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Chiral relations and radial-angular coupling in nonlinear interactions of optical vortices
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In this article we investigate the connection between the chirality of interacting vortices and the appearance
of radial structures in nonlinear wave mixing. Depending on the signs of their topological charges, the nonlinear
mixing of optical vortices may produce a radial-angular coupling that generates a finite superposition of pure
Laguerre-Gaussian modes carrying the resultant topological charge and a finite spectrum of radial orders. These
radial modes evolve with different Gouy phases that determine the transformation from a hollow intensity
distribution in the near field to a finite ring structure in the far field pattern. In this sense, we interpret the
appearance of radial modes in nonlinear wave mixing as a diffraction of the up-converted beam through the
effective amplitude-phase mask created by the pump beams. This interpretation is supported by comparison
between the images produced by the nonlinear process and purely diffractive measurements with a spatial light
modulator that mimics the amplitude-phase modulation produced in nonlinear wave mixing.
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I. INTRODUCTION

The cross-talk between different optical degrees of free-
dom is a central issue for classical and quantum commu-
nication protocols where controlled operations are required
[1–5]. Polarization controlled mixing of orbital angular mo-
mentum (OAM) in nonlinear processes has been investigated
in recent works [6–9]. Much progress in this field was made
possible due to improved techniques employing spatial light
modulators (SLMs) [10]. The spatial intensity distribution
and the quantum correlations under polarization control in
nonlinear media have been investigated [6,11,12]. The cross-
talk between radial and angular modes has been considered in
connection with entanglement and teleportation schemes [13].

Parametric processes driven by vortex beams can generate
radial structures depending on the relative chirality of the
interacting vortices. The appearance of radial structures in
nonlinear processes has been observed in different contexts
[14–17]. In second harmonic generation (SHG) the nonlin-
ear mixing of Laguerre-Gaussian (LG) modes occurs under
nontrivial selection rules involving radial and angular indices
[7,18,19]. In this case, when counter-rotating vortices are
nonlinearly mixed, the resulting topological charge in the
second harmonic does not match the accompanying radial
power law. This radial-angular mismatch results in a trans-
verse structure that does not preserve its shape along free
propagation, evolving from a hollow intensity distribution in
the near field to a ring structure in the far field. In this work we
investigate the diffractive origin of radial structures generated
in nonlinear vortex interactions. First, we show that a radial-
angular mismatched beam can be cast as a finite superposition
of radial modes and the corresponding radial spectrum is
analytically derived. Then, we use a spatial light modulator
(SLM) to mimic the amplitude-phase modulation produced
in SHG and compare it with the actual structure generated

by the nonlinear process. The experimental results confirm
our theoretical derivation of the radial mode spectrum and
support the diffractive interpretation. This can be relevant in
different physical contexts such as nonlinear wave mixing in
atomic media [20], high harmonic generation (HHG) [21–23],
and self-phase modulation in polariton superfluids [24,25], for
example.

II. THE RADIAL SPECTRUM OF NONLINEAR WAVE
MIXING WITH LAGUERRE-GAUSSIAN MODES

Two-dimensional Laguerre-Gaussian (LG) functions are
well known solutions of the paraxial wave equation in cylin-
drical coordinates, where the longitudinal coordinate z des-
ignates the propagation direction and (r, φ) are the polar
coordinates in the transverse plane. In a compact form, the
normalized LG modes can be expressed as

ψpl (r̃, φ, z̃) = Npl (
√

2 r̃)|l| L|l|
p (2r̃2) e−(1+iz̃)r̃2

×e[ilφ+i(2p+|l|+1) arctan(z̃)], (1)

where L|l|
p (x) is a generalized Laguerre polynomial and

Npl =
√

2 p!

πw2(z̃)(p + |l|)! ,

w(z̃) = w0

√
1 + z̃2,

r̃ = r/w(z̃), z̃ = z/z0. (2)

z0 = k w2
0/2 is the Rayleigh distance and w0 is the beam

waist. The LG modes form an orthonormal and complete basis
of square-integrable functions in the transverse coordinates,
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which can be expressed as∫
ψ∗

pl (r̃, z̃) ψp′l ′ (r̃, z̃) d2r̃ = δpp′ δll ′ ,∑
p,l

ψ∗
pl (r̃, z̃) ψpl (r̃′, z̃) = δ(r̃ − r̃′). (3)

These modes are stable under free propagation as they pre-
serve their functional dependence on the transverse coor-
dinates, except for global phase factors and an expanding
beam width w(z̃). This stability requires a radial-azimuthal
match given by the parameter l that appears on both phase
and amplitude terms. When this match is violated, the whole
structure loses stability and the resulting function changes its
shape along propagation [26]. As we will show, it can be
decomposed as a superposition of radial orders that evolve
with different Gouy phases, which explains the near-to-far
field transformation [27]. This fact is of great significance
for nonlinear mixing of optical vortices as it naturally gen-
erates radial-azimuthal mismatch. We next derive the radial
spectrum of such mismatched structures in terms of pure LG
modes.

The propagation properties of hollow beams without OAM
have been discussed in [28,29]. This is a special case of radial-
angular mismatch that appears, for example, when opposite
topological charges (±l ) are added in three-wave mixing,
resulting in null OAM. Here we study the more general sit-
uation involving nonlinear mixing of independent topological
charges l1 and l2 in type-II second harmonic generation (SHG)
[7,8]. We consider the p = 0 fundamental beam, which yields
a Laguerre polynomial equal to 1 and the Gouy phase is zero
at z = 0. The resulting field distribution at the output of the
nonlinear crystal (z = 0) is of the form(

ψ0l1 ψ0l2

)
z=0 = N0l1 N0l2 (

√
2 r̃)|l1|+|l2| e−2r̃2

ei(l1+l2 )φ

= N0l1 N0l2

2l/2 N0l
ζ0lm(

√
2 r̃, φ, 0), (4)

where we defined the normalized structure

ζ0lm(r̃, φ, 0) = N0l (
√

2r̃)l e−r̃2
eimφ, (5)

with l = |l1| + |l2| and m = l1 + l2. When corotating vortices
are mixed (l1l2 � 0), the radial and azimuthal indexes match
(|m| = l) and ζ0lm is a pure LG mode ψ0m with zero radial
order (p = 0) and rescaled width. However, when counter-
rotating vortices are mixed (l1l2 < 0), the net OAM left in
the up-converted beam does not match the radial power law
(|m| �= l). In this case (5) is no longer a solution of the
paraxial equation, and the beam will not be self-similar upon
propagation, but can still be decomposed on its natural LG
modes in the form

ζ0lm(r̃, φ, 0) =
∑

p

Cpm ψpm(r̃, φ, 0), (6)

involving different radial orders and a fixed topological charge
m. Equation (6) describes the near field (z = 0) distribution,
so the far field behavior is readily obtained by including the
z-dependent phase factors associated with the quadratic and
Gouy phases.

In order to derive the coefficients Cpm, it will be useful to
write Eq. (6) in the form

ζ0lm(r̃, φ, 0) = N0l (
√

2r̃)|m| e−r̃2
eimφ (2r̃2)P, (7)

where P ≡ (l − |m|)/2. Here, a subtle feature shows up.
When P ∈ N, the monomial can be expanded as a finite sum
of generalized Laguerre polynomials Lk

p(x),

xP =
P∑

p=0

(−1)p P! (k + P)!

(P − p)! (k + p)!
Lk

p(x) (P ∈ N). (8)

Note that the summation runs over the index p, but the family
k is arbitrary and can be chosen at will, so long as the adequate
coefficients are used. By making x ≡ 2r̃2 and choosing k =
|m|, Eq. (7) can be cast as a finite superposition of LG modes
with different radial orders 0 � p � P and a fixed topological
charge m. Including the quadratic and Gouy phase factors, the
LG expansion valid in both the near and far fields becomes

ζ0lm(r) = P!Q!√
(P + Q)!

P∑
p=0

(−1)p ψpm(r)

(P − p)!
√

p!(Q − P + p)!
, (9)

where Q = (l + |m|)/2. The radial-angular mismatch P deter-
mines the dimensionality of the radial spectrum. When P /∈ N,
i.e., when it is either negative or half-integer, the radial spec-
trum is infinite. Interestingly, nonlinear OAM mixing always
generates finite radial spectra, since it involves products of LG
modes, implying

P = |l1| + |l2| − |l1 + l2|
2

= min (|l1|, |l2|) ∈ N,

Q = |l1| + |l2| + |l1 + l2|
2

= max (|l1|, |l2|) ∈ N.

(10)

Therefore, the product of counter-rotating LG modes results
in a finite radial spectrum with min (|l1|, |l2|) + 1 terms and
a rescaled width. Without loss of generality, we shall assume
|l1| � |l2|. Then, the LG decomposition of the mode product
reads

ψ0l1 (r̃)ψ0l2 (r̃) =
√

2

πw2

|l1|∑
p=0

Cp,l1+l2 ψp,l1+l2 (
√

2r̃), (11)

where

Cp,l1+l2 = (−1)p

(|l1| − p)!

√
|l1|!|l2|!

2|l1|+|l2| p!(|l2| − |l1| + p)!
. (12)

Equations (11) and (12) can be easily generalized for prod-
ucts involving modes with different waists, as was done in
Ref. [7]. We next compare the experimental results obtained
with nonlinear mixing of counter-rotating vortices with those
given by the spatial modulation from a SLM programed with
a LG mode product.

III. EXPERIMENTAL RESULTS

The experimental setup is sketched in Fig. 1. First, we
obtained images from nonlinear mixing of two optical vortices
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FIG. 1. (a) Experimental scheme for nonlinear mixing of differ-
ent topological charges in second harmonic generation. (b) Prepa-
ration of radial-angular mismatch from Laguerre-Gaussian mode
product with a spatial light modulator (SLM).

with topological charges l1 and l2 in second harmonic gener-
ation (SHG) as shown in Fig. 1(a). Two vortices with orthog-
onal polarizations at 1064 nm wavelength are combined in a
polarizing beam splitter (PBS) and sent to a potassium titanyl
phosphate (KTP) crystal where SHG takes place under type-II
phase match. A new vortex beam is generated at 532 nm
and separated from the fundamental frequency by a dichroic
glass. The near-to-far field transition is studied by imaging the
second harmonic beam with a charge-coupled device camera
(CCD Imaging Source model DMK31BF03.H). Then, the
SHG images are compared with those generated by diffraction
of an input plane wave on a spatial light modulator (SLM),
as shown in Fig. 1(b). A 633 nm continuous wavelength
He-Ne laser is expanded to a 4 mm wide Gaussian beam
that impinges on the SLM (Hamamatsu LCOS-SLM model
XT10468) programed with the amplitude-phase modulation
given by the product of Laguerre-Gaussian functions [10].
We want to demonstrate the generation of radial modes solely
from the OAM combination, so we will consider only prod-
ucts involving zero radial order. The transmission function
programed on the SLM plane (z = 0) will be of the form

T (r̃, φ) = T0 r̃ (|l1|+|l2|) e−2r̃2
ei(l1+l2 )φ ∝ ψ0l1 ψ0l2 , (13)

where T0 is a positive real factor. Although a reflective SLM
was employed, we draw a transmission scheme in Fig. 1(b)
for easier comparison with the SHG measurements. The beam
generated by the SLM is sent through two imaging lenses
with focal lengths f1 = 10 cm and f2 = 15 cm, placed at
70 and 100 cm from the SLM, respectively. This produces a
short Rayleigh range (zR ≈ 0.66 mm) allowing capture of the
near-to-far field transition over a short propagation distance.
The CCD camera is displaced between 150 and 155 cm from
the SLM, where the near and far field patterns are registered.
Note that the amplitude modulation depends only on |l1| +
|l2| and is completely insensitive to the relative chirality in
the mode product, while the phase modulation depends on
l1 + l2, giving different results for co- and counter-rotating
charges. Since we want to put into evidence the role of the
relative chirality in the generation of higher radial orders, we
will consider only products with l1 l2 < 0 and compare with
the corresponding experimental results given by the actual
nonlinear mixing of the same topological charges. In all cases,

FIG. 2. Comparison between the far field images obtained with
OAM addition in SHG (top) and those with the SLM (bottom)
programed with products of LG modes. Different combinations of
counter-rotating topological charges were employed, showing excel-
lent agreement in all cases.

the near-to-far field transition reveals the radial orders through
external rings that become observable. We consider different
combinations of counter-rotating vortices, as shown in Fig. 2.
According to the radial spectrum given by Eq. (9), we expect
that min (|l1|, |l2|) radial orders appear in the transmitted field.
In all cases, the radial orders generated can be easily identified
by the number of outer bright rings in the far field. Moreover,
one can notice the presence of the phase singularity in all the
cases where there is a net topological charge (l1 + l2 �= 0).
The agreement between the images produced by nonlinear
mixing and those obtained by the SLM modulation confirms
the diffractive origin of the radial structure. In nonlinear
processes driven by LG modes, the pump beams produce a
spatial modulation of the up-converted frequency with LG
mode products that may result in radial-azimuthal mismatch,
giving rise to a radial spectrum.

The role of the radial-angular mismatch can be further
evidenced by testing the far field images obtained from the
SLM modulation with different (l1, l2) combinations having
the same radial power law variation |l1| + |l2| = 6, as shown
in Fig. 3. The theoretical images are obtained from the Fresnel

FIG. 3. Comparison between numerical simulations (top) and
experimental results (bottom) of the diffraction pattern obtained with
|l1| + |l2| = 6 and 0 � l1 + l2 � 6. Saturation in both numerical and
experimental images was intentional in order to make clear the
external rings.
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diffraction integrals, with excellent agreement with the exper-
imental results given by the SLM modulation.

We can extend our argument to arbitrary nonlinear pro-
cesses. The response of a nonlinear medium to an incident
electromagnetic field is of a general form

P(n+m) = χ (n+m) E1 · · · En E∗
n+1 · · · E∗

n+m, (14)

where χ (n+m) is the nonlinear susceptibility tensor and P(n+m)

is the nonlinear polarization of the medium corresponding
to n up-conversion and m down-conversion steps. We want
to describe the nonlinear generation of radial orders, so we
assume the input field to be a superposition of different OAM
components, all carrying zero radial orders. For simplicity, we
assume a collinear configuration along z, with a thin nonlinear
medium placed at the focal region (z = 0) of the incoming
beams. Then, the input field can be written as

Ein =
∑

l

A0l ψ0l (r̃, φ, 0) e−iωt , (15)

giving rise to nonlinear polarization contributions propor-
tional to a product of LG modes of the form

P(n+m)
l1···ln+m

∝ ψ0l1 · · · ψ0lnψ
∗
0ln+1

· · · ψ∗
0ln+m

. (16)

So long as the nonlinear interaction is restricted to the focal
region of the beams, complex conjugation amounts only to a
topological charge inversion (ψ∗

0l → ψ0,−l ) in the LG mode
product. The transverse modes generated in the nonlinear
process will depend on the LG decomposition of such product
contributions. They may result in radial-angular mismatched
field distributions of the form ζ0LM , with

L =
n+m∑
j=1

|l j |,

M =
n∑

j=1

l j −
n+m∑

j=n+1

l j .

(17)

The appearance of radial orders in the nonlinear process will
be subjected to the mismatch between the radial power law
L and the net topological charge M. Strong indications of this
mechanism can be found in the images produced by four-wave
mixing in atomic vapors shown in [20]. This can also be
relevant for self-phase modulation in both polariton superflu-
ids [24,25] and saturable optical media [30]. For example, a

generalized product can be written as

n∏
j=1

ψ0l j

n+m∏
j=n+1

ψ∗
0l j

=
∏n+m

j=1 N0l j

(n + m)l/2 N0L
ζ0LM (

√
n + m r̃), (18)

with L and M given by Eqs. (17). We can deduce the di-
mension of the radial spectrum by identifying the positive
and negative contributions to the net topological charge M.
Let l± be the sum of positive (negative) contributions to the
net topological charge. Then, we have L = |l+| + |l−|, M =
l+ + l−. The dimension of the radial spectrum generated by
the multimode product is simply P = min(|l+|, |l−|).

IV. CONCLUSION

In conclusion, we demonstrate the connection between the
relative chirality of the interacting beams and the appearance
of radial structures in nonlinear wave mixing. The stability
of a vortex structure along propagation depends on the match
between the vortex topological charge and the radial power
law variation of the field amplitude. When this condition is
violated, a radial spectrum is created and a ring structure is
formed in the far field. This radial-azimuthal mismatch is
naturally produced in nonlinear wave mixing, where the ap-
pearance of radial orders is subjected to the relative chiralities
of the interacting beams. We have confirmed this effect with
both three-wave mixing and pure spatial modulation of an
expanded Gaussian beam by a SLM programed with products
of Laguerre-Gaussian functions. The radial orders generated
agree with our theoretical derivation. This effect can be impor-
tant to other nonlinear phenomena and possibly in the quan-
tum domain, where the number of excited modes determines
the dimension of the photonic Hilbert space. This opens inter-
esting perspectives for future investigations on the subject.
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