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Properties of vortex light fields generated by generalized spiral phase plates
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We present a theoretical and experimental investigation of a diffractive optical element—a generalized spiral
phase plate (GSPP) with a transmission function of exp[ig(ϕ)], where g(ϕ) is an unambiguous function. In
contrast to the conventional spiral phase plate that is widely used for the generation of ring-shaped vortex beams
with an orbital angular momentum (OAM), the GSPP can be used for the generation of nonring (including
spiral-shaped) laser beams with a helical wave front. Some examples of the function g(ϕ) were investigated in
detail, showing the features arising in these cases. The proposed GSPP demonstrates angle-dependent distortion
resistance properties, whereby for different angular positions of an opaque obstacle on the surface of the element,
different values of root-mean-square error are obtained. The angular harmonics spectra of the generated vortex
light fields strongly depend on the growth rate of the function g(ϕ). In addition, the OAM density of the generated
nonring light fields is nonuniform and the total OAM also depends on the angular coordinate of the obstacle.
The experimentally and numerically obtained results are in good qualitative and quantitative agreement.
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I. INTRODUCTION

The spiral phase plate (SPP), an optical element with
a complex transmission function circ(r/R)exp(imϕ), where
(r, ϕ) are the polar coordinates, R is a radius of the ele-
ment, and m is its topological charge (TC), was introduced
in 1992 by Khonina et al. as “a phase rotor filter” [1], as
well as by Higgins as “a spiral waveplate” [2]. The spiral
phase plate (SPP) allows one to generate ring-shaped laser
beams with a spiral wave front from incident plane wave,
optical vortex (OV) beams [3]. Due to their unique struc-
ture, OVs have an orbital angular momentum (OAM) [4],
which can be transferred from radiation to matter, thus, for
example, causing the rotation of microspheres around its
axis [5]. Moreover, OVs have applications in optical com-
munication [6], optical microscopy [7], and laser material
processing [8].

The conventional ideal SPP operates by directly imposing
a spiral phase profile exp(imϕ) onto the incident laser beam
and theoretically allows one to convert almost 100% of the
incident radiation into an OV beam. Presently, SPPs are the
most popular element for the generation of OVs. However,
conventional SPPs can be used only for the generation of ring-
shaped or axisymmetric intensity distributions with a uniform
OAM density. Recently, it has been shown that additional
control of the structure of the generated vortex fields provides
new opportunities, primarily in applications such as laser
material processing [9,10] and optical manipulation [11,12].
In addition, the possibility of the generation of vortex fields
with a desired structure of the intensity and phase gradient,
which makes it possible to form light fields with an inhomo-
geneous OAM density, is important from a fundamental point
of view, since it allows better investigation of the laser-matter
interaction.

An unconventional SPP was introduced in 2014 [13], the
spiral phase distribution of which also increased with the
azimuthal angle; however, it does not change linearly, as in the
case of a conventional SPP, and has a nonlinear dependence
described as 2πm(ϕ/2π )s, where s is an arbitrary number.
An OV beam formed by this element has a spiral shape with
a gradient of intensity and phase. In this case, the OAM of
the generated light fields is directly related to the value of
m. Subsequently, the propagation of such OVs in free space
and in the case of their focusing was studied, showing that
the intensity distribution of the formed OV depends on the
order of degree s, while the value m determines the size
of the generated distribution [14]. In addition, it was shown
that the generated singularity points move during propagation.
The unique structure of such “power-exponent-phase” OVs
determines the energy flow directed in spirals, which can
undoubtedly find application in the field of laser manipulation
of nano- and microscale objects.

In this study, we consider a general case of a SPP with a
phase that is defined by an arbitrary smooth function g(ϕ),
whose derivative is also smooth, that is, a generalized SPP
(GSPP), and investigate the properties of the vortex light fields
generated by this element. The phase transmission function of
such GSPP is defined as τ (ϕ) = exp[ig(ϕ)]. We analytically
derive the equation for calculation of the normalized OAM of
the generated light field and analytically show that its value
equals the “total vortex strength” of the GSPP. The obtained
description of the focal distribution is true for an arbitrary
function g(ϕ). Particular attention is paid to the formation of
a spiral focal intensity distribution. For this, the function g(ϕ)
must have a monotonic derivative. Examples of such functions
are power dependence [13], dependence in the form of a
Gamma function [15], logarithmic, exponential, etc. It should
be noted that the profiles of the transmission function of GSPP
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for spiral intensity forming are very similar. However, due to
variations in the nonlinear dependence, the shape of the focal
spiral can be controlled.

II. THEORETICAL INVESTIGATION

A. TC and OAM of the light fields generated by GSPPs

Let us start with the study of the physical properties of
the proposed GSPP. For a GSPP, it is possible to introduce
a value analogous to the TC of a conventional SPP, previously
known as the “total vortex strength” (TVS) [16,17]. This value
in the case of an arbitrary light field with a complex amplitude
E (r, ϕ) can be defined as follows [18]:

n̂ = TVS = 1

2π
lim

r→∞

∫ 2π

0

[
∂ arg E (r, ϕ)

∂ϕ

]
dϕ

= 1

2π
lim

r→∞ Im
∫ 2π

0

[
1

E (r, ϕ)

∂E (r, ϕ)

∂ϕ

]
dϕ. (1)

For a GSPP, E (r, ϕ) = exp[ig(ϕ)] and

n̂ = TVS = g(2π ) − g(0)

2π
. (2)

It is well known that the OAM of a light field with the complex
amplitude E (r, ϕ) can be defined as [19]

Jz = Im
∫ ∞

0

∫ 2π

0

[
E∗(r, ϕ)

∂E (r, ϕ)

∂ϕ

]
r dr dϕ. (3)

If we substitute E (r, ϕ) = exp[ig(ϕ)] in Eq. (3), then the
OAM of the light field E (r, ϕ) in the case of a GSPP is

Jz = Im
∫ R

0

∫ 2π

0
exp[−ig(ϕ)]i

∂g(ϕ)

∂ϕ
exp[ig(ϕ)]r dr dϕ

=
∫ R

0
r dr

∫ 2π

0

∂g(ϕ)

∂ϕ
dϕ = R2

2
[g(2π ) − g(0)]. (4)

After normalization to the power of the light field:

W =
∫ ∞

0

∫ 2π

0
[E∗(r, ϕ)E (r, ϕ)]r dr dϕ, (5)

which, in this case, is equal to πR2, so the normalized OAM
can be defined as follows:

jz = Jz

W
= g(2π ) − g(0)

2π
= n̂. (6)

It is evident that the normalized OAM is equal to TVS,
analogous to the case of a conventional SPP.

A special case of a GSPP is a power exponent SPP with the
transmission function of τ (ϕ) = exp(iaϕp);, when p = 1, the
power exponent SPP transforms to a conventional SPP. The
case of p = 2 was investigated in [13]. For a power exponent
SPP, it is possible to calculate the TVS and OAM explicitly as

n̂ = a(2π )p−1. (7)

For p = 1, n̂ = a is true for a conventional SPP, even with a
SPP with a fractional TC.

B. Light field distributions generated by
GSPPs in the far-field region

It is well known that a conventional SPP with an integer
TC generates a ring-shaped intensity distribution. The power
exponent SPP with p = 2 generates the intensity distribution
in the form of one coil of the spiral [13,14]. The proposed
GSPP can generate intensity distributions that are different
from spirals. Let us consider the generation of the light curve
in the far-field region when illuminating a GSPP with a
plane wave. One of the conventional approaches for analyzing
the diffraction of laser radiation by phase diffractive optical
elements is the representation of the transmission function
of the element in the form of a Fourier series, that is, as
a combination of conventional SPPs. In our case, it has the
following form:

exp[ig(ϕ)] =
∑

n

cn exp(inϕ), (8)

where the coefficients cn are calculated as follows:

cn = 1

2π

∫ 2π

0
exp[ig(ϕ)] exp(−inϕ)dϕ. (9)

In particular, this analytical approach was applied in the
analysis of the diffraction of laser radiation by a conventional
SPP with a fractional TC [18,20]. The series expansion allows
one to calculate TVS as follows:

n̂ =
∑

n

n|cn|. (10)

Using the same expansion, we can get an expression for the
normalized OAM of the light field as follows:

jz =
∑

n

n|cn|2
/∑

n

|cn|2. (11)

These equations are especially useful in cases where
Eqs. (2) and (4) cannot be applied, for example, when pro-
cessing experimental data and there is no analytical expression
for the field amplitude. However, the representation of Eq. (8)
is not convenient for describing the intensity distribution in
the far-field region. In many cases, the analytical calculation
of the coefficients in Eq. (9) is impossible, even for fairly
simple functions like exp(iaϕp). The decomposition in Eq. (8)
corresponds to a combination of ring-shaped distributions
with different complex coefficients, from which it is difficult
to obtain the structure of the total intensity. For example, for a
conventional SPP with a fractional TC equal to 0.5, a crescent-
shaped image is formed, but obtaining such a result from
Eqs. (8) and (9) is not obvious. Therefore, a different approach
was used considering the diffraction of laser radiation by a
GSPP with the transmission function of exp[ig(ϕ)] in the
focal plane of a lens using the Fourier transform in polar
coordinates:

E (ρ, θ )= k

f

∫∫
�

exp[ig(ϕ)] exp

[
−i

k

f
rρ cos (ϕ−θ )

]
r dr dϕ.

(12)

The exact calculation of the field defined by Eq. (12) is
difficult even for a power exponent SPP, but an approximate
description is relatively easy. A conventional SPP with an
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integer TC m generates a radially symmetric intensity distri-
bution:

E (ρ, θ ) = k

f

∫∫
�

exp (imϕ) exp

(
−i

k

f
rρ cos (ϕ−θ )

)
r dr dϕ

= 2πk

f
im exp (imθ )

∫ R

0
Jm

(
k

f
rρ

)
r dr. (13)

The analytically calculated integral in Eq. (13) is known [21],
but it is expressed in general terms through a hypergeometric
function, which is not convenient for analysis. For specific
values of m, explicit expressions can be obtained, which
have a finite number of terms, among which the main term
is proportional to Jm+1( kρR

f )/( kρR
f ). If the entrance pupil is

a narrow ring, then the integral in Eq. (13) is calculated
trivially, and the intensity is proportional to J2

m( kρR
f ). It can

be shown that the position of the maximum in both cases will
be approximately the same and equal to

ρmax = γ ′
1,m

f

kR
, (14)

where γ ′
1,m is the first zero value of the derivative of the

mth-order Bessel function (for which the mth-order Bessel
function has a first maximum). Furthermore, when analyzing
the distribution in the focal plane, Eq. (14) was used as the
values are easy to obtain using tables of special functions.

Then, the following approach can be applied to the descrip-
tion of the diffraction of laser radiation by a GSPP. The plate
region is divided into angular sectors so that for the nth sector
defined by the range of angles ϕn � ϕ � ϕn+1, the “local”
charge changes from n to n + 1. Mathematically, this means
that the following representation is used:

exp[ig(ϕ)] =
∑

n

rect

(
ϕ − (ϕn + ϕn+1)/2

ϕn+1 − ϕn

)
exp(ianϕ),

n � an � n + 1. (15)

The sum in Eq. (15) can be either finite or infinite, with the
local charge meaning

nc = dg(ϕ)

dϕ
. (16)

Note that when the local TC is integrated in Eq. (16) over the
entire range of angles, the TVC obtained is defined by Eq. (3).
From the above considerations, the range of angles of each
sector is defined as follows:

n � dg(ϕ)

dϕ
� n + 1. (17)

Thus, within a given sector, the light curve of maximum
intensity lies between two envelope circles (see Fig. 1). The
inner circle has a radius of rn and corresponds to the light ring
generated in the case of the SPP with the phase of exp(inϕ),
whereas the outer circle has a radius rn+1 and corresponds
to the light ring generated in the case of the SPP with the
phase of exp[i(n + 1)ϕ]. The generated light curve passes
through the nodal points, where the same circle from the outer
envelope turns into the inner circle. The last angular sector
is incomplete; therefore, the external envelope can be quite
far from the curve, as always occurs at the beginning of the

FIG. 1. Theoretical analysis of the nonring light fields generated
by GSPPs with the transmission function of exp[ig(ϕ)]. (a) Calcu-
lated envelopes and an approximate view of the generated light curve
for the first six angular sectors in the case of g(ϕ) = ϕ2 [g′(ϕ) yields
sectors with the same angular size]. (b) Examples of light fields
generated by GSPPs with various functions g(ϕ).

sector. However, the endpoints do not break off abruptly as in
Fig. 1; the spiral continues a little beyond their limits due to
diffraction.

From the above reasoning, it follows that there is not
necessarily a spiral coil of familiar form with a constantly
growing or decreasing radius vector. Since the radius of the
envelopes depends on the derivative g′(ϕ), this form (a coil of
the spiral) occurs when the derivative is a monotonic function.
Otherwise, the shape is distorted, and when the equality
g′(2π ) = g′(0) is fulfilled, the curve will generally be closed.
To illustrate, several examples of power exponent SPPs with
the transmission function of τ (ϕ) = exp(iaϕp) are provided,
showing that, in these cases, one spiral loop is always formed.
The coefficients a are chosen so that the TVSs coincide, with
the GSPPs with the same TVSs forming substantially different
curves.

1. Function g(ϕ) = ϕ2

In this case, the TVS is equal to 2π . The local TC is defined
as nc = 2ϕ, and the nth sector is defined by inequality n/2 �
ϕ � (n + 1)/2; that is, all sectors have the same angular
size and same area. The sector boundaries and corresponding
values γ ′

1,n (taken from [22]) are given in Table I. Since the
values γ ′

1,n do not depend on the type of function g(ϕ), only
on the index, they are only presented in this example.

2. Function g(ϕ) = ϕ3/(2π)

For a GSPP with g(ϕ) = aϕ3, TVS is equal to a(2π )2. In
order to calculate the TVS similar to the previous example,
it is necessary to choose the coefficient a equal to (2π )−1;
then, the TVS is equal to 2π . The local TC is defined as nc =
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TABLE I. Sector boundaries and corresponding envelope sizes
for the function g(ϕ) = ϕ2.

n 0 1 2 3 4 5 6

Sector boundaries, rad 0.5 1 1.5 2 2.5 3 3.5

γ ′
1,n 1.84 3.05 4.20 5.32 6.41 7.50 8.58

n 7 8 9 10 11 12

Sector boundaries, rad 4 4.5 5 5.5 6 2π

γ ′
1,n 9.65 10.7 11.75 12.82 13.85 14.90

3ϕ2/2π ≈ 0.477ϕ2 and the nth sector is defined by the in-

equality
√

2πn
3 � ϕ �

√
2π (n+1)

3 (approximately 1.447
√

n �
ϕ � 1.447

√
n + 1). Thus, in this example, the size of the

sectors decreases with an increase in their numbers. The sector
boundaries are given in Table II.

3. Function g(ϕ) = √
2πϕ3/2

In this case, the coefficient a = (2π )1/2 was also chosen
to obtain the TVS equal to 2π as in the previous examples.
The local TC is defined as nc = √

2π 3
2ϕ1/2 ≈ 3.76ϕ1/2, and

the nth sector is defined by the inequality 2n2

9π
� ϕ � 2(n+1)2

9π

[approximately 0.0707n2 � ϕ � 0.0707(n + 1)2]. In this ex-
ample, the size of the sectors increases with an increase in
their numbers. The sector boundaries are given in Table III.

An analysis of the calculated results of the presented
three examples shows that the sizes of sectors decrease with
increasing number if the derivative g′(ϕ) is convex downward
(p > 2 and, as we will see below, 0 < p < 1), and increase if
the derivative g′(ϕ) is convex upward (1 < p < 2). From the
above reasoning, it follows that it is possible to choose such
a smooth function g(ϕ), so that the curve formed in the focal
plane has points with an arbitrarily large radius. For this, it
is enough that the derivative is not limited in magnitude, as
illustrated by the following example.

4. Function g(ϕ) = (2π)3/2ϕ1/2

In this case, the coefficient a = (2π )3/2 was also chosen to
obtain the TVS equal to 2π . The local TC is defined as nc =
(2π )3/2 1

2ϕ−1/2 ≈ 7.875ϕ−1/2 and the nth sector is defined

by inequality 2π3

(n+1)2 � ϕ � 2π3

n2 (approximately 62
(n+1)2 � ϕ �

62
n2 ). The derivative decreases, so it is convenient to number
the sectors from the end (from an angle of 360◦), and the
minimum number may not be zero. Another difference from
the previous examples is that, due to the unboundedness of
the derivative, there is no maximum number. Obviously, the

TABLE II. Sector boundaries for the function g(ϕ) = ϕ3/(2π ).

n 0 1 2 3 4 5 6

Sector boundaries, rad 1.45 2.05 2.51 2.89 3.24 3.54 3.83

n 7 15 16 17 18

Sector boundaries, rad 4.09 5.79 5.97 6.14 2π

TABLE III. Sector boundaries for the function g(ϕ) = √
2πϕ3/2.

n 0 1 2 3 4

Sector boundaries, rad 0.07 0.28 0.64 1.13 1.77

n 5 6 7 8 9

Sector boundaries, rad 2.55 3.47 4.53 5.73 2π

sectors are contracting unlimitedly. The sector boundaries and
envelope radii are shown in Table IV.

III. EXPERIMENTAL RESULTS

A. Light field distributions generated by GSPPs
in the far-field region

Let us demonstrate some features of the light fields gen-
erated by GSPPs on the example of the GSPP with the
transmission function of exp(imϕs). Figure 2(a) shows the
experimental setup for the investigation of the properties of
light field distributions generated by GSPPs in the far-field
region. To experimentally realize the transmission function of
the nonlinear SPP, we used a spatial light modulator (SLM)
HOLOEYE LC2012 (pixel resolution of 1024×768 and pixel
size of 36 μm). In the experiments, a linearly polarized
Gaussian laser beam from a solid-state laser (λ = 532 nm;
w0 = 2 mm) was extended and collimated with a combination
of a microobjective MO (8 ×), pinhole PH with an aperture
size of 40 μm, and a lens L1 with the focal length of 500 mm.
Afterwards, the laser beam was passed through the SLM,
and the modulated laser beam was focused with the help
of a lens L2 with the focal length of 350 mm. To obtain
the phase distribution of the experimentally generated laser
fields, the Mach-Zehnder interferometer consisting of two
beamsplitters BS1, BS2 and two mirrors M1 and M2 was
used to capture the fringe patterns between the generated
laser beam and the reference Gaussian beam with a flat
wave front. The generated intensity distributions and fringe
patterns were recorded by a video camera Cam (TOUPCAM
UHCCD00800KPA; 1600×1200 pixels, with a pixel size of
3.34 μm). To reconstruct the phase distributions from the
experimentally obtained fringe patterns, an approach with a
parallel interference between the generated laser beam and a
reference beam was applied [23]. This approach implies cap-
turing two fringe patterns for each phase profile measurement,
one of which is obtained with the additional π /2 phase shift
between the paths of interferometer that was introduced with
the help of a quarter wave plate QP [see Fig. 2(b)]. A neutral
density filter F was used to equalize the intensities of the

TABLE IV. Sector boundaries for the function g(ϕ) = (2π )3/2ϕ1/2.

n 3 4 5 6

Sector boundaries, rad 3.88 2.48 1.72 1.27

n 10 19 20

Sector boundaries, rad 0.51 0.16 0.14
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FIG. 2. (a) Experimental setup for the investigation of the prop-
erties of light field distributions generated by GSPPs. (b) Examples
of the captured interference patterns and intensity distribution used
for phase map reconstruction in the case of the GSPP with the
transmission function of exp(imϕs ), s = 2, and m = −2.

object and the reference beams. The experimentally obtained
results were in good agreement with the numerically obtained
results, generating nonring intensity distributions with spiral
wave fronts in the case of nonlinear SPPs with s 	= 1, and
the dimensions of the generated distributions increase with an
increase in s.

Figure 3 shows the numerically calculated and experimen-
tally obtained intensity and phase distributions for a nonlinear
SPP with a complex function of exp(imϕs) for various values
of the power value s. The fast Fourier transformation was used
for the calculation of the far-field light distributions.

Figure 4 shows the light field distributions generated in
the case of nonlinear SPPs with a fixed value of power value
s and various values of m. The situation analogous to the
conventional SPPs occurs in this case: an increase in the value

FIG. 3. Numerically and experimentally obtained intensity and
phase distributions generated by GSPPs with the transmission func-
tion of exp(imϕs ), fixed m = 1, and different power values s.

FIG. 4. Numerically and experimentally obtained intensity and
phase distributions generated by GSPPs with the transmission func-
tion of exp(imϕs ), fixed power value s = 1.5, and different m.

of m leads to an increase in the dimensions of the generated
light distributions, which can also be explained by the fact that
the radii of two envelope circles limiting the generated light
curve increase with an increase in the value of m.

B. Energy flow of the light fields generated by GSPPs
in the far-field region

It is well known that, in the case of the conventional SPP,
the sign of the TC defines the direction of the phase gradient
of the generated spiral wave front [24]. The same situation
occurs in the case of the GSPP; however, the generated inten-
sity distribution also changes, with the light spiral mirrored
relative to the origin [see Fig. 5(a)]. For negative values of
m, the directions of the intensity gradient and phase gradient
coincide and, for positive values of m, the directions of these
gradients are opposite. The calculated energy flows for the
cases of positive and negative signs of the TC are shown
in Fig. 5(b). The energy flows were computed as the trans-
verse components of the Poynting vector using the expression
J (x, y) = I (x, y)∇ϕ(x, y), where I (x, y) is the intensity and
∇ϕ(x, y) is the transverse phase gradient [25].

The energy flows have a spiral-shaped form in both cases
of different sign of m = ±2, in contrast to the annular energy
flow in the case of the light rings generated by conventional
SPPs. Such energy flow that depends on the sign of the m
is useful for laser material processing, especially in the case
of processing azopolymers because, in this case, the shape
of the laser-fabricated nano- and microstructures is sensitive,
not only to the intensity distribution, but also to the complex
amplitude of the illuminating laser beam.

C. Angle-dependent distortion resistance properties
of the light fields generated by GSPPs

Another feature of GSPP that should be investigated is the
stability of the light distribution generated by the elements
to distortions. The root-mean-square error (RMSE) σ for the
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FIG. 5. (a) Numerically and experimentally obtained intensity
and phase distributions generated by GSPPs with the transmis-
sion function of exp(imϕs), fixed power value s = 2, and m = ±2.
(b) Computed energy flow of the generated far-field light spirals.

generated intensity distributions is defined as

σ =
√∑

(Idist − Iideal )2∑
I2
ideal

, (18)

where where Iideal and Idist are the experimentally obtained
intensity distributions generated by nondistorted and distorted
elements, respectively. In the case of the conventional SPP,
there is practically no difference in RMSE values if the
distortion is located on the same radius at different angular
coordinates. However, the unique structure of the GSPP leads
to different RMSE values. The results obtained in the case
of the circle opaque obstacles with different diameters are
presented in Fig. 6. The RMSE values vary with the variation
of the angle α that defines the angular position of the obstacle
in both obstacles. In addition, the structure of the variation of
the RMSE value is similar in both cases and for two different
transmission functions of the SPPs, exp(iϕ1.5) and exp(iϕ2.5).
The minimal values are for angles from 300◦ to 360 (0)◦, the
sectors where the phase gradients have maximal values; the
angular sector with these angles is limited to two envelope
circles with larger radii. In addition, the intensity of the part
of the light spiral generated by this angular sector is lower
in comparison with other parts. Thus the distortion of this
angular sector leads to an insignificant distortion of the gen-
erated light spiral. In addition, increasing the phase gradient
results increases the rate of phase change in the propagation
direction, which also accelerates the light field reconstruction
process [26]. Even though the simulation reproduces the be-

FIG. 6. RMSE σ of the spiral-shaped intensity distributions
generated by the GSPP with two different transmission functions
exp(iϕ1.5) and exp(iϕ2.5) versus angular coordinates of the opaque
obstacles with different diameters Dobst . Inset shows the distorted
transmission function used in the experiments and the parameters
used for investigations.

havior of experimental results, there is some discrepancy be-
tween the experimentally and numerically obtained values of
the RMSE. This can be explained by the additional distortions
of the experimentally generated light field due to aberrations
in the experimental setup. In addition, the pixilated structure
and relatively large (36 μm) pixel size of the SLM realized
the designed phase masks and the fluctuation of the profile of
the used Gaussian beam from the ideal Gaussian beam led to
some distortions of the experimentally generated light fields.

D. Angular harmonics spectra and OAM density
of the light fields generated by GSPPs

It is well known that the angular harmonics spectrum
of the light field generated by a conventional SPP contains
only one term corresponding to the TC of the element and
there is almost no dependence of the distortion of the spectra
on the angular coordinate of the obstacle (see Fig. 7). In
the case of GSPP, from the analysis of the structure of the
angular harmonics spectra of the generated light fields shown
in Fig. 7, two main conclusions can be obtained: (1) the
number of angular harmonics in the spectrum increases with
an increase in the power value s [in the general case, the
increase in the number of generated angular harmonics is
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FIG. 7. Angular harmonics spectra of the light fields generated in the case of a nondistorted and distorted GSPP: Dobst/Del = 0.2.

associated with the growth rate of the function g(ϕ)]; (2) for
the GSPP with increasing power value s, the structure of the
angular harmonics spectra strongly depends on the angular
coordinate of the opaque obstacle. The first conclusion can be
explained by the fact mentioned above—that the increase in
the growth rate of the function g(ϕ) leads to the increase in the
number of different sectors n in the structure of the envelope
of the generated light spirals (see Tables I–III). As mentioned
previously, each sector corresponds to the SPP with its own
local TC, so the generated vortex light field is a superposition
of different angular harmonics. The second conclusion is also
explained by the same fact—that the increase in the number
of sectors leads to the decrease in their sizes. The distortion
of the individual angular harmonics caused by the obstacle
depends on the size of the sector—the smaller the size of
the sector, the more distortion of the corresponding angular
harmonic generated by this sector.

It is obvious that angular-dependent distortion of the in-
tensity distribution and angular harmonics spectra of the gen-
erated vortex light fields leads to the distortion of the OAM
of the field. The OAM density of the complex field E(x, y)
defined in the Cartesian coordinates (x, y) can be calculated as

follows [27]:

M(x, y) = Im

{
E (x, y)∗

[
x
∂E (x, y)

∂y
− y

∂E (x, y)

∂x

]}
. (19)

From Fig. 8, the OAM density of the light field generated
by the GSPPs is nonuniform in contrast to the light fields
generated by conventional SPPs [4]: the central part of the
generated spiral-shaped distribution has the maximal value of
the OAM density and the generated light spiral has a gradient
of OAM density similar to the energy flow. The normalized
OAM calculated by Eq. (6) for the light fields generated by
these two investigated nondistorted elements is approximately
2.51 and 15.75, respectively. Also, the OAM of the generated
spiral-shaped light field depends on the angular coordinates
of the obstacle. In addition, similar to the angular harmonics
spectra, the increase in the growth rate of the function g(ϕ)
leads to stronger fluctuations of the total OAM [2% and 7%
in the case of the GSPP with the transmission function of
exp(iϕ1.5); 4% and 11% in the case of the GSPP with the
transmission function of exp(iϕ2.5) for two different diameters
of the obstacle, Dobst/Del = 0.1 and Dobst/Del = 0.2]. As
mentioned above for the measurements of the RMSE values,
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FIG. 8. (a) OAM density of the light field generated in the case of a nondistorted and distorted nonlinear SPP: Dobst/Del = 0.2.
(b) Normalized OAM of the generated light field versus angular coordinate of the opaque obstacles with different diameters Dobst .

there are some discrepancies between the experimentally and
numerically obtained values of the normalized OAM due to
aberrations in the experimental setup. However, the general
structure of the dependence obtained in the experiment and
simulation coincides; that is, larger obstacles lead to the
greater distortions of the normalized OAM.

IV. CONCLUSIONS

We theoretically and experimentally investigated gener-
alized spiral phase plates with a transmission function of
exp[ig(ϕ)] defined by the function g(ϕ), showing that the
nonlinear spiral phase plate can be used for the generation
of nonring (including spiral-shaped) laser beams with a he-
lical wave front. The total vortex strength of the proposed
generalized spiral phase plates, a value analogous to the
topological charge of a conventional spiral phase plate, is
defined as [g(2π ) − g(0)]/2π and equal to the normalized
orbital angular momentum of the generated light field.

The distortion resistance properties of the proposed el-
ement show angular dependence: different values of root-
mean-square error are obtained for different angular positions
of an opaque obstacle. In addition, the angular harmonics
spectra of the generated vortex light fields and their total
orbital angular momentum strongly depend on the growth

rate of the function g(ϕ), with the orbital angular momentum
density of the generated light fields being nonuniform. De-
spite the fact that we only studied the case of a plate with a
power function exp(imϕs) in the experiments, the conclusions
obtained in this work can be applied to light fields generated
by an arbitrary generalized spiral phase plate exp[ig(ϕ)] with
an arbitrary function g(ϕ). The phase structure of the trans-
mission functions of generalized spiral phase plates are very
similar in all cases of the function g(ϕ) – it is sectors with
different angular sizes. The experimentally and numerically
obtained results are in good agreement. We believe that the
proposed diffractive optical elements are useful, primarily for
optical manipulation application for realization of optical ro-
tation and guiding of the nano- and microparticles, as well as
for creation of micropumps and microrotors [28]. In addition,
such spiral-shaped laser beams can be used for realization of
laser fabrication of chiral nano- and microelements for 2D and
3D metasurfaces [29].
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