedback loop
time delay. Extension to longer delays can be conveniently
realized in our all-fibered laser platform, and easily imple-
mented in the simulations for comparison. This model could
also provide a basis for further study of other short-cavity
dual-frequency lasers, such as DBR fiber lasers [8] or VEC-
SELs [33].

ACKNOWLEDGMENTS

This work was partially funded by DGA (Grants No.
ANR-16-ASTR-0016 and No. 2017-60-0010), and Région
Bretagne, FEDER, and Rennes Metropole (CPER SOPHIE-
Photonique).

[1] S. Fu, W. Shi, Y. Feng, L. Zhang, Z. Yang, S. Xu, X. Zhu, R. A.
Norwood, and N. Peyghambarian, Review of recent progress
on single-frequency fiber lasers, J. Opt. Soc. Am. B 34, A49
(2017).

[2] W. H. Loh and R. I. Laming, 1.55 μm phase-shifted distributed-
feedback fiber laser, Electron. Lett. 31, 1440 (1995).

[3] J. S. Leng, Y. C. Lai, W. Zhang, and J. A. R. Williams, A new
method for microwave generation and data transmission using
DFB laser based on fiber Bragg gratings, IEEE Photon. Technol.
Lett. 18, 1729 (2006).

[4] B.-O. Guan, Y. Zhang, L.-W. Zhang, and H. Y. Tam, Electrically
tunable microwave generation using compact dual-polarization
fiber laser, IEEE Photon. Technol. Lett. 21, 727 (2009).

[5] Y.-N. Tan, L. Jin, L. Cheng, Z. Quan, M. Li, and B.-O. Guan,
Multi-octave tunable RF signal generation based on a dual-
polarization fiber grating laser, Opt. Express 20, 6961 (2012).

[6] J. Maxin, S. Molin, G. Pillet, L. Morvan, A. Mugnier, D. Pureur,
and D. Dolfi, Dual-frequency distributed feedback fibre laser for
microwave signals generation, Electron. Lett. 47, 816 (2011).

[7] Q. Yuan, Y. Liang, L. Jin, L. Cheng, and B.-O. Guan, Implemen-
tation of a widely tunable microwave signal generator based on
dual-polarization fiber grating laser, Appl. Opt. 54, 895 (2015).

[8] Y. Liang, L. Jin, L. Cheng, and B.-O. Guan, Stabilization of
microwave signal generated by a dual-polarization DBR fiber
laser via optical feedback, Opt. Express 22, 29356 (2014).

[9] M. Guionie, L. Frein, F. Bondu, A. Carré, G. Loas, E. Pinsard,
L. Lablonde, B. Cadier, M. Alouini, M. Romanelli, M. Vallet,
and M. Brunel, Beat note stabilization in dual-polarization DFB
fiber lasers by an optical phase-locked loop, Opt. Express 26,
3483 (2018).

[10] M. Guionie, A. Thorette, M. Romanelli, A. Carré, G. Loas,
E. Pinsard, L. Lablonde, B. Cadier, M. Alouini, M. Vallet,
and M. Brunel, “Microwave-optical fiber lasers stabilized by
frequency-shifted feedback,” in IEEE International Topical
Meeting on Microwave Photonics (IEEE, Piscataway, 2019).

[11] L. Kervevan, H. Gilles, S. Girard, and M. Laroche, Beat-note
jitter suppression in a dual-frequency laser using optical feed-
back, Opt. Lett. 32, 1099 (2007).

043843-6

https://doi.org/10.1364/JOSAB.34.000A49
https://doi.org/10.1364/JOSAB.34.000A49
https://doi.org/10.1364/JOSAB.34.000A49
https://doi.org/10.1364/JOSAB.34.000A49
https://doi.org/10.1049/el:19951041
https://doi.org/10.1049/el:19951041
https://doi.org/10.1049/el:19951041
https://doi.org/10.1049/el:19951041
https://doi.org/10.1109/LPT.2006.879925
https://doi.org/10.1109/LPT.2006.879925
https://doi.org/10.1109/LPT.2006.879925
https://doi.org/10.1109/LPT.2006.879925
https://doi.org/10.1109/LPT.2009.2017381
https://doi.org/10.1109/LPT.2009.2017381
https://doi.org/10.1109/LPT.2009.2017381
https://doi.org/10.1109/LPT.2009.2017381
https://doi.org/10.1364/OE.20.006961
https://doi.org/10.1364/OE.20.006961
https://doi.org/10.1364/OE.20.006961
https://doi.org/10.1364/OE.20.006961
https://doi.org/10.1049/el.2011.1196
https://doi.org/10.1049/el.2011.1196
https://doi.org/10.1049/el.2011.1196
https://doi.org/10.1049/el.2011.1196
https://doi.org/10.1364/AO.54.000895
https://doi.org/10.1364/AO.54.000895
https://doi.org/10.1364/AO.54.000895
https://doi.org/10.1364/AO.54.000895
https://doi.org/10.1364/OE.22.029356
https://doi.org/10.1364/OE.22.029356
https://doi.org/10.1364/OE.22.029356
https://doi.org/10.1364/OE.22.029356
https://doi.org/10.1364/OE.26.003483
https://doi.org/10.1364/OE.26.003483
https://doi.org/10.1364/OE.26.003483
https://doi.org/10.1364/OE.26.003483
https://doi.org/10.1364/OL.32.001099
https://doi.org/10.1364/OL.32.001099
https://doi.org/10.1364/OL.32.001099
https://doi.org/10.1364/OL.32.001099


DELAY-INDUCED INSTABILITY IN PHASE-LOCKED … PHYSICAL REVIEW A 101, 043843 (2020)

[12] J. Thévenin, M. Vallet, M. Brunel, H. Gilles, and S. Girard,
Beat-note locking in dual-polarization lasers submitted to
frequency-shifted optical feedback, J. Opt. Soc. Am. B 28, 1104
(2011).

[13] J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and
T. Erneux, Resonance Assisted Synchronization of Coupled
Oscillators: Frequency Locking without Phase Locking, Phys.
Rev. Lett. 107, 104101 (2011).

[14] J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, and
T. Erneux, Phase and intensity dynamics of a two-frequency
laser submitted to resonant frequency-shifted feedback, Phys.
Rev. A 86, 033815 (2012).

[15] M. Romanelli, A. Thorette, M. Brunel, T. Erneux, and M. Vallet,
Excitable-like chaotic pulses in the bounded-phase regime of an
opto-rf oscillator, Phys. Rev. A 94, 043820 (2016).

[16] A. Thorette, M. Romanelli, M. Brunel, and M. Vallet,
Frequency-locked chaotic opto-RF oscillator, Opt. Lett. 41,
2839 (2016).

[17] L. Wang, M. Romanelli, F. van Dijk, and M. Vallet, Photonic
microwave oscillator based on monolithic DFB lasers with
frequency- shifted feedback, Electron. Lett. 50, 451 (2014).

[18] M. Vallet, M. Romanelli, G. Loas, F. Van Dijk, and M. Alouini,
Self-stabilized optoelectronic oscillator using frequency-shifted
feedback and a delay line, IEEE Photon. Technol. Lett. 28, 1088
(2016).

[19] T. Erneux, J. Javaloyes, M. Wolfrum, and S. Yanchuk, Intro-
duction to focus issue: Time-delay dynamics, Chaos 27, 114201
(2017).

[20] E. Rønnekleiv, Frequency and intensity noise of single fre-
quency fiber Bragg grating lasers, Opt. Fiber Technol. 7, 206
(2001).

[21] S. Foster, Complex susceptibility of saturated erbium-doped
fiber lasers and amplifiers, IEEE Photon. Technol. Lett. 19, 895
(2007).

[22] S. Foster, G. A. Cranch, and A. Tikhomirov, Experimental
evidence for the thermal origin of 1/f frequency noise in erbium-
doped fiber lasers, Phys. Rev. A 79, 053802 (2009).

[23] G. A. Cranch, G. A. Miller, J. Harrison, and S. Foster, Char-
acterization of the DFB fiber laser resonator strength and α-
parameter by response to external feedback, in CLEO San Jose
9-14 June 2013 (IEEE, Piscataway, 2014).

[24] J. Ohtsubo, Semiconductor Lasers. Stability, Instability and
Chaos (Springer, Berlin, 2017).

[25] S. Blin, Réalisation de lasers à fibre à contre-réaction répartie
pour l’étude de l’injection optique: comparaison à l’injection
avec des lasers à semi-conducteurs (Université de Rennes 1,
Rennes, 2003).

[26] S. Blin, P. Besnard, O. Vaudel, and S. La Rochelle, Optical
injection in semiconductor or fiber lasers: A comparison, the
influence of coherence, Proc. SPIE 5452, 534 (2004).

[27] T. Erdogan and V. Mizrahi, Characterization of UV-induced
birefringence in photosensitive Ge-doped silica optical fiber, J.
Opt. Soc. Am. B 11, 2100 (1994).

[28] E. Lacot, F. Stoeckel, and M. Chenevier, Dynamics of an
erbium-doped fiber laser, Phys. Rev. A 49, 3997 (1994).

[29] A. J. Poustie, Polarization cross saturation in an Er3+-doped
fiber ring laser, Opt. Lett. 20, 1868 (1995).

[30] E. Lacot and F. Stoeckel, Nonlinear mode coupling in a mi-
crochip laser, J. Opt. Soc. Am. B 13, 2034 (1996).

[31] M. Brunel, A. Amon, and M. Vallet, Dual-polarization mi-
crochip laser at 1.53 μm, Opt. Lett. 30, 2418 (2005).

[32] M. Romanelli, L. Wang, M. Brunel, and M. Vallet, Measuring
the universal synchronization properties of driven oscillators
across a Hopf instability, Opt. Express 22, 7364 (2014).

[33] G. Baili, L. Morvan, M. Alouini, D. Dolfi, F. Bretenaker,
I. Sagnes, and A. Garnache, Experimental demonstration of a
tunable dual-frequency semiconductor laser free of relaxation
oscillations, Opt. Lett. 34, 3421 (2009).

043843-7

https://doi.org/10.1364/JOSAB.28.001104
https://doi.org/10.1364/JOSAB.28.001104
https://doi.org/10.1364/JOSAB.28.001104
https://doi.org/10.1364/JOSAB.28.001104
https://doi.org/10.1103/PhysRevLett.107.104101
https://doi.org/10.1103/PhysRevLett.107.104101
https://doi.org/10.1103/PhysRevLett.107.104101
https://doi.org/10.1103/PhysRevLett.107.104101
https://doi.org/10.1103/PhysRevA.86.033815
https://doi.org/10.1103/PhysRevA.86.033815
https://doi.org/10.1103/PhysRevA.86.033815
https://doi.org/10.1103/PhysRevA.86.033815
https://doi.org/10.1103/PhysRevA.94.043820
https://doi.org/10.1103/PhysRevA.94.043820
https://doi.org/10.1103/PhysRevA.94.043820
https://doi.org/10.1103/PhysRevA.94.043820
https://doi.org/10.1364/OL.41.002839
https://doi.org/10.1364/OL.41.002839
https://doi.org/10.1364/OL.41.002839
https://doi.org/10.1364/OL.41.002839
https://doi.org/10.1049/el.2014.0155
https://doi.org/10.1049/el.2014.0155
https://doi.org/10.1049/el.2014.0155
https://doi.org/10.1049/el.2014.0155
https://doi.org/10.1109/LPT.2016.2530826
https://doi.org/10.1109/LPT.2016.2530826
https://doi.org/10.1109/LPT.2016.2530826
https://doi.org/10.1109/LPT.2016.2530826
https://doi.org/10.1063/1.5011354
https://doi.org/10.1063/1.5011354
https://doi.org/10.1063/1.5011354
https://doi.org/10.1063/1.5011354
https://doi.org/10.1006/ofte.2001.0357
https://doi.org/10.1006/ofte.2001.0357
https://doi.org/10.1006/ofte.2001.0357
https://doi.org/10.1006/ofte.2001.0357
https://doi.org/10.1109/LPT.2007.896625
https://doi.org/10.1109/LPT.2007.896625
https://doi.org/10.1109/LPT.2007.896625
https://doi.org/10.1109/LPT.2007.896625
https://doi.org/10.1103/PhysRevA.79.053802
https://doi.org/10.1103/PhysRevA.79.053802
https://doi.org/10.1103/PhysRevA.79.053802
https://doi.org/10.1103/PhysRevA.79.053802
https://doi.org/10.1117/12.545799
https://doi.org/10.1117/12.545799
https://doi.org/10.1117/12.545799
https://doi.org/10.1117/12.545799
https://doi.org/10.1364/JOSAB.11.002100
https://doi.org/10.1364/JOSAB.11.002100
https://doi.org/10.1364/JOSAB.11.002100
https://doi.org/10.1364/JOSAB.11.002100
https://doi.org/10.1103/PhysRevA.49.3997
https://doi.org/10.1103/PhysRevA.49.3997
https://doi.org/10.1103/PhysRevA.49.3997
https://doi.org/10.1103/PhysRevA.49.3997
https://doi.org/10.1364/OL.20.001868
https://doi.org/10.1364/OL.20.001868
https://doi.org/10.1364/OL.20.001868
https://doi.org/10.1364/OL.20.001868
https://doi.org/10.1364/JOSAB.13.002034
https://doi.org/10.1364/JOSAB.13.002034
https://doi.org/10.1364/JOSAB.13.002034
https://doi.org/10.1364/JOSAB.13.002034
https://doi.org/10.1364/OL.30.002418
https://doi.org/10.1364/OL.30.002418
https://doi.org/10.1364/OL.30.002418
https://doi.org/10.1364/OL.30.002418
https://doi.org/10.1364/OE.22.007364
https://doi.org/10.1364/OE.22.007364
https://doi.org/10.1364/OE.22.007364
https://doi.org/10.1364/OE.22.007364
https://doi.org/10.1364/OL.34.003421
https://doi.org/10.1364/OL.34.003421
https://doi.org/10.1364/OL.34.003421
https://doi.org/10.1364/OL.34.003421

