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We report a continuum of pulselike soliton solutions to the generalized nonlinear Schrödinger equation
with both quadratic and quartic dispersion and a Kerr nonlinearity. We show that the well-known nonlinear
Schrödinger solitons, which occur in the presence of only negative (anomalous) quadratic dispersion, and
pure-quartic solitons, which occur in the presence of only negative quartic dispersion, are members of a large
superfamily, encompassing both. The members of this family, none of which are unstable, have exponentially
decaying tails, which can exhibit oscillations. We find analytic solutions for positive quadratic dispersion and
negative quartic dispersion and investigate the soliton dynamics. We also find evidence that a combination of the
quadratic and quartic dispersion, rather than exclusively quadratic or quartic dispersion, is likely to improve the
performance of soliton lasers.
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I. INTRODUCTION

Nonlinear Schrödinger (NLS) solitons, solitons that are
solutions to the nonlinear Schrödinger equation, have been
widely studied and have enabled a plethora of applications.
They occur in a great variety of fields, including water
waves [1], Bose-Einstein condensates [2,3], and plasmas [4].
In an optics context, they are characterized by quadratic
dispersion and a Kerr nonlinear medium, i.e., a medium
in which the refractive index depends linearly on intensity
[5]. Many generalizations have been studied over the past
decades, particularly higher-order nonlinearities [6], and more
complicated geometries [7] with coupled modes involving
different waveguides, polarizations, frequencies, propagation
directions, or combinations of these. In comparison to this,
deviations from perfectly quadratic dispersion have not been
widely studied and have generally been treated as a perturba-
tion of NLS solitons. Recently we studied Kerr nonlinear me-
dia at a frequency where the dispersion is purely quartic and
demonstrated experimentally and theoretically that in such
media pure quartic solitons (PQSs) can arise [8,9]. Though the
experiments were carried out in a photonic crystal waveguide,
PQSs should similarly occur in optical fibers [10] and in
microresonators [11].

In practice it is difficult to achieve purely quadratic or
purely quartic dispersion. We therefore consider here Kerr
nonlinear media in the presence of both quadratic and quartic
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dispersion, without treating either as a perturbation. We take
the quartic dispersion coefficient to be negative (β4 < 0),
whereas the quadratic dispersion coefficient (β2) can have
either sign. Nonlinear pulse propagation in the presence of
negative β2 and negative β4 has been considered earlier
[12–19]. Karlsson and Höök [12] found pulselike analytic
solutions in the form of a squared hyperbolic secant, whereas
Akhmediev et al. [13] found that, depending on the pa-
rameters, the exponentially decaying tails of these solutions
can have additional oscillations. Akhmediev and Buryak [14]
studied the interactions between the solitons and also showed
[15] that the solutions with the oscillating tails may form
bound states. The properties of these bound states depend
on the relative alignment of the oscillations. Piché et al. [16]
rederived the solutions found by Karlsson and Höök, and also
considered the effect of nonzero β3. More recently, Roy and
Biancalana [17] considered the propagation of high-intensity
pulses in specially designed slot waveguides in numerical ex-
periments. By considering a geometry that minimizes Raman
scattering, they found that it is possible to generate a large
number of solitons, the spectral interference of which leads to
a continuum. The work of Bansal et al. [18] and Biswas et al.
[19] concentrates on finding analytic solutions in the presence
of quartic and cubic dispersion.

In this paper, we demonstrate that NLS solitons and PQSs
are in fact part of a single continuous soliton superfamily,
which we refer to as generalized dispersion Kerr solitons
(GDKSs), that also includes the set of analytic solutions for
β2 < 0 and β4 < 0 reported by Karlsson and Höök [12]. By
considering the tails of the solutions we can, based on analytic
arguments, divide the parameter space into three distinct
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areas: (i) a region where the solutions have straight exponen-
tial tails, (ii) a region where the solutions have exponential
tails with oscillations, and (iii) a region where no pulselike
solutions exist. We find that near the boundary of regions (ii)
and (iii) the solutions take the form of a carrier with a slowly
varying envelope, and we show that the envelope, which in
fact is the envelope of an envelope, satisfies the nonlinear
Schrödinger equation.

All solitons (NLS solitons, PQSs, dissipative solitons, etc.)
have applications in lasers, where they facilitate the formation
of well-defined short pulses. However, soliton lasers, which
currently exploit only quadratic dispersion, are limited to low
energies. Though we do not perform a detailed laser analysis,
we discuss the potential of GDKSs for use in ultrafast lasers
and show that the presence of quartic dispersion may improve
the laser performance. This potential application of PQSs was
hinted at as early as 1994 [20], and only recently experimen-
tally demonstrated by some of us [Runge et al.], but was never
systematically investigated.

The outline of this paper is as follows: In Sec. II we review
current knowledge of solitons with quadratic and quartic
dispersion. In Sec. III we demonstrate that conventional NLS
solitons and PQSs are members of a single superfamily. Then
in Sec. IV we classify the members of this superfamily based
on the behavior of their tails. In Sec. V we consider approxi-
mate analytic solutions in a limiting case. The scaling of the
solutions is discussed in Sec. VI, followed in Sec. VII by a
discussion of the effects of cubic dispersion, and a discussion
in Sec. VIII of the dynamics of the solutions. Finally, in
Sec. IX we discuss our results and conclude.

II. BACKGROUND

The propagation of high-intensity nonlinear pulses in
optical fibers is described by the nonlinear Schrödinger
equation [5]

i
∂ψ

∂z
− β2

2

∂2ψ

∂τ 2
+ γ |ψ |2ψ = 0, (1)

where ψ is the complex envelope of the electric field which
modulates the underlying carrier wave, τ is the retarded time
in the frame of the pulse, z is the propagation distance, β2

is the quadratic dispersion parameter obtained by Taylor ex-
pansion of the dispersion relation about the carrier frequency,
and γ is the nonlinear parameter. The nonlinear Schrödinger
equation (1) is integrable and has soliton solutions [5]. These
maintain their hyperbolic secant shape upon propagation by
balancing anomalous quadratic dispersion (β2 < 0) with pos-
itive Kerr nonlinearity (γ > 0) [21] and take the form

ψ (τ, z) =
√

2μ

γ
sech

(√
2μ

|β2|τ
)

eiμz, (2)

where parameter μ gives the rate of change of the phase
due to the nonlinearity. Different values of μ correspond to
different particular solutions, taken from a family of conven-
tional solitons with the same shape, but varying peak powers
and widths. In this case, peak power increases monotonically
with μ.

In 2016, Blanco-Redondo et al. experimentally discovered
PQSs in a photonic crystal waveguide at a carrier frequency
where β2 and the cubic dispersion parameter β3 were practi-
cally negligible [8]. Instead, the leading order of dispersion
was quartic, so that the pulse envelope is described by a
generalized NLS equation

i
∂ψ

∂z
+ β4

24

∂4ψ

∂τ 4
+ γ |ψ |2ψ = 0, (3)

where β4 is the quartic dispersion parameter. While this equa-
tion is nonintegrable, in a recent comprehensive paper [9] we
numerically demonstrated the existence and stability of PQSs
for β4 < 0, with temporal profiles characterized by exponen-
tially decaying tails with additional oscillations. PQSs obey
a favorable energy-width scaling U ∼ w−3, as opposed to
U ∼ w−1 for NLS solitons [9]. Since Eq. (3) is nonintegrable,
PQSs are technically not solitons. But for convenience, we use
the term “soliton” for the solutions discussed in this paper.

Here we consider pulse propagation and the existence of
solitons under the combined effects of different orders of
dispersion. Higher orders of dispersion have traditionally been
treated as perturbations to the NLS solitons, becoming im-
portant for subpicosecond pulses because of their large band-
widths. We consider the generalized nonlinear Schrödinger
equation

i
∂ψ

∂z
− β2

2

∂2ψ

∂τ 2
+ β4

24

∂4ψ

∂τ 4
+ γ |ψ |2ψ = 0, (4)

where β2 and β4 are obtained by Taylor expansion of the
dispersion relation about the frequency ω0 where β3 = 0.
Over the last decades, a number of authors have considered
this equation [12,13,15–17], all of whom considered β2 < 0
and β4 < 0. In particular, in 1994 Karlsson and Höök [12]
reported analytic solutions (for β2 < 0 and β4 < 0)

ψ (τ, z) = 3

√
β2

2

5β4
sech2

(√
3β2

β4
τ

)
exp

(
i

24β2
2

25|β4| z

)
, (5)

with an equivalent solution later reported by Piché et al.
[16]. Unlike the PQS, the temporal profile of Eq. (5) has
exponentially decaying tails. For each value of β2 and β4,
there exists a single solution (5) with fixed peak power, width,
and

μ = 24β2
2

25|β4| . (6)

This should be contrasted with NLS solitons and PQSs, where
μ remains a free parameter. The isolated solution (5) can be
understood by examining the scaling properties of Eq. (4).
Among the four terms in Eq. (4), only three quantities (ψ , z, τ )
can be rescaled for fixed values of β2, β4, and γ . As such, the
scaling relations observed for NLS solitons and PQSs do not
apply. However, we see in Sec. VI that in the presence of both
β2 and β4 a more general scaling relation can be established.

NLS solitons are solutions for β2 < 0 and β4 = 0, and
PQSs exist when β4 < 0 and β2 = 0, whereas the isolated
solutions of Karlsson and Höök exist for β2 < 0 and β4 < 0.
The natural question is whether these three types of solution
are related to each other and whether other related types of
solution are possible. We now turn to these questions.
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FIG. 1. (a) β2 versus β4 parameter space for fixed μ =
1.78 mm−1. The horizontal axis (red) represents conventional NLS
solitons while the vertical axis (blue) represents PQSs. The grey
dashed curve represents the family of Karlsson-Höök solutions at
this value of μ. (b)–(e) Power (logarithmic scale) versus time for
stationary solutions indicated in (a).

III. RELATIONSHIP BETWEEN PURE QUARTIC
SOLITONS AND CONVENTIONAL SOLITONS

We search for stationary solutions to Eq. (4) which main-
tain their shapes throughout propagation, i.e.,

ψ (τ, z) = u(τ )eiμz, (7)

in the β2, β4 < 0 quadrant of parameter space in Fig. 1(a)
bounded by PQSs (vertical axis, blue) and conventional soli-
tons (horizontal axis, red). Here, and in the remainder of this
paper, we only consider the case μ > 0, which is associated
with pulselike solutions; i.e., ψ → 0 as τ → ±∞. Localized
solutions do not exist for μ < 0 due to resonance with the
linear wave spectrum. With ansatz (7), Eq. (4) becomes a non-
linear ordinary differential equation for the temporal profile
u(τ ), which we take to be real to describe a uniform temporal

phase, leading to

−μu − β2

2
u′′ − |β4|

24
u′′′′ + γ u3 = 0. (8)

We solve Eq. (8) numerically by the Newton conjugate-
gradient method [22]. Given a sufficiently accurate initial
guess u0(τ ), the method converges upon the exact stationary
solution u(τ ) by computing successive corrections. We use
known solutions such as the PQS or the NLS solitons as initial
guesses u0(τ ) to a stationary solution at a nearby point in the
β2-β4 parameter space [Fig. 1(a)]. By gradually modifying the
dispersion parameters, we trace a path (black) in the parameter
space and explore the limits of existence for soliton formation.

We define the two paths in the parameter space in Fig. 1(a)
so as to link the PQS, indicated by the blue dot, with NLS soli-
tons, indicated by the red dot. The paths are otherwise chosen
arbitrarily, to illustrate that the PQS and the NLS solitons are
connected to each other by small successive variations of the
parameters β2 and β4. Indeed, we find that at each point along
the path in Fig. 1(a), there is a soliton for any positive value
of μ. To illustrate this, starting with the PQS, as indicated
by the blue dot in Fig. 1(a), we show the power |u|2 of the
solution for a particular value of μ = 1.78 mm−1 in Fig. 1(b).
The oscillating tails are characteristic of PQSs [9]. As we
approach the horizontal axis (red) corresponding to NLS
solitons while keeping μ constant, the period of the oscillating
tails increases [Fig. 1(c)], until the tails become exponentially
decaying [Fig. 1(d)] as for NLS solitons [Fig. 1(e)]. Thus,
we can continuously deform PQSs into NLS solitons, passing
the analytic Karlsson and Höök solutions along the way
[Fig. 1(d)]. Evidently there exists a general soliton family
at each value of β2, β4 < 0 and peak power (specified by
μ) which continuously joins all previously known classes
of solutions: PQSs, conventional solitons, and the solutions
reported by Karlsson and Höök [12].

The solutions we have found represent part of the GDKS
superfamily. We now classify the members of this family and
demonstrate that they are not limited to β2 < 0.

IV. CLASSIFICATION OF THE GDKS SUPERFAMILY

We classify the GDKS family by an analytic description of
their tails. In the low-power tails, we can discard the nonlinear
term in Eq. (8) and find (see also [13,15,23,24])

−μu − β2

2
u′′ − |β4|

24
u′′′′ = 0, (9)

which has solutions that are linear combinations of terms of
the form eλτ , where the λ are given by

λ2 = − 6β2

|β4| ±
√

36β2
2

β2
4

− 24μ

|β4| . (10)

The roots λ are either all real (±λ1, ±λ2) or occur in complex
conjugate pairs (±λ, ±λ∗). We classify these configurations
on the β2 versus μ parameter diagram of Fig. 2(a), with a fixed
β4 = −1 ps4 mm−1, which is a typical value for photonic
crystal waveguides [8]. Let

μ0 ≡ 3β2
2

2|β4| (11)
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FIG. 2. (a) μ versus β2 parameter diagram of solutions to Eq. (8),
for fixed β4 = −1 ps4 mm−1. (b)–(d) Configurations of roots λ

in the complex plane [see Eq. (10)], corresponding to each of the
colored regions in (a). (e) Power (logarithmic scale) versus time for
the stationary solution corresponding to (b). (f) Same as in (e), but
corresponding to (c).

denote the critical value of μ where the discriminant in
Eq. (10) vanishes [13]. This results in a degeneracy where the
roots λ become all real if β2 < 0 and all imaginary if β2 > 0.
As such we have three regions in the parameter diagram of
Fig. 2(a): μ > μ0 (grey), μ < μ0 and β2 < 0 (white), and
μ < μ0 and β2 > 0 (black). We discuss each of these regions
in turn. We note that similar analyses has been carried out
before. Akhmediev et al. [13] and Buryak and Akhmediev
[15] considered the case of β2 < 0, whereas Buffoni et al.
[23] and Champneys and Toland [24] considered the case with
quadratic nonlinearity.

A. β2 < 0 and μ < μ0

For β2 < 0 and μ < μ0, all λ’s are real [Fig. 2(b)], so
these solitons have exponentially decaying tails without os-
cillations [Fig. 2(e)]. These solutions are represented by the
white region under the red parabola μ = μ0 in Fig. 2(a). The
solutions found by Karlsson and Höök [12], represented by
Eq. (6), firmly lie within this region as expected from the sech2

temporal profile [see Eq. (5)]. Since β4 is fixed in Fig. 2(a),

conventional solitons lie infinitely far to the left, which is also
under the red parabola μ = μ0.

B. β2 > 0 and μ < μ0

For β2 > 0 and μ < μ0, all λ’s are imaginary [Fig. 2(d)].
As such, the linear tails are purely oscillatory. Therefore, in
Fig. 2(a), there are no localized pulselike solutions in the black
region under the red parabola μ = μ0. As our focus is on
localized solutions, we do not discuss this region further.

C. μ > μ0

For μ > μ0 and any β2, λ is complex [Fig. 2(c)]. Although
the nature of the linear exponentially decaying solutions we
consider here does not guarantee the existence of pulselike
nonlinear solutions [13], particularly for β2 > 0, our numeri-
cal investigations outlined below indicate that such solutions
indeed exist. These solutions are represented by the grey
region above the red parabola μ = μ0. The real part of λ

gives the decay rate of the tails while the imaginary part gives
the oscillation period. These solitons must have exponentially
suppressed oscillations in the tails [Fig. 2(f)]. The exponential
decay rate decreases when moving towards the right of the
diagram, and so the solitons become increasingly wide. The
PQSs, represented by the blue vertical axis, lie firmly within
this region. For β2 < 0, there is less than one oscillation per
e2π increase in u(τ ), whereas for β2 > 0 there is more than
one oscillation for the same increase. Figure 2(a) shows that
for β2 > 0 these solutions have a threshold in terms of μ. We
comment on this in Sec. V.

V. META-ENVELOPE SOLITONS

We saw in Sec. IV C that solitons become increasingly
wide on the right side of the parameter diagram in Fig. 2.
Indeed, as we approach the red parabola in Fig. 2(a), i.e.
μ → μ0, the characteristic time of decay in the tails becomes
substantially larger than the period of oscillation, giving rise
to solutions such as the blue curve in Fig. 3(a).

In this limit the solutions can be thought of as rapid
oscillations, modulated by a slowly varying envelope [red
curve in Fig. 3(a)]. Using multiple scales analysis [25], we
isolate the envelope and neglect the oscillations which arise
solely due to linear dispersion. To do this we introduce a small
parameter ε, which is used to separate terms that differ greatly
in magnitude.

We expand μ about the critical value μ0 as defined in
Eq. (11) by the parametrization

μ = μ0(1 + ε2). (12)

Equation (10) then becomes

λ2 = − 6β2

|β4| (1 ± iε). (13)

For ε � 1, Eq. (13) reduces to

λ ≈ ±i

√
6β2

|β4|
(

1 ± iε

2

)
. (14)
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FIG. 3. (a) Power versus time for highly oscillatory solution
(blue solid curve) for β4 = −1 ps4 mm−1, β2 = 0.81 ps2 mm−1, μ =
1 mm−1, and γ = 1 W−1 mm−1. The corresponding meta-envelope
is given by the red dashed curve. (b) Spectral amplitude of the sta-
tionary solution of (a). (c) Two-dimensional Fourier transform of the
stationary solution of (a), with the spectral amplitude from (b) shown
by the color scale. The linear dispersion relation is represented by the
blue dashed curve.

The imaginary part gives an oscillation frequency

ωc ≡
√

6β2/|β4|, (15)

independent of ε. In the linear limit, 1/πε oscillations corre-
spond to a 1/e decay in the tails. Thus, we are motivated to
describe the soliton as

u(τ ) = ε f (ετ ) cos(ωcτ ), (16)

μ0 ωcωc

Δβ

Δω

FIG. 4. Dispersion relation (17) (solid curve) for β2 > 0 and
β4 < 0. When the frequency spectrum of the field is concentrated
around the two maxima, the dispersion relation can be approximated
by the dashed curve.

where, since ε is a small parameter, ε f (ετ ) is a slowly varying
envelope. Recall, though, that u(τ ) [blue curve in Fig. 3(a)]
in Eq. (8) itself describes a wave envelope modulating an
underlying carrier [5]. Thus ε f (ετ ) is in fact an envelope of
an envelope, which we refer to as a meta-envelope [red dashed
curve in Fig. 3(a)].

To understand the significance of the metacarrier frequency
ωc, consider the dispersion relation around ω0, with β2 > 0
and β4 < 0:

�β = β2

2
�ω2 + β4

24
�ω4, (17)

where �ω is the frequency offset from the expansion fre-
quency ω0, �β is the propagation constant offset from its
value at ω0, and β2 and β4 are the dispersion coefficients
about �ω = 0. This dispersion relation is illustrated by the
solid curve in Fig. 4. It has two maxima at �ω = ±ωc, where
�β takes the cutoff value μ0 [see Eq. (11)]. As indicated in
Fig. 3(c), the soliton dispersion relation for ε � 1 (colored
line) is thus on the verge of intersecting with the linear
dispersion relation (blue dashed curve), which would lead to
instability by radiation. The local curvature of the dispersion
relation at ±ωc is negative (i.e., anomalous) and has the value
−2β2, as can be found by taking the second derivative of
Eq. (17) at ±ωc.

The meta-envelope f in ansatz (16) corresponds to the
slowly varying envelope that multiplies the underlying carrier
at the two maxima in the dispersion relation in Fig. 4. By the
convolution theorem of Fourier transforms, we would expect
the spectrum of u(τ ) to be highly localized around those
maxima, consistent with Figs. 3(b) and 3(c).

To continue our multiple scales analysis, we substitute
Eqs. (12) and (16) into Eq. (8), and equate terms of the same
order in ε. The O(ε) and O(ε2) terms are found to be

O(ε) : −μ0 f cos(ωcτ ) + ω2
c

β2

2
f cos(ωcτ )

−ω4
c

|β4|
24

f cos(ωcτ ) = 0,

O(ε2) : ωcβ2 f ′ sin(ωcτ ) − ω3
c

|β4|
6

f ′ sin(ωcτ ) = 0. (18)

The first of these is satisfied because we have chosen ωc

to satisfy Eq. (17) when �β = μ0. The second is satisfied
because at ±ωc the inverse group velocity vanishes. The first
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nontrivial result then comes at O(ε3), for which

−μ0 f cos(ωcτ ) − β2

2
f ′′ cos(ωcτ )

+ω2
c

|β4|
4

f ′′ cos(ωcτ ) + γ f 3 cos3(ωcτ ) = 0. (19)

We truncate the perturbation expansion at O(ε3). This means
that we neglect cubic and quartic dispersion in the two narrow
frequency ranges for which the meta-envelope spectrum is
appreciable [see Figs. 3(b) and 3(c)] and corresponds to
approximating dispersion relation (17) by the dashed curve in
Fig. 4, which has the same value and curvature as the original
dispersion relation at �ω = ±ωc.

We now rewrite Eq. (19) as

−μ0 f cos(ωcτ ) − −2β2

2
f ′′ cos(ωcτ ) + γ f 3 cos3(ωcτ ) = 0.

Multiplying by cos(ωcτ ) and averaging over a period gives
an NLS equation for the meta-envelope:

−μ0 f − −2β2

2
f ′′ + 3

4
γ f 3 = 0. (20)

We recover the full spatial dependence if we take the ansatz
ψ (τ, z) = ε f (ετ ) cos(ωcτ ) exp(iμ0(1 + ε2)z) in Eq. (4).

i
∂F

∂Z
− −2β2

2

∂2F

∂T 2
+ 3

4
γ F 3 = 0, (21)

where Z = ε2z, T = ετ , and F = ε f (T ) exp(iμ0Z ) are
slowly varying variables. Equation (21) may be recognized as
the nonlinear Schrödinger equation. Although the quadratic
dispersion is normal at the expansion frequency ω0, the ef-
fective quadratic dispersion parameter in Eq. (21) is β2, c =
−2β2, corresponding to the anomalous dispersion at the actual
carrier frequency �ω = ±ωc. The effective nonlinearity is
reduced to 3γ /4 since a fraction γ /4 is associated with the
third harmonic, i.e.,

cos3(ωcτ ) = 3
4 cos(ωcτ ) + 1

4 cos(3ωcτ ). (22)

The fact that the nonlinear Schrödinger equation arises in
this context is perhaps not surprising since it generally can
be shown to apply to the envelope of nonlinear Hamiltonian
systems [25].

Equation (21) is solved by hyperbolic secant-shaped meta-
envelopes

F (T, Z ) = 2ε

√
β2

2

γ |β4| sech

(√
3β2

2|β4|T

)
eiμ0Z . (23)

We refer to these as fundamental metasolitons, in analogy
to the conventional fundamental solitons. We have tested the
accuracy of this meta-envelope description by comparing with
numerical solutions of the full Eq. (8). Figure 5 shows that the
percentage error in peak power predicted by Eq. (23) is less
than 10% for ε < 0.6.

Higher-order metasolitons, in analogy to higher-order con-
ventional solitons, would also be expected [26]. In Fig. 6(a),
we multiply the amplitude of a highly oscillatory solution
(ε = 0.05) by a factor of N = 2, where N is analogous to
the soliton number for conventional solitons. By the split-step
numerical method, we simulate its propagation. As shown in
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FIG. 5. Percentage error in the meta-envelope peak power com-
pared with numerical solutions as a function of the expansion param-
eter ε.

Fig. 6(b), the meta-envelope periodically contracts and returns
to its original shape, similar to higher-order conventional
solitons. The period of evolution is as expected from soliton
theory,

Lm = π

2
LGVD = πT 2

0

4|β2| , (24)

where

T0 =
√

2|β4|
3β2

1

ε
(25)
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FIG. 6. (a) Power versus time at various propagation distances
for stationary solution of Fig. 3 multiplied with an amplitude multi-
plier N = 2. (b) Power versus time for the input pulse in (a). (c) Pulse
in (b) after propagation by five metasoliton periods πT 2

0 /(4|β2|).
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is the half width at sech2(1) ≈ 0.42 of the intensity maxi-
mum of the meta-envelope. Over this metasoliton period, the
radiation of energy into dispersive waves is gradual, which
indicates that deviations from the meta-envelope description
are small.

Having found the metasoliton solutions, we can now under-
stand the finite threshold of μ for β2 > 0. As discussed below
Eq. (17), at the expansion frequency ω0 the dispersion is nor-
mal and bright solitons thus do not exist at low peak powers.
Solitons are only possible once the peak power reaches a
threshold, where the soliton spectrum attains sufficient width
so as to sense the anomalous dispersion at �ω = ±ωc.

VI. SCALING OF GDKS

The generalized NLS equation (8) is invariant under the
following rescaling of the amplitude u, temporal and spatial
coordinates τ and z, and dispersion coefficients β2 and β4:

u → αu, μ → α2μ,

β2 → δ1/2αβ2, β4 → δβ4, τ → δ1/4α−1/2τ. (26)

To see the significance of such a transformation, consider
first the case where δ = 1. This keeps β4 constant and thus
generates the entire parameter diagram of Fig. 2. The values
of β2 and μ that result as α varies lie on the same half
parabola μ ∼ β2

2 as the original values. Thus, all the stationary
solutions on such half parabolas, such as the Karlsson-Höök
solutions given by Eq. (6), are simply rescaled versions of one
another with altered peak powers and pulse widths. Likewise,
for equal values of ε [see Eq. (12)], the metasoliton solutions
discussed in Sec. V are related by this transformation. Seen
this way, the PQS corresponds to the degenerate case where
the two half parabolas coincide.

In the general case of the transformations of Eq. (26), the
combination μ|β4|/β2

2 remains unchanged. We thus define the
dimensionless GDKS shape parameter as

σ =
√

3

2μ|β4|β2, (27)

where the factor 3/2 was included such that σ = ±1 corre-
sponds to the red parabola separating the various regions in
Fig. 2. σ = 0 corresponds to the PQSs (blue line in Fig. 2).
The Karlsson-Höök solutions [green dashed curve in Fig. 2;
Eq. (6)] are given by σ = −5/4. No localized solutions exist
for σ > 1.

We can reformulate the generalized NLS equation (8)
in terms of the GDKS parameter. Suppose we parametrize
β2 = σ

√
2μ|β4|/3 in terms of σ . Equation (8) then

becomes

−u − σ

√
|β4|
6μ

u′′ − |β4|
24μ

u′′′′ + γ u3 = 0. (28)

If we define a normalized amplitude and time as

U =
√

γ

μ
u, T =

(
24μ

|β4|
)1/4

τ, (29)
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FIG. 7. Time-bandwidth product versus GDKS shape parameter σ .

then Eq. (28) becomes

U + 2σU ′′ + U ′′′′ = U 3. (30)

Thus this system of mixed quadratic and quartic dispersion
is solely characterized by the GDKS shape parameter, which
describes the relative strength of β2 and β4. As we increase
the peak power and thus μ, larger values of β2 are required
to maintain the same value of σ . This is because the solu-
tions become spectrally wider and the quartic dispersion thus
becomes more dominant over quadratic dispersion for a fixed
value of β4.

Each value of σ < 1 describes a family of solitons existing
for all values of β2 and β4 with the appropriate signs, and that
are related by the scaling relations (26). In other words, all
the solutions which exist in the three-dimensional parameter
space (β2, β4, μ) can be represented by a single parameter
σ . Solutions with the same value of σ have the same shape;
i.e., they are related to each other by linear transformations
of the horizontal and vertical axes. A similar one-parameter
parametrization was reported earlier by Akhmediev et al.
[13]. The solutions at each σ can thus be characterized by
quantities that are invariant under the transformations (26).
One such quantity is the time-bandwidth product, which is
the product of the full width at half maximum of the temporal
and spectral intensity profiles. The time-bandwidth product
(TBP) versus σ is shown in Fig. 7. It is not well defined
in the meta-envelope region (σ → 1), where the temporal
profile becomes increasingly oscillatory [see Fig. 3(a)], since
the spectrum develops two distinct maxima. This is why we
only show results for σ < 0.5. Note that the time-bandwidth
product increases monotonically with σ . At σ = 0 we find
that the time-bandwidth product is 0.53, consistent with the
result found earlier for PQSs [9]. As σ becomes large and
negative it approaches the value 0.32 for hyperbolic secant
pulses. This means that, for the same pulse duration, the
pulse’s bandwidth increases with increasing σ . This is not
surprising, perhaps, since the oscillations in the tails, the
amplitude of which increases with σ , introduce additional
frequencies that lead to spectral broadening. We note that
another natural choice of metric, the root-mean-square time-
bandwidth product, diverges for σ > 0.5.
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FIG. 8. Energy of stationary solutions versus specified values of
β2 and β4 (varying according to the straight part of the contour in
Fig. 1) and pulse width. Red solid line represents the NLS solitons
while the blue dashed line represents the PQSs.

We now turn to the energy-width scaling within the GDKS
family. To contrast the effects of varying β2 and β4, we focus
on solutions which lie on the black line in the β2-β4 parameter
plane of Fig. 1(a), which joins a conventional soliton (red)
with a PQS (blue). The corresponding values of β2 and β4 are
shown on the horizontal axis of Fig. 8, which shows the pulse
energy (color scale) as a function of pulse width w (vertical
axis) for the specified values of the dispersion parameters. To
provide some idea of the magnitudes of these parameters, we
have chosen the dispersion parameters to be consistent with
those in the experiments of Blanco-Redondo et al. [8].

The figure shows that for long pulses, the highest pulse
energies lie to the left in Fig. 8. This means that negative β2

is more important than negative β4 in achieving high pulse
energies at relatively large pulse widths. The top right of
the diagram corresponds to the highly delocalized solutions
when β2 > 0, for which the full width at half maximum is
not well defined. In contrast, for sufficiently narrow pulses,
the highest pulse energies lie to the right of Fig. 8, beyond
even the PQSs (blue dashed line). This implies that in the
design of soliton supporting platforms, it is possible to go
beyond the advantageous PQS energy scaling [2, Runge et al.]
by considering a dispersion relation with moderate positive
values of β2. However, this comes at the expense of more
oscillatory behavior in the tails of the pulses. This presents
a clear trade-off in laser applications, for instance, where a
higher energy at a fixed width can be obtained at the expense
of increasingly prominent oscillations in the tails.

VII. EFFECTS OF CUBIC DISPERSION: β3 �= 0

Having ignored cubic dispersion until now, we turn to its
effect on GDKS formation. The generalized NLS equation
that includes β3 reads

i
∂ψ

∂z
− β2

2

∂2ψ

∂τ 2
− iβ3

6

∂3ψ

∂τ 3
− |β4|

24

∂4ψ

∂τ 4
+ γ |ψ |2ψ = 0, (31)

This equation was studied by Piché et al. [16], who showed
that when β3 is sufficiently small, corresponding to β2(ω)
not changing sign over the width of the pulse spectrum, then
the pulse moves slowly with respect to the rest frame but is
otherwise unchanged. Stationary solutions for nonzero β3, for
which the phase depends on τ , were reported by Kruglov
and Harvey [27]. However, such a time dependence can be
interpreted as a shift �ω in the carrier frequency away from
the expansion frequency ω0 where the dispersion parameters
β2,3,4 were defined by Taylor expansion. Indeed it is more
natural to perform this expansion about the actual carrier
frequency ω0 + �ω. The value of �ω in the solutions of
Kruglov and Harvey corresponds to the unique frequency on
a quartic dispersion relation where β3 vanishes:

�ω = −β3

β4
. (32)

As such, the solutions of Kruglov and Harvey, which also have
a sech2 amplitude profile, are the Karlsson-Höök solutions
[Eq. (5)] when viewed in the more natural rest frame of the
carrier, where β3 = 0.

Now consider a more general ansatz for a moving solitary
wave:

ψ (τ, z) = u

(
τ − z

v

)
eiμz, (33)

where the real amplitude profile u now travels at an inverse
velocity v−1 relative to the rest frame of the expansion fre-
quency ω0. Substituting Eq. (33) into Eq. (31), the imaginary
part gives

−1

v
u′ − β3

6
u′′′ = 0 (34)

as an additional constraint to the (real) Eq. (8). We have
found that this additional constraint is inconsistent with the
solutions to Eq. (8), unless v−1 = 0, which means that the
group velocity of the pulse is equal to that at ω = ω0.
We thus find that for real u, the generalized ansatz (33) does
not contribute solutions in addition to the solutions following
from ansatz (7).

VIII. DYNAMICS

We now turn to the dynamical properties of GDKSs. We
apply small normal mode perturbations f , g � 1 to a GDKS
u(τ ) [28]:

ψ (τ, z) = (u(τ, z) + f (τ )e�z + g∗(τ )e�∗z )eiμz. (35)

� and �∗ are eigenvalues characterizing the evolution of
the conjugate modes f and g, which are coupled by the
nonlinearity. Substituting Eq. (35) into Eq. (4) and retaining
only terms linear in f and g gives the system of coupled
ordinary differential equations

−β2

2
f ′′ − |β4|

24
f ′′′′ + (2γ u2 − μ) f + γ u2g = −i� f ,

β2

2
g′′ + |β4|

24
g′′′′ − (2γ u2 − μ)g − γ u2 f = −i�g. (36)

These may be solved numerically by expressing f and g in
terms of Fourier series [22]. The linearized eigenspectrum of

043822-8



GENERALIZED DISPERSION KERR SOLITONS PHYSICAL REVIEW A 101, 043822 (2020)

-0.5 0 0.5
Re( )

-0.5

0

0.5
Im

(
)

0
Re( )

0.24

0.26

0.28

Im
(

)

(a)

-20 -10 0 10 20
Time (ps)

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 In
te

ns
ity

 

(b)

0 1 2 3 4 5
z|

int
|/(2 )

-5

0

5

T
im

e 
(p

s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
ow

er
 (

W
)

(c)

FIG. 9. (a) Linearized eigenspectrum for the GDKS with β2 =
0.7 ps2 mm−1, β4 = 1 ps4 mm−1, and μ = 1 mm−1. Red points
represent high-spatial-frequency perturbations which are radiated as
dispersive waves. The green star represents the zero eigenvalues
corresponding to the translational and phase invariance of Eq. (4).
Blue diamonds represent discrete internal modes. (b) Conjugate
mode profiles f (thick red solid curve) and g (thin blue solid curve)
corresponding to the larger internal mode eigenvalue of (a), with
the soliton shown for comparison (yellow dashed curve). (c) Power
versus time for the GDKS in (a) perturbed by the internal mode in
(b) over five internal mode oscillation periods Tint.

the GDKS for β2 = 0.7 ps2 mm−1, β4 = −1 ps4 mm−1, and
μ = 1 mm−1 is shown in the complex plane in Fig. 9(a). We
observe that all eigenvalues � are imaginary, indicating that
no linear perturbations grow exponentially. We have observed
that the entire GDKS family is linearly stable.

We focus on the features of the eigenspectrum in Fig. 9(a).
The green star shows the zero eigenvalues which correspond
to the translational and phase invariance of Eq. (4). The red
lines represent a continuum of high-spatial-frequency modes
which are unbound by the potential of the soliton. Such pertur-
bations radiate into the far field as dispersive waves. Isolated
discrete eigenvalues (blue diamonds), which must occur in
conjugate pairs, correspond to internal modes [28]. These
are persistent small-amplitude shape oscillations which decay
only by the nonlinear generation of higher harmonics lying
within the dispersive wave continuum. Unlike NLS solitons,
which have no internal modes [29], and the single symmetric
internal mode of the PQS [9], the GDKS in Fig. 9(a) has
two internal modes. The smaller eigenvalue corresponds to
a symmetric mode, where energy is exchanged between the
central maximum and the adjacent tail maxima. In contrast,
the larger eigenvalue represents an antisymmetric mode where
energy is exchanged between the two sides of the pulse while
the central maximum remains unchanged. This mode profile
is shown in Fig. 9(b). The thick red and thin blue solid curves
depict the conjugate modes f and g corresponding to the
shapes of different phases of the shape oscillation. The yellow
dashed curve shows the soliton for comparison.

Figure 9(c) shows the result of subjecting the GDKS to
a 5% perturbation by the antisymmetric internal mode of
Fig. 9(b). The observed oscillation period is as predicted by

Tint = 2π

|�int| , (37)

where �int is the internal mode eigenvalue. We can also
observe such internal modes by generating GDKSs from
Gaussian inputs in split-step propagation simulations. As the
pulse sheds energy in order to develop the correct shape of a
GDKS, the internal mode(s) of the corresponding soliton is
excited, leading to out-of-phase oscillations in the peak power
and temporal width of the pulse. The equilibrium peak power
and pulse width of such oscillations match the values for our
numerical solutions to the GDKS superfamily.

While a complete characterization of the internal modes
throughout the parameter plane of Fig. 2 is beyond our current
scope, the single internal mode observed for the PQS [9] ap-
pears to vanish for sufficiently large values of |β2|. In this case,
we expect all oscillations in peak power and pulse width upon
perturbation to be exponentially damped. As we approach
the metasoliton regime, multiple internal mode eigenvalues
bifurcate from the continuum and beat with one another
upon excitation. Sufficiently close to the cutoff μ = μ0 we
expect to observe no internal modes due to the integrability of
the meta-envelope NLS equation (21).

IX. DISCUSSION AND CONCLUSIONS

We have provided a comprehensive description of solitons
in the presence of a Kerr nonlinearity and quadratic and quar-
tic dispersion. We propose the term generalized dispersion
Kerr solitons to refer to the superfamily of soliton solutions
existing in this parameter space, which includes the notable
cases of NLS solitons and PQSs, and which are characterized
by the single parameter σ . Since dispersion relations domi-
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nated by an even order of dispersion can at least in principle
be isolated from the soliton spectrum, we might infer that
this superfamily should also encompass soliton solutions in
the presence of higher orders of even dispersion (β6, β8, etc.),
although a systematic study of these solutions remains to be
carried out.

We note that for the solutions we have discussed, their
frequency and wave number content do not overlap with the
linear dispersion relation. This is illustrated, for example, in
Fig. 3(c), which shows a small but finite gap between the
dashed curve, which represents the linear dispersion relation,
and the horizontal line, which represents the nonlinear pulse.
By the argument of Akhmediev and Karlsson [30], this im-
plies that the nonlinear pulse is stable against radiation losses,
consistent with the analysis in Sec. VIII.

One of our satisfying findings is that the solutions found
by Karlsson and Höök [12] naturally fit in the classification
outlined in Fig. 2. One reason, perhaps, why analytic solutions
can be found is that, for the associated μ given in Eq. (6), the
exponential tails are superpositions of terms that vary as e±λτ

and e±2λτ . In other words, deep in the tails the exponential
decay rates differ by exactly a factor of 2. It is straightforward
to see that in the presence of a Kerr nonlinearity this leads
to terms of the form e±mλτ , where m is a positive integer. This
may motivate the search for analytic solutions where the decay
rates are related by other simple rational ratios.

In Sec. VII we discussed aspects of the effect of β3. As a
more general comment than the particular discussion in that
section, we note that we did not find any solutions when β3 �=
0, consistent with ansatz (7). This means that all solutions
we find travel at the group velocity 1/β1 at the frequency
where β3 = 0. For the conventional nonlinear Schrödinger
equation, which exhibits Galilean invariance, solutions exist
for all frequencies for which β2 < 0, each with an associated
group velocity. However, the inclusion of quartic dispersion
removes the Galilean invariance, and so this property does
not carry over. Another way to see this is that changing the
frequency, and neglecting dispersion orders higher than four,

changes β1,2,3, leading to a different equation. Of course, the
fact that we do not find solutions for nonzero β3 does not mean
that such solutions do not exist; it merely means that a more
complicated ansatz than Eq. (7), or its direct generalizations
[27], is required.

We have found that, for highly oscillatory metasoliton
solutions, their basin of attraction does not seem to include
Gaussian-like inputs. In such cases, we have numerically
demonstrated that it is possible to generate such solitons by
adiabatically varying the dispersion profile of the system. Fur-
ther work is required to find the threshold value of β2 where a
GDKS can be generated for a given Gaussian input pulse.

Our discussion in Sec. VI, and in particular the information
in Figs. 7 and 8, shows that for applications in soliton lasers
finding the optimal ratio of β2 and β4 is subtle. Figure 8 shows
that a combination of negative quartic dispersion and some
positive quadratic dispersion can lead to high pulse energies.
On the other hand, if the quadratic dispersion becomes too
large then the oscillations become prominent and the time-
bandwidth product increases. Irrespective of these subtleties
though, our results show that pure quadratic dispersion is
unlikely to be optimal, and that investigating and leveraging
different orders of dispersion can be expected to be worth-
while to maximize laser performance.

In summary, we have provided a unifying framework
to understand nonlinear pulse propagation in systems with
different significant dispersion orders. From an applications
standpoint our findings may have practical implications in
ultrafast laser design where new energy scaling laws and pulse
shapes become available.
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