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We investigate numerically the effect of weak Kerr nonlinearity on the transmission spectrum of a one-
dimensional (1D) δ-function photonic crystal. A new and interesting phenomenon is observed. It is found that,
for weak defocusing nonlinearity, a defect-mode-like (DML) resonance peak is obtained inside the photonic band
gap (PBG). That means that a weak nonlinearity acts as a defect introduced in a 1D perfect photonic crystal. A
total transmission of this peak is found for a critical value of nonlinearity strength |αc|, while above this value
a splitting of the DML resonance peak is observed. Calculations of the spatial dependence of the electric-field
intensity reveal that DML resonance peaks have a similar origin as the well-known gap solitons appearing in
nonlinear systems. The influences of nonlinearity strength, refractive index, incident angle, number of periods,
and polarization on this DML resonance peak are analyzed.
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I. INTRODUCTION

Wave propagation in periodic photonic crystals (PCs) has
been intensively studied in the last three decades both theoret-
ically and experimentally [1–6]. PCs are periodic structures
of dielectric materials with alternating regions of high and
low dielectric constants. The main features of PCs are the
presence of forbidden- and allowed-frequency regions called
photonic band gaps (PBGs). The formation of photonic band
gaps in conventional PCs originates from Bragg scattering,
which is strongly dependent on the incidence angle, lattice
constant, and polarization. It is possible to have a localized
defect mode or state of photons at a particular frequency
inside the photonic band gap by introducing an appropriate
defect layer into the PC or by removing a single layer from
the structure [7–10]. This is the consequence of the breaking
of the spatial periodicity of the structure. This localized defect
state is caused by multiple scattering and interference. It was
found that this defect mode can be tuned easily to any frequen-
cies inside the photonic band gap by changing the thickness,
location, and refractive index of the defect layer [11–14].
One-dimensional (1D) PCs with defects can be used as filters
and splitters since the defect modes lead to the selective
transmission [15–17]. PCs have been applied in many areas,
especially in optical devices such as filters, waveguides, diode
lasers, photon polarization spectroscopy, etc. [18–23]. 1D PCs
are usually used for their simplicity as reference models in
order to understand the band diagram and the transmission
spectrum, showing the PBG. They can easily be realized
by modern experimental methods through simple deposition
methods in comparison with two- and three-dimensional (2D
and 3D) PCs.
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On the other hand, the presence of nonlinearity is known
to lead to a much richer and more complex optical response
to light. Interesting phenomena are observed when nonlinear
material response to light intensity is taken into account. The
Kerr effect [24], nonlinear resonances [25,26], divergences,
chaos [27], self-trapping and dynamical localization [28] have
been revealed by the study of nonlinearity in periodic struc-
tures. It was also found that nonlinearity gives rise to light
localization in periodic photonic lattices [29]. Other nonlinear
effects, such as optical switching [30] and optical bistability
[31], have been studied and observed experimentally. The
existence of the so-called gap solitons, as a consequence of
nonlinear wave interaction, discovered by Chen and Mills
[32] in one-dimensional (1D) superlattices was studied both
analytically and numerically in one-dimensional photonic
crystals [33,34]. Such gap solitons have been experimentally
observed in fiber Bragg gratings [35,36] and in AlGaAs
waveguides [37,38].

The optical Kerr effect related to the change in refractive
index of the medium which is directly induced by the electric
field of incident light leads to self-focusing [39] or self-
defocusing [40]. The magnitude of refractive-index change
is proportional to the square of light electric-field strength
E or the light intensity I , i.e., n = n0 + n2|E |2 or n = n0 +
n2I , where n0 represents the linear refractive index of the
medium, and n2 is the characteristic nonlinear coefficient of
the material. The nonlinearity of the PC is important when
designing nonlinear devices such as optical diodes [41–43],
switches, and limiters [42–44] that operate on the basis of the
optical Kerr effect.

The purpose of this paper is to investigate numerically
the effect of a weak defocusing Kerr nonlinearity on the
transmission properties of one-dimensional (1D) δ-function
periodic photonic crystals. A very important and interest-
ing phenomenon is observed when a very weak defocusing
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nonlinearity is applied to a 1D perfect photonic crystal. Here
we demonstrate numerically nonlinearity-induced defect-
mode-like transmission in a 1D PC without defects. A res-
onance peak of the transmission appears in the center of
the photonic band gap (PBG). The influence of nonlinear-
ity strength, angle of incidence, number of periods of the
photonic crystal, and polarization on this defect mode-like
transmission has also been investigated.

Note that this investigation is different from that of Markos
and Soukoulis [45] since we examine the effect of a weak
defocusing nonlinearity on light transmission. We focus our
study on the role played by the nonlinearity strength and
refractive index for the formation and splitting of localized
modes within the photonic band gap, while they studied the
phenomenon of optical bistability in nonlinear structures.

II. MODEL DESCRIPTION

To investigate the effect of nonlinearity on the wave prop-
agation in a one-dimensional photonic crystal, we consider
a one-dimensional Kronig-Penney model with Nδ-function
layers distributed periodically at x = na, n = 0, 1 . . . , N −
1. Here, a is the lattice constant. Such a periodic medium
represents the simplest model for a one-dimensional PC.

The electromagnetic waves outside the nonlinear structure
are described by [45]

E (x) =
{

Eie−ikx + Ereikx, x � Na
Et e−ikx, x � 0.

(1)

Here we considered an incident plane wave Eie−ikx with
wave number k, from the right which gives rise to a reflected
wave, Ereikx, as well as a transmitted wave Et e−ikx where the
wave vector k = w/c, w is the optical frequency, and c is the
vacuum speed of light.

Inside the structure, the electric field for the transverse-
electric (TE) mode satisfies the time-independent wave equa-
tion [45,46]

d2E (x)

dx2
+ β

N∑
n=1

[1 + α|E (x)|2)]E (x)δ(x − na) = 0. (2)

Here E (x) is the electric field at the x axis. β = εw2

c2 where ε

is the electric permittivity. For simplicity the lattice spacing is
taken to be unity throughout this work (a = 1). Equation (2) is
formally equivalent to the Kronig-Penney model of electrons
[46–49]. From the computational point of view it is more
useful to consider the discrete version of this equation, which
is called the generalized Poincaré map and can be derived
without any approximation from equation (2). It reads [45]

En+1 = [2 cos k − β(1 + α|E (x)|2)k sin k]En − En−1, (3)

where En is the value of the electric-field amplitude in TE
polarization at site n. This representation relates the values
of the electric-field amplitudes at three successive discrete
locations along the x axis. The solution of the above equation
is carried out iteratively by taking for our initial conditions the
following values at sites 0 and 1: E0 = 1 and E1 = exp(−ik).
We consider here an electromagnetic wave having a wave
vector k incident at site N from the right. The transmission

coefficient T can then be expressed as [45]

T = 4 sin2 (k)|E0|2∣∣e−ikEn − En−1

∣∣2 . (4)

Thus T depends only on the values of the electric-field
amplitude at the end sites, En−1, En, which are evaluated from
the iterative equation (3).

III. RESULTS AND DISCUSSION

We perform numerical calculations on Kerr nonlinearity
effects on the transmission properties of a one-dimensional
perfect photonic crystal. The main result of the present work
concerns only the weak defocusing nonlinearity regime α <

0. In the presence of a Kerr nonlinearity, the refractive index
of structure is affected by the electromagnetic-field intensity,
leading to a modification in the transmission characteristic of
a one-dimensional photonic band structure. We investigate the
effect of weak negative (defocusing) nonlinearity on the trans-
mission spectrum. Here we observe numerically nonlinearity-
induced defect-mode-like transmission in 1D perfect PC.
The dependence of the defect mode-like transmission on the
nonlinearity strength, the index of refraction, the structure
length (the number of periods) and the angle of incidence
is also studied. We investigate the case of both transverse
electric (TE) and transverse magnetic (TM) polarizations. The
transmission spectrum of this structure can be calculated by
using the transfer-matrix method.

A. Effect of nonlinearity strength

To highlight the effect of a nonlinear interaction, we first
discuss only the TE polarization of propagating electromag-
netic waves at normal incidence. We choose the number of
the structure periods to be 44. The refractive index of these
layers is assumed to be n = 3.5, which is the value for silicon.
Figure 1 shows the transmission spectrum of the 1D perfect
photonic crystal for linear and nonlinear cases. For the linear
case (α = 0), one can see clearly that there is a photonic band
gap (PBG) in the range from 0.349 to 0.391 μm, as shown
in Fig. 1(a). When a very weak defocusing nonlinearity α =
−10−6 is applied, a single transmission peak is produced at
λ0 = 0.3728 μm within the same PBG as shown in Fig. 1(b).
This transmission peak is referred to as a defect-mode-like
(DML) transmission peak. This means that a weak defocusing
nonlinearity acts as a defect introduced into a 1D perfect
photonic crystal. This result is of a great practical importance
since we can have a defect-mode-like transmission without
introducing a defect in a perfect photonic crystal by choos-
ing an appropriate nonlinear material. To see the effect of
nonlinearity on this defect-mode-like transmission peak, we
calculated the transmission spectra for different nonlinearity
strengths. The results are displayed in Fig. 2(a). We can
observe that the defect-mode-like peak starts to appear for
|α| = 10−7 and its amplitude increases as we increase the
nonlinearity in magnitude and reaches its maximum value
(total transmission) for a critical nonlinearity strength |αc| =
1.2 × 10−7 (as shown in the inset) while its position is not
affected. We note that |αc| depends on the nature of the
material (the refractive index n).
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(a) (b)

FIG. 1. Transmission spectra as a function of the wavelength for a structure of 44 layers and a refractive index n = 3.5 for (a) α = 0 (linear
case). (b) α = −10−6 (showing defect-mode-like peak in the PBG).

It was found that nonlinearities change the refraction index
since n = n0 + n2|E |2 (n0 being the linear refraction index,
n2 being the Kerr nonlinearity coefficient, and E being the
electric-field amplitude) leading to a shift of defect modes
and PBG in a defect-containing 1D photonic crystal to lower
or higher wavelengths depending on the sign of the Kerr
nonlinearity n2 [24,50]. It is important to note that, in our case,
the PBG and the position of the defect-mode-like peak remain
unchanged since the nonlinearity is very weak.

Figure 2(b) displays the transmission spectra for |α| >

|αc|. This figure shows that, beyond |αc|, a splitting of the
defect-mode-like peak begins to appear by presenting two
bumps that separate by increasing |αc| and forming two dis-
tinct peaks of the same intensity as the nonlinearity strength
is increased (see red-solid curve).

Insight into the physical origin of the DML transmission
peak can be obtained by plotting the spatial dependence of the
electric-field intensity. Figure 3 shows the variation of the field

intensity |E |2 as a function of the distance at wavelength λ0 =
0.3728 μm corresponding to transmission peak of Fig. 1(b)
(indicated by an arrow) for which T = 1. Figure 3 shows that
the envelope of |E |2 seems to be similar to that of a sine-
Gordon soliton and is fit accurately by the function f (x) =
A cosh−2[γ (x − x0)], where A is the maximum value of E , γ

is a fitting parameter, and x0 = 22.5 is the mean distance. We
can than conclude that the DML peak has a similar origin as
the well-known gap solitons appearing in nonlinear systems
with a spatial periodicity.

To understand the properties of the DML peak splitting
for |α| = 500 × 10−7, We have carried out calculations of the
electric field intensity at wavelengths λL = 0.3581 μm and
λR = 0.3874 μm corresponding to the two peaks observed in
Fig. 2(b) (red-solid curve). We can clearly see from Fig. 3
that |E |2 has the same gap soliton profile for the two peaks.
However, the field amplitude for the left peak is greater than
that of the right peak.

(b)

(a)

FIG. 2. (a) Transmission spectra as a function of the wavelength for a structure of 44 layers and a refractive index n = 3.5 and different
nonlinearity strengths |α| = m × 10−7 with m = 1 to 12. Inset shows maximum of transmission as a function of nonlinearity strength |α|.
(b) Transmission spectra as a function of wavelength for |α| > |αc| with m = 14, 60, and 500.
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FIG. 3. Spatial dependence of normalized field intensity
|E |2/107 at wavelength corresponding to DML peak:
λ0 = 0.3728 μm corresponds to the single transmission peak
for |α| = 1.2 × 10−7 [indicated by an arrow in Fig. 1(b)],
λL = 0.3581 μm and λR = 0.3874 μm (where λL and λR

correspond to right peak and left peak wavelengths, respectively)
for |α| = 500 × 10−7 [showed by arrows in Fig. 2(b)]. Solid curves
correspond to sine-Gordon function fit: f (x) = A cosh−2[γ (x − x0)].
A represents the field amplitude, γ is a fitting parameter and
x0 = 22.5. The values of A and γ for each wavelength are shown in
the figure.

To check the effect of nonlinearity strength on DML split-
ting, we calculated the transmission spectrum for different
values of nonlinearity strength |α| = m × 10−7with m=200,
300, 400, 500, and 700.The results are displayed in Fig. 4.
We observe that, when the nonlinearity strength increases, the

FIG. 4. Transmission spectra as a function of the wavelength for
a structure of 44 layers and a refractive index n = 3, 5 and different
nonlinearity strengths |α| = m × 10−7 with m = 200 to 700. Inset
shows calculated wavelength difference �λ = λR − λL between two
peaks as a function of nonlinearity strength ln(|α|). Arrows are used
for the printed version.

DML splitting continues to occur but the number of peaks
remains the same, i.e., two peaks in the regime of weak
nonlinearity strength. We can also observe that these peaks
separate far away from each other as the nonlinearity strength
is increased. We calculated the wavelength difference �λ

between two peaks represented by �λ = λR − λL [where λR

and λL correspond to right peak and left peak wavelengths,
respectively, as indicated in Fig. 2(b)], for different values of
nonlinearity strength. The results reveal that the wavelength
difference �λ between the peaks increases logarithmically
with the nonlinearity strength (see inset of Fig. 4).

B. Effect of index of refraction

To investigate the refractive-index effect on the defect
mode-like peak, we calculate the transmission spectrum for
a fixed nonlinearity strength |α| = 10−6 and a structure of 44
layers for a range of refractive index n [3.20 to 3.80]. The
values of the index of refraction are chosen according to some
optical materials [51]. The results are displayed in Fig. 5. We
observe that a transmission peak (defect mode-like resonance)
inside the photonic band gap starts to appear for n = 3.2.
Its intensity increases with increasing n [see Figs. 5(a), 5(b)
and also 6]. Thus, the higher refractive index leads to higher
resonance peak and thus is more suitable for the design of
filtering devices. For n = 3.80, a splitting of the defect mode-
like peak is observed, as shown in Fig. 5(c). A dual defect
mode-like with unequal peak height clearly located inside the
PBG is obtained. The position of these peaks and the PBG
are slightly shifted to higher wavelengths as we increase the
refractive index, as shown in the inset of Fig. 6.

As we discussed in the previous section, the total transmis-
sion of the defect mode-like peak depends on a critical non-
linearity strength |αc|, which itself depends on the refractive
index n. For each value of refraction index n, we calculated the
transmission spectra for different nonlinearity strengths and
estimated the critical nonlinearity strength |αc| (for different
values of n). The results are displayed in Fig. 7. It can be seen
from this figure that |αc| decreases exponentially with refrac-
tive index n as |αc| = A exp(−n/B), with A = 15.2353 × 104

and B = 0.1379.
To evaluate the behavior of the wavelength difference

between the two peaks, we plot the transmission spectra for
different values of refractive index n = 3.80, 3.82, and 3.84.
The results are displayed in Fig. 8. This figure shows that as
the refractive index n increases, the peak positions shift to
longer wavelengths. It is also observed that the two peaks
persist to appear but the magnitude of the first peak (left
peak) decreases by increasing n while that of the second peak
(right peak) remains unchanged. The calculated wavelength
difference �λ between the two peaks increases linearly with
refractive index n (see inset of Fig. 8).

C. Effect of the incidence angle and polarization

To investigate the effect of the angle of incidence of the
electromagnetic wave on the defect-mode-like peak, we calcu-
late the transmission spectrum for a fixed nonlinearity strength
|α| = 1.2 × 10−6 corresponding to a maximum resonance
(total transmission), a structure of 44 layers and a refractive
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(a)

(c)

(b)

FIG. 5. Effect of the refractive index n on the defect-mode-like peak. Transmission spectrum for a structure of 44 layers and α = −1.2 ×
10−6 for different refraction indices (a) n = 3.2 and n = 3.3, (b) n = 3.4 and n = 3.5, and (c) n = 3.80. A dual defect-mode-like peak with
unequal peak height clearly observed inside the PBG is obtained for n = 3.80. Arrows are used for the printed version.

FIG. 6. Maximum of the transmission as a function of the refrac-
tive index n. Inset shows calculated wavelength peak λ0 as a function
of the refractive index n for a structure of 44 layers for a defocusing
nonlinearity, α = −10−6. Solid line corresponds to a linear fit.

FIG. 7. Critical nonlinearity strength |αc| for total transmission
as a function of refractive index n for a structure of 44 layers at
normal incidence. Solid curve corresponds to an exponential-decay
fit: |αc| = A exp(−n/B), with A = 15.2353 × 104 and B = 0.1379.
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FIG. 8. Transmission spectra as a function of the wavelength for
a structure of 44 layers and different refractive indexes n = 3.80,
n = 3.82, and n = 3.84 for |α| = 10−6. Inset shows calculated wave-
length difference �λ = λR − λL as a function of refractive index n.

index n = 3.5. In Fig. 9, both TE and TM mode transmission
spectra are plotted at distinct angles of incidence, θ = 0◦,
θ = 5◦, and θ = 10◦, respectively. This figure shows how the
defect-mode-like peak can be affected by the incident angle. It
is very clear from this figure that the amplitude of the defect-
mode-like peak decreases with increasing angle of incidence
for both TE and TM polarization. It is also observed that
its peak wavelength (position) gradually shifts with photonic
band gap in the direction of lower wavelength upon increasing
the incident angle for TE polarization [Fig. 9(a)] while for the
TM mode it shifts to higher wavelengths [Fig. 9(b)]. The de-
pendence of the defect-mode-like wavelength and its intensity
on the angle of incidence for both TE and TM polarizations is
further illustrated in Fig. 10. It is clear from this figure that
both the intensity and the position of the defect-mode-like
peak are affected by the angle of incidence. The DML peak

FIG. 10. Defect-mode-like wavelength λ0 as a function of the
incidence angle θ . Inset shows maximum of the transmission of
the defect-mode-like peak as a function of angle of incidence for a
structure of 44 layers and a refractive index of 3.5 and |α| = 10−6.

intensity decreases as the angle of incidence increases and
seems to be very insensitive to the light polarization (see
inset of Fig. 10). The resonance wavelength of the DML peak
gradually shifts in the direction of shorter wavelengths for the
TE mode while it gradually shifts in the direction of longer
wavelengths for the TM mode (Fig. 10). Beyond θ = 20◦,
it seems to linearly increase with angle of incidence for the
TM mode or linearly decrease with angle of incidence for
TE-polarized light.

D. Effect of number of periods

To further study the effect of the number of layers of the
photonic crystal on the defect-mode-like peak, we numeri-
cally calculate the transmission spectra for a fixed nonlinearity
strength |α| = 10−6 and a refractive index n = 3.5 for dif-
ferent values of the number of periods N = 36, 40, 44, and

(a)

(b)

FIG. 9. Effect of the incidence angle on the defect-mode-like peak. Transmission spectrum for a structure of 44 layers, |α| = 1.2 × 10−6

and n = 3.5 at distinct angles of incidence, θ = 0◦, θ = 5◦, and θ = 10◦ for (a) TE mode and (b) TM mode. Arrows are for the printed version.
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FIG. 11. Transmission spectra at normal incidence for n = 3.4,
|α| = 1.2 × 10−6, and different number of periods N = 36, 40, 44,
and 100. Inset shows defect-mode-like peak intensity (logarithmic
scale) versus the number of periods N . Arrows are for the printed
version.

100. We choose θ = 0◦ since we found a maximum-amplitude
DML peak at normal incidence. The results are displayed
in Fig. 11. One can see that a single defect-mode-like peak
appears inside the PBG for N = 36. From this figure it is
evident that, as the number of periods N increases, resonance
becomes stronger. As we increase the number of periods from
N = 34 to N = 44, the peak amplitude of the defect-mode-
like peak increases, as shown in the inset. The maximum of
transmission (peak intensity) seems to increase exponentially
with the number of layers. For N = 100, a splitting of this
defect-mode-like peak is observed with a total transmission
(black solid curve in Fig. 11). A dual defect-mode-like peak
with equal peak heights clearly appears inside the PBG. This
interesting result is of great practical importance since it can
be used as a narrowband transmission filter. A dual-channel
filter can be obtained by increasing the number of periods in
the nonlinear photonic structure.

IV. CONCLUSION

In conclusion, we have studied in this paper the effect
of a weak defocusing Kerr nonlinearity on the transmission
properties of one-dimensional (1D) photonic crystals (PCs)
with no defects. A very important and interesting phenomenon
is observed when a very weak defocusing nonlinearity is
applied to a 1D zero-defect photonic crystal. We found the
presence of a defect-mode-like peak (i.e., a single resonance
transmission peak) within the photonic band gap with a total
transmission. This means that a weak negative nonlinearity
acts as a defect introduced in a perfect 1D photonic crystal.

This is a very interesting result. We can choose an appropriate
nonlinear material to have a defect-mode-like peak without
introducing a defect into a photonic crystal. With the presence
of this resonant peak in transmission, the structure can be
used as a narrowband transmission filter. We demonstrate
numerically that the intensity of the defect-mode-like peak
depends on the nonlinearity strength, the refractive index, and
number of layers whereas its position depends only on the
angle of incidence and the refractive index.

We also found that the peak wavelength of the defect
mode-like shifts toward short wavelengths as the angle of
incidence increases for TE mode while it shifts towards long
wavelengths for the TM mode. A total transmission of the
DML peak is observed for a critical nonlinearity strength |αc|
which itself depends on the refractive index n. We found that
|αc| decreases exponentially with refractive index n. We also
found a critical refractive index nc and a critical period number
of the photonic structure Nc above which a splitting of the
defect-mode-like peak is observed. The splitting of the defect-
mode-like peak is also observed for |α| > |αc|. Consequently,
by increasing the period number N of the PC or the refractive
index n, a dual defect-mode-like peak is obtained, leading to
a possible design of a narrow-band transmission multichannel
tunable filter. We also found that the wavelength difference
�λ between the two peaks increases logarithmically with
the nonlinearity strength whereas it increases linearly with
refractive index.

It is important to note that this DML phenomenon is not
observed if we consider a focusing nonlinearity (α > 0). It
is interesting to study the properties of the splitting of the
defect-mode-like peak as a function of different parameters.
Also, the DML transmission peak can be tuned physically
by using external agents such as an external electric field,
magnetic field, or temperature. In our case, it is easy to control
the defect-mode-like peak by applying a bias voltage (an
external electric field) to the 1D photonic crystal. It is thus
interesting to study the splitting properties of the DML in
the presence of an external electric field. We have studied the
response of a nonlinear δ-function layer and it is important to
extend this study to a nonlinear finite-width layer. All these
effects should be the subject of a forthcoming presentation.
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