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Higher-order exceptional points: A route for flat-top optical filters
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We study theoretically the formation and properties of higher-order exceptional points (EPs) in optical parity-
time symmetric systems (PTSSs) consisting of a finite number of coupled resonators. The analysis shows that
only specific configurations of such PTSSs exhibit high-order EPs. We derive the conditions for the formation
of higher-order EP in these PTSSs and discuss the properties of the eigenmodes. By taking advantage of the
fundamental link between EPs and the formation of a white-light cavity, we utilize the conditions at which
high-order EPs are formed for designing broadband, maximally flat, optical filters. By selecting the coupling
coefficients between the resonators accordingly we show the bandwidth of such coupled cavity filters cannot
only be enhanced substantially compared to other common design approaches, but also provide flat spectral
response where these design approaches fail completely.
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I. INTRODUCTION

Exceptional points (EPs) are point singularities in the
parameters space of a system at which at least two of its
eigenvalues and eigenvectors coalesce [1]. Such points are
often associated with non-Hermitian systems, which exchange
energy with the environment. The interest in EPs has risen in
the last decade, mainly in the context of the quantum mechan-
ical concept of parity-time symmetry, as systems possessing
such symmetry can exhibit real eigenvalues even if they are
not Hermitian. More recently, optical parity-time symmetric
systems (PTSSs) have been gaining more and more interest
due to their significant impact and potential for various appli-
cations, including optical sensing [2,3], switching [4], lasing
[5–7] and more. Such systems require both gain and loss of
equal magnitude and can exhibit both real and complex eigen-
values (frequencies or wave numbers). One of the interesting
properties of PTSSs is that their eigenvalues (or at least some
of them) can coalesce into a single value when the system
parameters are set properly. Optical PTSSs have been studied
and demonstrated using several different physical platforms,
where the most commonly ones are coupled microresonators
and coupled waveguides. Nevertheless, regardless the plat-
form, most of the studies where focused on infinites periodic
arrays [8–10] or on finite structures comprising two coupled
elements [1,11–16], where only a handful of studies have been
carried out for larger, finite, systems [17–21].

Recently, it was shown that EPs in PTSSs correspond to
the formation of a unique scenario known as the white-light
cavity (WLC) [22]. A WLC is a unique type of resonator
that is designed to resonate over a broad, continuous range
of frequencies, as shown and demonstrated by Wicht [23] and
later on by Shahriar’s group [24]. This is accomplished by
introducing an intracavity element with negative group veloc-
ity (ng < 0), designed to provide a phase shift with a slope
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that is opposite in sign and equal in magnitude to that accu-
mulated by light propagation through the “conventional” part
of the structure [23,25,26]. This phase element compensates
for the regular phase accumulation in the structure and satis-
fies the resonance phase condition over a band of frequencies.
Several solutions for realizing such a phase compensator have
been proposed, including absorptive vapor cells [27] and lossy
resonators [28]. The simplest example of the latter case is
a conventional cavity [the left cavity, denoted as the “main”
cavity and marked in blue in Fig. 1(b)], which is coupled to a
lossy cavity [the right cavity, marked in black in Fig. 1(b)]
constituting the phase element. The coupling coefficient κ

between the cavities can be chosen such that the round-trip
phase of the main (blue) cavity is compensated by the phase
shift induced by the black one over a range of frequencies.
Consequently, the coupled cavity system resonates on a con-
tinuous frequency range. The structure depicted in Fig. 1
constitutes a WLC with a certain level of round-trip loss.
However, by introducing the correct level of gain (equal to
the loss in the black cavity) into the “main” cavity in this
arrangement immediately leads to the formation of a PTSS
which, as shown in Ref. [28], is at its EP.

The equivalence between the conditions for the formation
of a WLC and those for the formation of an EP in the structure
depicted in Fig. 1 is indicative of the intimate relations be-
tween WLCs and EPs. In particular, the properties of PTSSs
at their EPs are similar to those of WLCs and, therefore, allow
for transferring intuition and applications between the two.

The formation of WLC has been shown to be closely
related to broadband, maximally flat filters [22]. A conven-
tional optical filter, consisting of a single resonator, exhibits
a Lorentzian transmission function that is maximal at its
resonance frequencies [29]. Although such a spectral response
may be useful for narrow linewidth filtering, for other appli-
cations, such as telecommunications, different transmission
properties are desired. More specifically, a maximally flat
filter (MFF or Butterworth filter) is a filter that is designed
to have a flat frequency response across its passband. The
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FIG. 1. (a) A general schematic of a WLC comprising a cavity
and a phase element; (b) An example of an implementation of such
phase compensator using a lossy resonator coupled to the “main”
cavity.

flatness results in minimal signal distortions, as no ripple ex-
ists in the filter transfer function. It is well-known that an MFF
can be realized by properly coupling several cavities having
identical resonance frequency. Nevertheless, the optimization
of the coupling coefficients is highly important as nonoptimal
design may lead to a narrowband Lorentzian response or
nonflat transmission profile [30–32] (see also Fig. 15 below).

A useful strategy for obtaining the optimal set of coupling
coefficients was presented in Ref. [22]. Let us consider for
example an optical filter comprising a single cavity and two
I/O waveguides in as add-drop configuration [see Fig. 2(a)].
Maximal transmission (unity in the loss-less case) is obtained
at the resonance frequencies and if the cavity is critically
coupled. As the cavity resonates only at a discrete set of
frequencies, maximal transmission is obtained only at these
specific frequencies, thus leading to a nonflat transmission
function. However, if the cavity can be made to resonate over a
continuous range of frequencies, the corresponding frequency
response of that filter would be maximal and flat over this
range. The obvious way to extend the cavity resonance is to
convert it into a WLC by introducing a phase compensation
component �φ as depicted in Fig. 2(a). As noted above, such
phase component can be realized by an (additional) under-
coupled cavity, leading to the double cavity filter structure
depicted in Fig. 2(b). The value of the coupling coefficient
κ2 is determined by the WLC condition [22], while the equal
coupling level to I/O waveguides, κ1, guarantees that the WLC
is critically coupled. The result is a MFF consisting of two
coupled cavities.

It should be noted that other approaches for obtain-
ing the coupling coefficients required for MFF have been

FIG. 2. (a) A general optical filter comprising a cavity and a
phase element. (b) An example of phase compensation implemen-
tation using an additional cavity.

presented [30], using conventional filter design theory [33].
However, these approaches are valid only in the high loaded
Q-factor approximation, which is not necessarily valid for
ultra-broadband filters. The WLC approach for optical filter
design has proven itself better than the approximate methods,
leading to filters that exhibit flatter and broader frequency
response [22]. Nevertheless the direct WLC based design
approach is useful for designing filters comprising two or
three cascaded cavities, and it is not obvious how it can be
extended to higher-order filters.

In this paper, we utilize the equivalence between WLCs
and EPs formation in PTSS as a tool for the realization of
broadband MFFs. We consider PTSSs consisting of several
(more than three) coupled cavities. In contrast to the two/three
cavities and the periodic PTSSs cases, there are several con-
figurations for realizing PTSSs consisting of multiple (>3)
cavities, where each configuration exhibits different eigen-
values properties. We are interested in PTSSs comprising
larger number of cavities as they can lead to the optimal
design of higher-order MFFs exhibiting broader bandwidth
and supporting higher communication rates. More specifi-
cally, we focus on PTSSs consisting of a chain of coupled
passive cavities except for the first and last ones that exhibit,
respectively, gain and loss of even magnitude, as seen in
Fig. 2. We focus on this configuration because, as shown
in Sec. II, it supports the formation of EPs of higher-order
where all eigenvalues coalesce to a single point. This is in
contrast to other PTSS configurations, which do not exhibit
this property (see Sec. II and the Appendix). It should be noted
that PTSSs consisting of infinite periodic arrays that have been
studied previously have been designed to exhibit EPs of order
2. Moreover, the practical realization of such devices is more
difficult and their functionality is limited by the propagation
losses in the unit-cells [34]. Thus, the motivation for studying
devices consisting of larger number of cavities (though not
infinite) is clear as they provide enhanced performances while
remaining practically realizable.

The rest of the paper is organized as follows: in Sec. II
we discuss the general form of the PTSSs that are analyzed
in this paper. We focus on the cases of PTSSs consisting of
four and five cavities and derive the conditions at which all
the eigenvalues of these systems coalesce, exhibiting fourth-
and fifth-order EPs, respectively. In Sec. III we discuss the
utilization these higher-order EPs for realizing broadband
MFFs and in Sec. IV, we summarize the results and con-
clude. In the appendix we present the impact of incorporat-
ing more than a single gain and single loss cavities in the
PTSS.

II. MULTIRING STRUCTURES

In this section, we discuss the properties of an array of
cavities with the general form depicted in Fig. 3. This struc-
tures consists of multiple coupled cavities of the same radius,
where the first cavity includes a gain coefficient g and the last
cavity has a matching loss coefficient −g. All other cavities
are assumed to be passive and lossless.

This case is particularly interesting as such structures
can be straightforwardly used for filters design as further
discussed below (see Sec. III). In order to satisfy the PTSS
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FIG. 3. (a) A general array of cavities, consisting of a single gain
and a single matching loss. The field amplitudes of each zero-gain
cavity can be fully described at the two points tangent to the neighbor
cavities, and it depends on the coupling coefficients between the
cavities. Note that for the construction of PTSSs, the coupling
coefficients should be symmetric. (b) An example of such an array
that contains four resonators. This configuration is further discussed
in this paper.

conditions, all coupling coefficients should be symmetric. Let
us consider the case of four coupled resonators, with two
zero-gain cavities, depicted in Fig. 3(b). In this figure, the
electric field amplitudes in each cavity are defined at the
coupling points between adjacent microrings.

At steady-state, these amplitudes satisfy the following
relations:

a =
√

1 − κ1e
g
2 eiϕa + i

√
κ1e

iϕ
2 b2,

b1 = i
√

κ1e
g
2 eiϕa +

√
1 − κ1e

iϕ
2 b2,

b2 =
√

1 − κ2e
iϕ
2 b1 + i

√
κ2e

iϕ
2 c2, (1)

c1 = i
√

κ2e
iϕ
2 b1 +

√
1 − κ2e

iϕ
2 c2,

c2 =
√

1 − κ1e
iϕ
2 c1 + i

√
κ1e− g

2 eiϕd,

d = i
√

κ1e
iϕ
2 c1 +

√
1 − κ1e− g

2 eiϕd,

where ϕ is the round-trip phase, and κi are the coupling
coefficients defined in Fig. 3(b). This set of equations can be
represented as a homogenous set and rewritten as A · v̄ = 0
where A is a 6 × 6 matrix and v̄ is a vector of the field
amplitudes. The eigenvalues of this matrix yield the resonant
round-trip phases in the individual microresonators, corre-
sponding to the resonance frequencies of the structure [35].

Requiring that the determinant of A vanishes yields a
characteristic equation of the following form:

0 =
N∑

k=0

ckcos(kϕ), (2)

where N is the number of different coupling coefficients in the
system. The parameters ck depend on the coupling coefficients

FIG. 4. Eigenvalue map for g = 1, κ2 = 0. The upper panel
depicts the real part of the eigenvalues while the lower panel shows
the imaginary part. This map shows the phases that solve Eq. (3) for
given parameters. In our case, g and κ2 are fixed and the map presents
the phases that solve the equation for different κ1 values. Similar
maps can be plotted for other set of fixed and dynamic parameters.

between the resonators and on the gain coefficient g. The
characteristic equation obtained for the discussed system is

2(cos ϕ)2 − 2
√

1 − κ1

(√
1 − κ2 + cosh

g

2

)
cos ϕ

− κ1 + (2 − κ1)
√

1 − κ2 cosh
g

2
= 0. (3)

Note that equation is quadratic in cosϕ. This is due to
the fact that the system is symmetric and the given equation
should be invariant under the transformation ϕ → −ϕ. Con-
sequently, the characteristic equation can be rewritten in the
form:

The characteristic is indeed a second-order equation. Such
an equation obtains two independent solutions for cos ϕ

yielding overall four eigenvalues (ϕ and −ϕ are different
solutions). The resulting round-trip phases are complex and
depend on the specific parameters of the system. A useful
technique of visualizing the unique characteristics of the
system is to set g and κ2 and plot the real and imaginary part
of the eigenvalues in the range 0 < κ1 < 1. Different κ2 values
have a different impact on the eigenvalues map.

The properties of PTSSs are derived from their eigen-
values; the solutions of their characteristic equation [e.g.,
Eq. (3) for the four-cavity case] or, in other words, the
resonances of the PTSS. The real parts of the eigenvalues
correspond to shifts in the resonance frequencies compared
to an exponentially increase/decay of these solutions. The
eigenvalues map (e.g., Fig. 4) provides a graphic description
of the properties of the system solutions in its parameter space
(i.e., the various coupling coefficients and gain/loss). Such
maps allow for the identification of ranges in the parameters
space where the solutions are, for example, purely real or
complex. In particular, such maps reveal points at which the
eigenvalues (or some of them) coalesce, thus forming EPs, and
identify their order. Due to the large number of parameters
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FIG. 5. Eigenvalue map for g = 1, κ2 = 0.01. Note the formation
of a small range in which all the solutions are purely imaginary,
located between two EPs of order 2.

(two coupling coefficients and a gain/loss parameter in the
case of four cavities) it is impossible to represent graphically
the complete parameters’ space (this is in contrast to the
more commonly studied two- and three-cavity cases). Thus,
the reasonable approach would be plotting partial eigenvalues
maps where some of the parameters are fixed and the other are
varied.

Returning to the eigenvalues of the four-cavity case, we
first set the gain to be g = 1 and κ2 = 0. This value of κ2

implies that the system consists effectively of two isolated
couples of cavities, each operating without interacting with
the other. Note, that one of these pairs includes the gain
section, while the other includes only the lossy section. The
eigenvalues of this system are shown in Fig. 4. The two
effectively separated systems possess a second-order EP at
κ1 = 0.06 and exhibit eigenvalues just as expected from an
unbalanced structure: The system with the gain section ex-
hibits eigenvalues that have positive imaginary parts. The
other (lossy) system exhibits eigenvalues that have negative
imaginary parts.

Increasing the coupling coefficient κ2 yields a more inter-
esting eigenvalues map as all four cavities can interact. For
small κ2 values (see Fig. 5 for g = 1, κ2 = 0.01) the overall
properties of the solutions remain rather similar although two
EPs at different values of κ1 are formed, at κ1 = 0.048 and
κ1 = 0.067. It can be understood that these points originates
from the κ1 = 0 and κ1 = 0.06 points for κ2 = 0. As κ2 is
increased, the levels of κ1 at which these EPs are formed shift
to larger values.

Increasing the κ2 value further changes the properties of
the eigenvalues substantially. Figure 6 depicts the real and
imaginary parts of the eigenvalues (as a function of κ1) for
κ2 = 0.2. For high κ1 values lower than ∼0.2 two of the
eigenvalues are purely real, while the other two are purely
imaginary. Beyond that point, all eigenvalues become purely
real, exhibiting four different resonant frequencies.

However, at relatively large κ1 values (∼0.75) the eigen-
values coalesce into two pairs that exhibit both real and

FIG. 6. Eigenvalue map for g = 1, κ2 = 0.2. Here a large range
at which the eigenvalues are purely real (similar to the completely
passive case) is formed. As in Fig. 5, this range is located between
two second-order EPs.

imaginary parts. This is because at very high coupling levels
between the external resonator pairs, each pair effectively acts
as a single cavity of twice the round-trip length.

At the extreme case of κ2 = 1 the structure is effectively
a system of three cavities where the roundtrip of the central
(passive) resonator is twice that of the leftmost and rightmost
cavities. The eigenvalues in this case are depicted in Fig. 7.
A three cavity system exhibits three eigenvalues, where one of
them is zero [22]. This is observed for κ1 < 0.632 where two
solutions are purely real and the other two are purely imag-
inary. However, at κ1 = 0.632 a second-order EP is formed
and the four solutions become purely real with four distinct
resonance frequencies. It can be seen that on this scenario, all
eigenvalues are either purely real or purely imaginary at any
point.

FIG. 7. Eigenvalue map for g = 1, κ2 = 1. Note that in contrast
to Fig. 6 there is no upper bound to the range at which purely real
solutions are obtained.
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FIG. 8. Four-cavity systems’ eigenvalues, where parameters are
chosen such that fourth-order EP is formed. It can be seen that
all phases coalesce at κ1 = 0.0979. The rest of the coefficients are
defined in the text.

When κ2 increased from zero to unity, the range in which
all eigenvalues are purely real shrinks and then reexpands.
Within this range there is a point at which this range becomes
a point where all eigenvalues coalesce into a single value,
thus forming a high-order EP. At this higher-order EP, all the
eigenvalues are cos ϕ = 1, or ϕ = 0. The coupling coefficients
for which such scenario is obtained can be given by realizing
that the characteristic equation should have the form of

C · (1 − cos ϕ)�
N
2 �(sin Aϕ)N mod 2 = 0, (4)

where N is the number of cavities in the system and A is a
rational number. It is not obvious that there is a valid set of
coupling coefficients for which the characteristic Eq. (3) can
indeed obtain the form of Eq. (4). This is because the coupling
coefficients are limited to the range 0 < κi < 1. In fact, as
discussed further in the Appendix, fourth-order EPs are ob-
tained only for some of the four-cavity PTSSs. Nevertheless,
if such a set of coupling coefficients does exist, it can be found
analytically comparing the coefficients of Eq. (3) to those
of Eq. (4). In the discussed case of the four-cavity system
(N = 4), the characteristic equation is quadratic and can be
brought to the form (4) by selecting C = 2 and requiring that

−κ1 + (2 − κ1)
√

1 − κ2 cosh
g

2
= 2,

−2
√

1 − κ1

(√
1 − κ2 + cosh

g

2

)
= −4. (5)

Equations (5) yield the coupling coefficients for which a
fourth-order EP is formed (for a given value of gain coeffi-
cient). For g = 1, the solution of Eq. (5) is easily found to be
κ1 = 0.0979, κ2 = 0.0432. Figure 8 depicts the eigenvalues
as a function of κ1 for κ2 = 0.0432. The point at which all
four eigenvalues coalesce to a single solution, ϕ = 0, is clearly
visible at κ1 = 0.0979.

Having a PTSS exhibiting higher-order EP is highly attrac-
tive for many useful applications. Particularly, PTSSs operat-
ing at their EP has been shown to be highly useful for multiple

FIG. 9. Eigenvalue map for a five cavities PTSS, where g = 1
and κ2 = 0. Two EPs of order 2 are formed at κ1 ≈ 0.06.

applications including optical gyroscopes [36,37] and beam
dynamics [38]. In addition, as discussed in Sec. III below,
such PTSS are highly useful for constructing and optimizing
broadband MFFs.

So far, we have discussed systems consisting of four cavi-
ties. Let us now examine the difference between this case and
the case of five cavities. A PTSS consisting of five cavities has
two different coupling coefficients: κ1 between the leftmost
and rightmost cavities to the internal adjacent cavities, and κ2

between the middle cavity to its neighbors on both sides.
The steady state field amplitude equations can be written

similarly to the case of four rings, and the homogenous
set representation yields an 8 × 8 matrix. As for the four
resonators case, by requiring the determinant of this matrix
to vanish we obtain the following characteristic equation:
[
4cos2ϕ + 2

√
1 − κ1

(√
1 − κ2+κ2 − 2 − 2

√
1 − κ1 cosh

g

2

)

× cos ϕ − 2(−2
√

1 − κ2 + κ1

√
1 − κ2 + κ2

√
1 − κ1) cosh

g

2

+ κ1(κ2 − 2)
]

· sin
ϕ

2
= 0. (6)

Equation (6) consists of a product of a quadratic expression
in cos ϕ, and a sinusoidal term. The sinusoidal term yields
a constant solution of ϕ = 0. It should be noted that such a
solution is common to all PTSS comprising an odd number
of elements [3]. The other four eigenvalues can be found by
addressing only the quadratic part of the equation, by using
the method described for the four-cavity case.

As for the four resonators case, we explore different eigen-
value maps obtained for different κ2 values. Figure 9 depicts
the map for κ2 = 0.

At this condition, this system consists of effectively three
separated structures, two comprising two cavities and an
isolated resonator. This is quite similar to the case depicted
in Fig. 4 with the addition of the isolated cavity exhibiting the
ϕ = 0 solution. As could be expected, the solutions are rather
similar to the four-ring case; however, there is a constant solu-
tion given from the sinusoidal term in Eq. (6). The separated
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FIG. 10. Eigenvalue map for five cavities, where g = 1 and κ2 =
0.01. Note the formation of a range at which the solutions are purely
imaginary as in Fig. 5 for the four-cavity structure

systems have a second-order EP at κ1 = 0.06, just as in the
four-cavity case.

Figure 10 depicts an eigenvalue map for κ2 = 0.01. It can
be seen that two EPs are formed, at κ1 = 0.059 and κ1 =
0.069. It is interesting to compare these values to the EP
locations of the four-cavity case for this case (κ2 = 0.01) as
seen in Fig. 5. Although the overall dynamics are similar, the
shift in the positions of the two EPs with respect to changes
in κ2 is somewhat larger. This introduces a characteristic of
multicavity systems that will be further discussed in Sec. III;
the more cavities the system includes, the more sensitive it is
to parameter changes.

Further increasing κ2 yields a similar eigenvalues map, as
can be seen in Fig. 11, depicting the case of κ2 = 0.2. As for
lower κ2 values, one eigenvalue is consistently zero, while
the others are divided into two pairs, each consisting of two
merged eigenvalues.

FIG. 11. Eigenvalue map for five cavities, where g = 1 and κ2 =
0.2. As in the four-cavity case (Fig. 6) increasing κ2 yields a range at
which all eigenvalues are purely real.

FIG. 12. Eigenvalue map for five cavities, where g = 1 and κ2 =
0.0296, forming a fifth-order EP.

Except for the constant zero solution, this image is much
more similar to the one depicted in Fig. 6. It can be seen that
for small values of κ1 two of the eigenvalues are purely real
while the other pair is purely imaginary. The second-order EP
at which the eigenvalues become all real is located at κ1 =
0.16. Beyond that point, there is a range of κ1 values for which
all eigenvalues are real, up to κ1 = 0.37. The range at which
all four eigenvalues are real varies with respect to κ2. Similar
to the four rings case discussed previously, there is a value
of κ2 at which all five eigenvalues coalesce to a single point,
forming a fifth-order EP. This point can be found by requiring
that the cosine part of Eq. (6) has the form of Eq. (4).

A similar approach can be applied to structures incorporat-
ing more cavities, which can yield higher-order EPs. For N =
5, it is clear that the sinusoidal term obtains the constant zero
solution. The remaining part of the characteristic equation is
quadratic in cos ϕ where for all solutions to coalesce at ϕ = 0
it is required that

2
√

1 − κ1

(√
1 − κ2 + κ2 − 2 − 2

√
1 − κ1 cosh

g

2

)
= −8,

−2(−2
√

1 − κ2 + κ1

√
1 − κ2 + κ2

√
1 − κ1) cosh

g

2
+ κ1(κ2 − 2) = 4. (7)

For g = 1, the solution of this set is easily found to be κ1 =
0.0905, κ2 = 0.0296. Figure 12 plots the eigenvalues of the
five-ring structure as a function of κ1 for κ2 = 0.0296 and g =
1. The formation of a fifth-order EP at κ1 ≈ 0.1 is clearly seen.

III. MAXIMALLY FLAT FILTERS

As discussed in the introduction, a system operating at its
EP forms a WLC and therefore resonates over a wide range
of frequencies [28]. Consequently, the parameters at which
EPs (and especially high-order EPs) are obtained can be used
for designing MFFs. The underlying idea for the construction
of this MFF is that at the higher-order EP of a PTSS (e.g.,
a fifth-order EP of a five-cavity PTSS), the conventional
round-trip phase in the active cavity (the one with the gain) is
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FIG. 13. A MFF constructed of four passive lossless cavities. For
maximal flatness, coupling coefficients between the rings should be
chosen according to the EP conditions of the four-cavity systems.

compensated by the phase response of the other cavities, thus
yielding a WLC. Note, that by finding this high-order EP we
obtain the coupling coefficients between the microresonators,
κi, which are required in order to turn the leftmost resonator
(see, e.g., Fig. 3) into a WLC. The rightmost, lossy cavity can
be effectively replaced by a transparent one, which is coupled
to an I/O waveguide with the coupling coefficient κin:

√
1 − κin = e− g

2 . (8)

This value is chosen to have the same impact as loss −g in
the last cavity.

Finally, the gain material in the leftmost cavity in Fig. 3,
which includes gain in the PTSS configuration, is replaced
by a passive one that is coupled to an I/O waveguide with
the coupling coefficient κin defined in Eq. (8), as depicted in
Fig. 13. This is in order to form an overall critically coupled
WLC and obtain maximal transmission at the drop port of the
filter. The resulting filter is an MFF as it resonates, effectively,
over a broadband and is critically coupled.

To demonstrate this idea we consider filters consisting
of three, four, and five cavities and examine their spectral
response with respect to the gain g (or equivalently the
κin). As a concrete example we assume that the cavities are
realized using SOI platform (effective index of ∼3.0) with a
radius of 10 μm. According to these parameters, the relation
between the round-trip phase and the spectral detuning from
resonance is

�ν = φ · c

2πngL
= φ · c

4π2ngR
, (9)

where ng is the group index and L is the round-trip length.
Figure 14 depicts the spectral transmission function

|Eout/Ein|2 of various filters designed using the above-
mentioned approach. The coupling coefficients used are de-
tailed in Table I. The flatter transmission band and the broader
bandwidth of higher-order filters are clearly evident, as well

TABLE I. Coupling coefficients that produce the plot of Fig. 14.

Structure Coupling Coefficients

Three cavities κin = 0.6321, κ1 = κ2 = 0.118
Four cavities κin = 0.6321, κ1 = κ3 = 0.0979, κ2 = 0.0432
Five cavities κin = 0.6321, κ1 = κ4 = 0.0905, κ2 = κ3 = 0.0296

FIG. 14. Upper figure depicts the drop functions of filters com-
prised of three, four, and five cavities, where each case the cou-
pling coefficients has been chosen according to those that bring the
corresponding PTSS to its highest-order EP. Lower figure depicts
zoom-in on the resonance frequencies. It can be clearly seen that the
transmission is indeed flat and that the five-cavity structure achieves
the widest response, as expected. In this illustration, the cavities are
assumed to be silicon-on-insulator (SOI), with effective index of
∼3.0 and radius of 10 μm.

as the steeper fall of the transmission outside the transmission
band (corresponding to a “boxlike” shape), which render these
filters closer to an ideal filter.

For comparison, Fig. 15 depicts the transmission function
of a four-cavity MFF with κin = 0.259181 designed according

FIG. 15. Comparison between the transmission function of filters
designed according to the method described here (blue, solid) to
that of Ref. [30] (red, dashed). The coupling coefficients yielded
by our approach are: κin = 0.259181, κ1 = 0.00927232, κ2 =
0.00386386 while those yielded by the method of Ref. [30] are: κin =
0.259181, κ1 = 0.00671751, κ2 = 0.00268701. The advantage of
our approach is clear, especially for larger coupling coefficients,
where the common methods yields a rippled filter response. We note
that our approach is still advantageous even in weak coupling regime,
as it provides a wider transmission bandwidth.
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FIG. 16. Impact of coupling noise level on the filter responses.
Each plot corresponds to a different level of Gaussian noise that is
added to every coupling coefficient of the filter designed in Fig. 15.
The variance of the added noise is a given percentage of the coupling
coefficient itself. Due to the statistical properties of the noise, this
example is just one of many other options.

to the PTSS approach, to a similar MFF designed according
to the commonly used approach described in Ref. [30]. As
seen in Fig. 15, the PTSS design approach yields wider
transmission bandwidth and enhance the width of the flat
band. As some of the coupling coefficients in this example
are relatively large, the approach of Ref. [30] (which assumes
small coupling) yield a nonflat filer exhibiting substantial
ripple. In contrast, the design approach described here yields
a flat response where the width of the flat band (defined by the
width above 0.9 transmission) is larger by 11.17%.

The design procedure presented here yields specific phys-
ical parameters (e.g., coupling coefficients) leading to maxi-
mally flat filters (as seen in Fig. 15). However, any practical
fabrication process introduces, necessarily, errors and disorder
in the actual coupling coefficients and resonances [39,40].
While resonance shifts can be tuned and corrected using a
variety of methods (thermo-optical effects, UV post-tuning,
etc.), modifying the coupling coefficients is less trivial. There-
fore, in the context of this paper, it is important to study the
impact of a coupling noise on the resulting filter response.

We consider a four-cavity system that includes three dif-
ferent coupling coefficients κin, κ1, and κ2. The impact of
fabrication errors is introduced as an additive Gaussian noise
∼ N (0, σd ) applied to each coupling coefficient separately.
Note that the noise not only affects the relation between κ1 and
κ2, but also breaks the symmetry properties of the structure.
The applied variations in the coupling coefficients are pro-
portional to the nominal coupling value (i.e., larger coupling
coefficients experience larger nominal variations). Figure 16
depicts the modification of the filter frequency response due
to noise with different variance levels. As the noise level
increases, the bandwidth decreases and ripples evolve across
the passband. Nevertheless, the ripples are on the order of
∼1% of the transmission, which is still substantially smaller

than the maximal allowed ripple level for telecommunication
applications (∼11%).

IV. CONCLUSION

We have studied the properties of PTSSs comprising mul-
tiple (4–5) cavities. For some of the possible PTSS configura-
tions, proper choice of parameters can lead to the formation of
high-order EPs. The set of parameters leading to such points
can be obtained by requiring that all eigenvalues coalesce,
leading to a simple set of algebraic equations. At such a high-
order EP, the system resonates over a wide and continuous
range of frequencies, thus forming a white-light cavity. The
equivalence between the high-order EP and WLC facilitates
the design of optical MFFs consisting of coupled optical
cavities.

The order of the EP is determined by the number of
the coupled cavities. Using the method described here, any
order of EP can be constructed by solving the characteristic
equation of the system, and yield the corresponding MFF. The
EP-based design method enhances the filter performances,
yielding a broader and flatter spectral response compared to
the commonly used approaches [30].

It should be noted that unlike methods which are based on
coupled cavities rate equation analysis, the design approach
presented here is also valid for large coupling coefficients.
This is important because the weak coupling approximation
(which is inherent to rate equations analysis) induces limita-
tions on the ability to describe accurately systems comprising
large number of cavities. Such a system necessitates relatively
large coupling coefficients towards the edges of the coupled
cavity array, thus rendering the rate equations model less accu-
rate. The connection between filter design theory and physical
understanding of coupled optical cavities systems discussed
here, facilitates the development of various applications such
as optical sensors, superluminal lasers, optical buffers, and
many more.
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APPENDIX: GENERALIZED FOUR-CAVITY PTSS

This appendix introduces various configurations of PTSSs
consisting of coupled resonators, showing that higher-order
EPs cannot be obtained in all of them. Although we focus
on arrays comprising four coupled cavities, we believe that
some of the conclusions can be generalized for larger arrays.
Requiring that the four-cavity system is parity time (PT)-
symmetric, there are four possibilities of arrangements, as
seen in Fig. 17.

Here, red cavities (marked “g”) include gain, black cavities
(marked “-g”) are lossy and blue cavities (marked “0”) are
considered as transparent. We note that the configurations
in Fig. 17(c) and Fig. 17(d) can be further generalized by
considering different gain levels in the red cavities (and corre-
sponding losses in the black ones), as will be further shown.
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FIG. 17. All possible structures of four coupled cavities, assum-
ing all active cavities are of the same gain.

The structure In Fig. 17(a) corresponds to the one dis-
cussed in the main text of the paper. This structure has been
shown to support a fourth-order EP (see Fig. 3). For complete-
ness, let us now consider the other structures. Using a similar
method as that used for obtaining Eq. (3), the characteristic
equation corresponding to the eigenvalues of structure 17(b)
can be found to be

2(cos ϕ)2 − 2
√

1 − κ1

(
1 +

√
1 − κ2 cosh

g

2

)
cos ϕ

− κ1 + (2 − κ1)
√

1 − κ2 cosh
g

2
= 0. (A1)

In order to find whether configuration 17 (b) supports a
fourth-order EP, we follow the approach outlined in Sec. II.
Requiring that all eigenvalues coalesce at ϕ = 0, it can be eas-
ily shown that for any value of g, this requirement is obtained
only for κ1 = 0 (In the specific case of g = 1 the coupling
coefficients are κ1 = 0, κ2 = 0.213). This is a degenerate
configuration that separates the array into three distinct sub-
systems: a PTSS comprising two cavities and two individual
transparent cavities. Thus, even though all the eigenvalues
correspond to ϕ = 0, this does not result in a fourth-order EP.
We can conclude that configuration 17(b) does not support a
higher-order EP.

In a similar way, the characteristic equation of structure
17(c) is

2(cos ϕ)2 − 2
√

1 − κ1(1 +
√

1 − κ2) cosh
g

2
cos ϕ − κ1

+ (1 + (1 − κ1) cosh g)
√

1 − κ2 = 0. (A2)

Again, by requiring that all eigenvalues coalesce at ϕ = 0,
it can be mathematically shown that the solution is κ2 = 0,
for every value of g. For g = 1 the results for the coupling

FIG. 18. Required coupling coefficients for a higher-order EP to
form in structure (d). It can be seen that κ2 > κ1 and that a solution
exists for every value of g.

coefficients are κ1 = 0.213, κ2 = 0. As was claimed for struc-
ture 17(b), this is also a degenerate case where the structure
is separated into two PTSSs comprising two cavities each.
Note that structures 17(b) and 17(c) can be separated into
PT-symmetric subsystems (a passive cavity is also a PTSS)
by setting κ1 and κ2 to zero, respectively. Therefore, these
structures can satisfy the condition of all round-trip phase
eigenvalues equal to zero without forming a fourth-order EP.
On the other hand, structures 17(a) and 17(d) cannot be
separated into PT-symmetric subsystems and can, therefore,
potentially exhibit fourth-order EP.

By applying the exact same method to structure 17(d), the
characteristic equation is given by

2cos2ϕ − 2
√

1 − κ1(1 +
√

1 − κ2) cosh
g

2
cos ϕ − 1

+ (1 − κ1)(1 +
√

1 − κ2) +
√

1 − κ2 cosh g = 0. (A3)

The solution of this equation depends on g, and might
support a fourth-order EP at which none of the coupling
coefficients vanish. Consider, for example, the case of g = 1,
with the coupling parameters κ1 = 0.061 and κ2 = 0.310.
For these values, a fourth-order EP is formed in the system.
Figure 18 plots the coupling coefficients needed for obtaining
a fourth-order EP in the system as a function of the gain
parameter. Interestingly, obtaining a fourth-order EP requires
that κ2 > κ1 for every gain level. This is in contrast to the

FIG. 19. A generalized four-cavity structure that satisfies the
PTSS conditions. Both g1 and g2 can be either positive or negative.
Any of the structures presented in Fig. 17 can be given by a selection
of g1 and g2 here.
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FIG. 20. κ1 values that solve Eq. (A4), with respect to g1 and g2.

requirement for structure 17(a), for which the requirement is
inverse.

Structure 17(d) can be further generalized by removing the
constraint of identical gain parameters in the system. Without
this constraint, all of the structures in Fig. 17 coalesce into a
single structure, as seen in Fig. 19.

The characteristic equation of the generalized case is

−2(cos ϕ)2 + 2
√

1 − κ1

(
cosh

g1

2
+

√
1 − κ2 cosh

g2

2

)
cos ϕ

+ κ1 − (2 − κ1)
√

1 − κ2 cosh
g1

2
cosh

g2

2

− κ1

√
1 − κ2 sinh

g1

2
sinh

g2

2
= 0. (A4)

FIG. 21. κ2 values that solve Eq. (A4), with respect to g1 and g2.

For simplicity, let us assume that g1 > 0. Under this
condition, a generalized version of structure 17(c) and
structure 17(d) can be obtained by taking g2 < 0 and g2 > 0,
respectively. Figures 20 and 21 depict the values of κ1 and κ2

required for the formation of a higher-order EP over the range
0 < g1 < 5 and −5 < g2 < 5, respectively.

Note that for every choice of g1 and g2 there is a set of
coupling coefficients for which all the eigenvalues are zero.
The dashed white lines correspond to the degenerate cases
g1 = 0 [structure 17(b)] and g1 = −g2 [structure 17(c)]. On
these lines the solution does not correspond to a fourth-order
EP but rather to the separation of the four-cavity array into
several distinct subystems. This is manifested by the fact that
on these lines either κ1 or κ2 vanish as discussed above.
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